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Abstract

Lecture notes for a 4 x 1 hour mini-course on bounded cohomology given in April 2008,
at KTH. It covers elementary definitions, low degree computations, actions on the circle,
Milnor-Wood inequalities, and (non)existence of affine structures.

Lecture I

1. Definition
Let Γ be a (discrete) group, and A be an abelian group. Typically, A = R,Z or R/Z. Set

Cn(Γ, A) =
{
f : Γn+1 → A

}
and

Cnb (Γ, A) =
{
f : Γn+1 → A | f is bounded

}
.

(If A = R/Z the condition to be bounded is void.) The coboundary operator δ : Cn(Γ, A) →
Cn+1(Γ, A) is defined as

δf(γ0, ..., γn+1) =
n+1∑
i=0

(−1)if(γ0, ..., γ̂i, ..., γn+1),

for f ∈ Cn(Γ, A) and (γ0, ..., γn+1) ∈ Γn+1.

Exercise Check that δ2 = 0.

Terminology: Elements in Cn(Γ, A), respectively Cnb (Γ, A), are called cochains, resp. bounded
cochains. A cochain f is a cocycle if δf = 0 and a coboundary if there exists h with δh = f .
In particular, a coboundary is always a cocycle.

Lemma The cocomplex

0→ A→ C0
b (Γ, A)→ C1

b (Γ, A)→ C2
b (Γ, A)→ ...

is exact.

Proof Exactness in A: Note that as usual, the augmentation ε : A → C0
b (Γ, A) is defined by

sending an element a ∈ A to the constant function f : Γ → A with value a. This is clearly
an injective map.
Exactness in C0

b (Γ, A): By definition, the image of ε consists of constant functions Γ → A.
This is precisely the kernel of δ : C0(Γ, A) → C1(Γ, A) since if δf = 0, for f : Γ → A, then
δ(f)(γ0, γ1) = f(γ1)− f(γ0) = 0 for every γ0, γ1 ∈ Γ.
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Exactness in Cnb (Γ, A), n > 0: Since δ2 = 0 it remains to prove that the kernel of δ is included
in the image of δ. Let f ∈ Cnb (Γ,R) with δf = 0. Define h : Γn → R by

h(γ1, ..., γn) = f(1, γ1, ..., γn),

for every (γ1, ..., γn) ∈ Γn, where 1 denotes the identity element in Γ. For (γ0, ..., γn) ∈ Γn+1,
we have

δh(γ0, ..., γn) =
n∑
i=0

(−1)ih(γ0, ..., γ̂i, ..., γn) =
n∑
i=0

(−1)if(1, γ0, ..., γ̂i, ..., γn))

= f(γ0, ..., γn),

since δf(1, γ0, ..., γn) = 0, and hence f = δh is in the image of δ.

Observe that we have not used the fact that the cochains are bounded, and the lemma is also true
for the unbounded cocomplex.

Denote by Cn(Γ, A)Γ, respectively Cnb (Γ, A)Γ, the subspaces of Cn(Γ, A), consisting of Γ-
invariant (bounded) cochains, that is, cochains f : Γn+1 → A for which γ · f = f , for every
γ ∈ Γ, where γ · f : Γn+1 → A is defined as

γ · f(γ0, ..., γn) = f(γ−1γ0, ..., γ
−1γn),

for every (γ0, ..., γn) ∈ Γn+1, γ ∈ Γ.

Definition The usual Eilenberg-MacLane cohomology H∗(Γ, A) of Γ is the cohomology of the
cocomplex

0→ C0(Γ, A)Γ → C1(Γ, A)Γ → C2(Γ, A)Γ → ...

The bounded cohomology H∗b (Γ, A) of Γ is the cohomology of the cocomplex

0→ C0
b (Γ, A)Γ → C1

b (Γ, A)Γ → C2
b (Γ, A)Γ → ...

The cohomology groups H∗(Γ, A) and H∗b (Γ, A) can thus be written as the quotients

Hn(Γ, A) ∼= ker
(
δ : Cn(Γ, A)→ Cn+1(Γ, A)

)
/im

(
δ : Cn−1(Γ, A)→ Cn(Γ, A)

)
,

Hn
b (Γ, A) ∼= ker

(
δ : Cnb (Γ, A)→ Cn+1

b (Γ, A)
)
/im

(
δ : Cn−1

b (Γ, A)→ Cnb (Γ, A)
)
.

The inclusion of cocomplexes C∗b (Γ, A) ⊂ C∗(Γ, A) induces a comparison map

c : H∗b (Γ, A) −→ H∗(Γ, A)

on the cohomology groups.

2. Amenable groups
Definition A (discrete) group Γ is said to be amenable if there exists a left invariant mean on the

Banach space B(Γ) of real valued bounded functions on Γ equipped with the norm

‖f‖∞ = sup{|f(γ| : γ ∈ Γ},

i.e. there exists a linear functional m : B(Γ)→ R such that
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1. m(1Γ) = 1, where 1Γ denotes the constant function with value 1,

2. m(f) ≥ 0 whenever f ≥ 0,

3. m(Lγf) = m(f), for every f ∈ B(Γ) and γ ∈ Γ, where Lγ : B(Γ) → B(Γ) denotes the
left shift operator defined as Lγf(δ) = f(γδ), for every δ ∈ Γ.

Examples: 1) Finite groups are amenable. Indeed, if Γ is finite, then

m : B(Γ) −→ R
f 7−→ 1

|Γ|Σγ∈Γf(γ)

is a left invariant mean on B(Γ).
2) Abelian groups are amenable.
3) Since extensions of amenable groups by amenable groups are amenable, it follows that

solvable groups are amenable.

Proposition (Trauber) If Γ is an amenable group, then

H∗b (Γ,R) = 0, for ∗ > 0.

Proof Let n > 0 and f ∈ Cnb (Γ,R)Γ with δf = 0. We need to show that there exists h ∈
Cn−1
b (Γ,R)Γ with δh = f . Let m : B(Γ) → R be a left invariant mean. Define h : Γn → R

by
h(γ1, ..., γn) = m(f(∗, γ1, ..., γn)),

for every (γ1, ..., γn) ∈ Γn. Here, f(∗, γ1, ..., γn) denotes the bounded function Γ → R given
by evaluating the first coordinate. We check that, for (γ0, ..., γn) ∈ Γn+1, we have

δh(γ0, ..., γn) =
n∑
i=0

(−1)ih(γ0, ..., γ̂i, ..., γn) =
n∑
i=0

(−1)im(f(∗, γ0, ..., γ̂i, ..., γn))

= m(
n∑
i=0

(−1)if(∗, γ0, ..., γ̂i, ..., γn)) = f(γ0, ..., γn),

since, in view of the cocycle relation δf = 0, the function Σni=0(−1)if(∗, γ0, ..., γ̂i, ..., γn) is
the constant function with value f(γ0, ..., γn). It remains to check that h is Γ-invariant:

h(γγ1, ..., γγn) = m(f(∗, γγ1, ..., γγn) = m(f(γ−1∗, γ1, ..., γn)),

since f is Γ-invariant, and the latter expression is further equal to

m(γ · f(∗, γ1, ..., γn)) = m(f(∗, γ1, ..., γn),

where the last equality follows from the fact that m is left invariant.

Of course, the analogous statement for usual group cohomology is false, since for example one has
H1(Z,R) = R. The proof of the proposition does not carry through since the mean needs to be
applied to bounded functions. However, for finite groups, any cocycle is obviously bounded, and
the same proof shows that the (usual) real valued cohomology of a finite group is trivial.
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3. Low degree
It is sometimes convenient, especially in low degree, to work with a different cocomplex computing
the (bounded) cohomology of a group, namely the inhomogeneous cocomplex C

∗
(Γ, A): In degree

n it consists of

C
n
(Γ, A) = {h : Γn −→ A} and

C
n

b (Γ, A) = {h : Γn −→ A : h is bounded}.

The inhomogenous coboundary operator d : C
n
(Γ, A)→ C

n+1
(Γ, A) is defined as

dh(γ1, ..., γn+1) = h(γ2, ..., γn+1) +
n∑
i=1

(−1)ih(γ1, ..., γiγi+1, ..., γn) + (−1)n+1h(γ1, ..., γn).

Proposition The cohomology groups H∗(Γ, A) and H∗b (Γ, A) can be computed from the cocom-
plexes (C

∗
(Γ, A), d) and (C

∗
b(Γ, A), d) respectively.

Proof The correspondences

Cn(Γ, A)Γ ←→ C
n
(Γ, A)

f 7−→ {(γ1, ..., γn) 7−→ f(1, γ1, ..., γn)}
{(γ0, ..., γn) 7−→ h(γ−1

0 γ1, γ
−1
1 γ2, ..., γ

−1
n−1γn} ←− h

define cochain maps which are inverse to each other.

Thus we trade one superfluous variable for an assymmetric coboundary operator.

Degree 0

We have C
0
(Γ, A) = {h : Γ0 → A} = A, and for h ∈ C0

(Γ, A) and γ ∈ Γ,

dh(γ) = h− h = 0,

thus any cochain is a cocycle, and since there are no coboundaries, H0(Γ, A) = C
0
(Γ, A) = A.

Since C
0
(Γ, A) = C

0

b(Γ, A), the same holds for bounded cohomology: H0
b (Γ, A) = A.

Degree 1

Since the coboundary map δ : C
0
(Γ, A)→ C

1
(Γ, A) is the zero map, there are no coboundaries in

degree 1. To determine the cocycles, take h ∈ C1
(Γ, A) with δh = 0. In other words, h is a map

h : Γ→ A such that
dh(γ1, γ2) = h(γ1)− h(γ1γ2) + h(γ2) = 0

for every γ1, γ2 ∈ Γ, which precisely means that h : Γ → A is a homomorphism. Thus, we get
H1(Γ, A) = Hom(Γ, A). Since there are no bounded homomorphisms from Γ to R or Z, we have

H1
b (Γ,R) =H1

b (Γ,Z) = 0, for any group Γ.
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Degree 2: Quasimorphisms

It is classical that the cohomology group H2(Γ, A) is in one-to-one correspondence with isomor-
phism classes of central extensions of Γ by A (see [4] for this correspondence and (unbounded)
group cohomology in general). An (inhomogeneous) cocycle can easily be constructed as the ob-
struction to the existence of a section of the projection from the central extension onto Γ. The
corresponding cohomology class will be representable by a bounded cocycle if the section shows
some boundedness properties (in an appropriate sense). For now, we restrict to the case A = R
and concentrate on the kernel of the comparison map

H2
b (Γ,R)→ H2(Γ,R).

Definition Let Γ be a group. Its space of quasimorphisms is defined as

QM(Γ) = {f : Γ→ R : ∃C > 0 such that |f(γ1) + f(γ2)− f(γ1γ2)| < C, ∀γ1, γ2 ∈ Γ}.

Define a map
QM(Γ) −→ ker(H2

b (Γ,R)→ H2(Γ,R))

by sending a quasimorphism f ∈ QM(Γ) to the cohomology class [δf ]. Note that this is well defined
since δf , being a coboundary, is of course a cocycle. Also, it is mapped to zero in the Eilenberg
Maclane cohomology of Γ, since it is by definition an (a priori unbounded) coboundary. In the
kernel of the above map, one finds homomorphisms f ∈ Hom(Γ,R) since for those one has δf = 0,
and bounded maps f ∈ B(Γ,R) since in this case δf is a bounded coboundary. Furthermore, if
for a quasimorphism f ∈ QM(Γ), its image [δf ] is zero in H2

b (Γ,R), then there exists a bounded
cochain h such that δf = δh, so that f = (f−h)+h is the sum of a homomorphism and a bounded
function. Note that the intersection of Hom(Γ,R) and B(Γ,R) consists of the zero map. Finally
note that the above map is surjective. We have thus proven:

Proposition Let Γ be a group. There is an isomorphism

QM(Γ)/(Hom(Γ,R)⊕B(Γ,R)) ∼= ker(H2
b (Γ,R)→ H2(Γ,R)).

Note that the same results also holds for integral coefficients.

Lecture II
Example (Brooks [3]): Quasimorphisms in the free group F2

Let F2=< a, b > be the free group on the two generators a, b. Pick a word w in a, b, a−1, b−1.
Define fw : F2 → R as

fw(γ) = # of times w occcurs in γ −# of times w−1 occcurs in γ,

for every γ in Γ. Note that if w is the empty word, or one of a±1, b±1, then fw is a homomorphism.
But if the length of w (i.e. the number of letters a±1, b±1 used to write w) is greater or equal to
2, then fw cannot be a homomorphism (proof below). However, given γ1, γ2 in F2, note that

|δfw(γ1, γ2)| = |fw(γ1) + fw(γ2)− fw(γ1, γ2)| ≤ length(w),

since the only way an occurence of w in the product γ1γ2 is not counted in either γ1 or γ2 is if
the word w overlaps both on γ1 and γ2 (i.e. the word w starts in the end of γ1 and ends in the
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beginning of γ2), and similarly for w−1. Thus fw is a quasimorphism. Let us now furthermore
show that, if length(w) ≥ 2, then fw is a nontrivial quasimorphism, that is, it does not belong
to Hom(F2,R) ⊕ B(F2,R). For this, note that Hom(F2,R) is 2-dimensional, generated by fa and
fb. If fw were a sum of a homomorphism and a bounded function, there would exist real numbers
α, β ∈ R such that fw − αfa − βfb is a bounded function on F2. Suppose w is neither a power of
a nor of b. Let k be an integer. We have

fw(ak)− αfa(ak)− βfb(ak) = 0− αk − 0 = −αk,

and the only way −αk can be bounded independently of k, is if α = 0. By symmetry, one obtains
β = 0. Thus, fw has to be bounded. If w = am, with |m| ≥ 2, then one can show as above that
β = 0, but then, for any integer k, we have

fam((ab)k)− αfa((ab)k) = 0− αk,

which again forces α = 0, so that we conclude that fam has to be bounded. By symmetry, the
same conclusion holds for w = bm, when |m| ≥ 2. It remains to show that fw is unbounded (for w
different from the empty word). We start by observing that the word w−1 does not occur in w2

or any other power wk. Indeed, if w−1 did occur in w2, then w would have to have, as a reduced
word, the form w = vz, with w−1 = zv. But this would force v = v−1 and z = z−1, so that
v = z = w = id. If w is cyclically reduced, then∣∣fw(wk)

∣∣ ≥ |k| ,
for any integer k, and in particular fw is not bounded. If w is not cyclically reduced then it has, as
a reduced word, one of the form aza−1, bzb−1, a−1za or b−1zb, for some reduced word z. Without
loss of generality, suppose w = aza−1. Then we have

∣∣fw((wb)k)
∣∣ ≥ |k|, and we can again conclude

that fw is unbounded.
In conclusion, we have just shown that

H2
b (F2,R) ∼= ker(H2

b (F2,R)→ H2(F2,R)) ∼= QM(F2)/(Hom(F2,R)⊕B(F2,R)) 6= 0.

While Brooks gave this first example of a nontrivial quasimorphism, he further wrongly claimed
that the fw´s, where length(w) ≥ 2, form a free basis of H2

b (F2,R). This is false, since as observed
by Grigorchuk [13],

fab + fa−1b + fab−1 + fa−1b−1

is a bounded function. Grigorchuk also gave an infinite dimensional basis of H2
b (F2,R).

This example naturally generalizes to torus knot groups and surface groups (Grigorchuk, [13]),
nonelementary word hyperbolic groups (Epstein and Fujiwara, [8]), and further to groups acting
on Gromov hyperbolic spaces (Fujiwara, [9]).

Uniform perfection

Definition A group Γ is perfect if Γ = [Γ,Γ], where [Γ,Γ] denotes the commutator subgroup of
Γ, i.e. the subgroup generated by the commutators [x, y] = xyx−1y−1, for x, y in Γ. A group
Γ is uniformly perfect if there exists N such that every γ ∈ Γ can be written as a product of
at most N commutators.

Proposition (Matsumoto-Morita [19]) If Γ is uniformly perfect, then the kernel of the com-
parison map H2

b (Γ,R)→ H2(Γ,R) is equal to 0.
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Example SL(n,Z), for n ≥ 3, is uniformly perfect [21]. This is proven by induction on n, the
case n = 3 relying on the fact that any matrix of the form 1 0 0

0 a b
0 c d


in SL(3,Z) can be written as a product of 41 (!) elementary matrices [7], which are commu-
tators.

Note that in contrast, SL(2,Z) cannot be uniformly perfect since, being isomorphic to the amal-
gamated product Z4 ∗Z2 Z6, it contains nontrivial quasimorphisms.

More generally, if Γ is a perfect group, the commutator length of an element γ ∈ Γ is defined as

`[Γ,Γ](γ) = min {n : γ is a product of n commutators} .

The stable length of γ is then defined as

‖γ‖ = lim
n→∞

`[Γ,Γ](γn)
n

.

Note that in particular, if Γ is uniformly perfect, then ‖γ‖ = 0 for every γ ∈ Γ.

Theorem (Bavard [1]) The comparison map H2
b (Γ,R) → H2(Γ,R) is injective if and only if

‖γ‖ = 0 for every γ ∈ [Γ,Γ] .

Actions by homeomorphisms on the circle
This section is based on work by Etienne Ghys. (See his beautifully written papers [10, 12, 11] on
the subject for more details.)

Let Γ be a discrete group. Denote by Homeo+(S1) the group of orientation preserving home-
omorphisms of the circle. We want to study the dynamics of actions of Γ on the circle S1 by
orientation preserving homeomorphisms, in other words, homomorphisms

h : Γ −→ Homeo+(S1).

Actions by Γ = Z
A homomorphism Z → Homeo+(S1) is completely determined by the image of the generator
1 ∈ Z, so that the study of actions by Z on Homeo+(S1) is equivalent to the understanding of the
iterations of a single orientation preserving homeomorphisms f ∈ Homeo+(S1).

Rotations

Consider S1 as the quotient R/Z and for α ∈ R, define the rotation by 2πα as Rα : S1 → S1, by
mapping xmodZ to Rα(xmodZ) = (x+ a) modZ. We have the following dichotomy:

α ∈ Q if and only if all orbits are finite,
α /∈ Q if and only if all orbits are dense.
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Rotation number

To generalize this dichotomy to arbitrary orientation preserving homoemorphisms, we consider the
rotation number, which is an invariant introduced by Poincaré and roughly speaking measures how
much rotation there is in a homeomorphism.

Denote by HomeoZ(R) the orientation preserving homeomorphisms of the real line R which
commute with integral translations, that is, if f̃ ∈HomeoZ(R), then f̃(x) + 1 = f̃(x+ 1), for every
x ∈ R. There is a natural projection HomeoZ(R) → Homeo+(S1). The kernel of this projection
consists of integral translations of R, so that we have the following central extension of Homeo+(S1)
by Z:

0 −→ Z −→ HomeoZ(R) −→ Homeo+(S1) −→ 1.

Let f ∈ Homeo+(S1), and choose a lift f̃ ∈HomeoZ(R) of f and a base point x0 ∈ R. Define
the rotation number of f as

ρ(f) = lim
n→∞

f̃n(x0)
n

modZ.

To see that the rotation number of f is well defined, we need to check that the limit exists, and
does not depend on either x0 or the choice of the lift. The two latter facts are easy and are left as
an exercise. For the first fact we use the following lemma to deduce that the limit

lim
n→∞

f̃n(x0)
n

∈ R

exists. (This is called the translation number of f̃ .)

Lemma Let C > 0 be a positive number and {an}n∈N a sequence of nonnegative numbers such
that

an+m ≤ an + am + C.

Then the limit limn→∞
an

n exists and is equal to

lim
n→∞

an
n

= lim inf
an
n

= inf
an
n
.

Proof. Note that the sequence {an/n}n∈N is a nonnegative, bounded sequence:

0 ≤ an
n
≤ an−1 + a1 + C

n
≤ ... ≤ na1 + (n− 1)C

n
≤ a1 + C,

and hence the lim inf exists. As we only need the limit to exist, we prove that it is equal to
the lim inf (and leave the verification that it is further equal to the infimum to the reader).
Let ε > 0. We will show that an/n < lim inf{an/n} + ε for n big enough. By definition of
the lim inf, there exists N > 3C/ε such that

aN
N

< lim inf
an
n

+
ε

3
.

Pick n ≥ (3/ε) max {ar | r = 0, 1, ..., N − 1}. There exists q, r ∈ N such that n = qN+r with
0 ≤ r ≤ N − 1. We compute

an
n
≤ aqN + ar + C

n
≤ qaN + ar + qC

qN + r
≤ aN

N
+
ar
r

+
C

N

≤ (lim inf
an
n

+
ε

3
) +

ε

3
+
ε

3
,

which finishes the proof of the lemma.

8



Exercise: Check that the definition of the rotation number ρ(f) of f does not depend on either
x0 or the choice of the lift.

Example: As above, let Rα : S1 → S1be the rotation by 2πα, for some α ∈ R. Then the map

R̃α : R −→ R
x 7−→ x+ α

is a lift of Rα, and choosing as base point x0 = 0, we see that R̃nα(0) = nα, and hence

ρ(Rα) = lim
n→∞

R̃α
n
(0)
n

modZ = lim
n→∞

nα

n
modZ = αmodZ.

Theorem (Poincaré) Let f ∈ Homeo+(S1). The following dichotomy holds:

ρ(f) ∈ Q/Z if and only if there exists a finite orbit and all the orbits which are not
periodic are asymptotic to a periodic one.

ρ(f) /∈ Q/Z if and only if the action is minimal (definition below) or
there exists an exceptional minimal set which is a Cantor set.

Minimal sets

More generally, consider now a group action given by a group homomorphism h : Γ→ Homeo+(S1).
A minimal set is a subset of S1 which is a minimal nonempty, closed, h(Γ)-invariant subset. The
action is said to be minimal if S1 itself is a minimal set, or equivalently, all orbits are dense.

For a general group action h : Γ→ Homeo+(S1), one of the following holds:

1. There is a finite orbit.

2. The action is minimal

3. There is a unique exceptional minimal set, that is an invariant Cantor set K such that the
orbit of each point in K is dense in K.

Note that the existence of a (in general non unique) minimal set follows from Zorn’s Lemma.
Given a minimal set K, denote by dK = K \ interior(K) its topological boundary, and by K ′ its
set of limit points. Since both dK and K ′ are closed, h(Γ)-invariant subset, it follows from the
minimality of K that there is the following trichotomy:

1. K ′ = ∅. This implies that K is finite, so there is a finite orbit.

2. dK = ∅. This implies that K = S1 and hence that all orbits are dense. (Since the closure of
an orbit is a closed, h(Γ)-invariant subset.)

3. K = K ′ = dK. This means that K is a compact perfect subset of the circle with empty
interior and is one definition of a Cantor set. The uniqueness of K follows (modulo a small
argument) from that K is contained in the closure of any orbit.
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Lecture III

The (bounded) Euler class
Consider again the central extension

0 −→ Z −→ HomeoZ(R) −→ Homeo+(S1) −→ 1.

It is classical that isomorphism classes of central extensions are in one-to-one correspondence with
cohomology classes in H2(Homeo+(S1),Z). In fact, it is easy to exhibit a cocycle representing
the cohomology class corresponding to the given central extension: Choose a set theoretic section
s : Homeo+(S1)→ HomeoZ(R) of the projection. Note that s can impossibly be a homomorphism
(since otherwise HomeoZ(R) would be the product of Z and Homeo+(S1). Instead, define

e : Homeo+(S1)2 −→ Z

to measure how far s is from being a homomorphism by the relation

Te(f1,f2)s(f1f2) = s(f1)s(f2),

for every f1, f2 ∈ Homeo+(S1), where Tn : R→ R, for n ∈ Z denotes the integral translation by n.

Exercise: Check that de = 0. In particular, e is an (inhomogeneous) cocycle and hence determines
a cohomology class [e] ∈H2(Homeo+(S1),Z), called the Euler class.

For example, let us choose the following section s : Homeo+(S1) → HomeoZ(R): For f ∈
Homeo(S1), define s(f) = f̃ ∈ HomeoZ(R) to be the unique homeomorphism of the real line
such that

f̃(0) ∈ [0, 1[ .

Let now e : Homeo+(S1)2 → Z denote the cocycle obtained from this particular section.

Proposition The cocycle e : Homeo+(S1)2 → Z takes only the values 0 and 1.

Proof Take f1, f2 ∈ Homeo+(S1). Since f̃1f2 and f̃1f̃2 differ by an integral translation, we must
have

f̃1f2Tn = f̃1f̃2,

for some n, and the proposition amounts to showing that either n = 0 or n = 1. By definition,

f̃1(0) ∈ [0, 1[ ,

and since f̃2(0) ∈ [0, 1[ andf̃2(1) ∈ [1, 2[, we have f̃2 [0, 1[) ⊂ [0, 2[, so that we get on the one
hand that

f̃1f̃2(0) ∈ [0, 2[ .

On the other hand, we have
f̃1f2(n) ∈ [n, n+ 1[ .

Evaluating the equality f̃1f2Tn = f̃1f̃2 on 0 gives

[n, n+ 1[ 3 f̃1f2(n) = f̃1f2Tn(0) = f̃1f̃2(0) ∈ [0, 2[ ,

so that n has to be equal to 0 or 1 as claimed.
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In particular, the cocycle e also determines a bounded cohomology class [e]b ∈ H2
b (Homeo+(S1),Z).

It turns out that the bounded class [e]b is a natural generalization of the rotation number. Be-
fore proving that in the Proposition below, let us first compute the bounded cohomology group
H2
b (Z,Z).

Lemma There is a canonical isomorphism H2
b (Z,Z) ∼= R/Z.

Proof: Consider the short exact sequence 0→ Z→ R→ R/Z→ 0. Chasing in the induced short
exact sequence of cocomplexes

0→ C∗(Z,Z)→ C∗(Z,R)→ C∗(Z,R/Z)→ 0,

it is classical and elementary to check that one gets a long exact sequence

0→ H0(Z,Z)→ H0(Z,R)→ H0(Z,R/Z)→ H1(Z,Z)→ H1(Z,R)→ H1(Z,R/Z)→ ...

Furthermore, the same long exact sequence is valid for the bounded cohomology groups:

0→ H0
b (Z,Z)→ H0

b (Z,R)→ H0
b (Z,R/Z)→ H1

b (Z,Z)→ H1
b (Z,R)→ H1

b (Z,R/Z)→ ...

Recall that since Z is amenable, its real valued bounded cohomology vanishes in degree above
0, so that we get from the above long exact sequence that

H∗b (Z,Z) ∼= H∗−1
b (Z,R/Z) = H∗−1(Z,R/Z).

In particular, for ∗ = 2, we get

H2
b (Z,Z) ∼= H1(Z,R/Z) = Hom(Z,R/Z) = R/Z.

(And for ∗ > 2, one has H∗b (Z,Z) = 0.)

Proposition Let h : Z→ Homeo+(S1) be a homomorphism. Then

h∗([e]b) ∈ H
2
b (Z,Z) ∼= R/Z

is the rotation number of h(1).

Proof: By definition, the connecting homomorphism (or Bockstein homomorphism)H1(Z,R/Z)→
H2
b (Z,Z) has the following description: For a real number x ∈ R, denote by xmod1 the only

real number in the interval [0, 1[ such that x−xmod1 is an integer. In fact, x−xmod1 is the
(lower) integral part of x, which we denote by bxc. The connecting homomorphism is now
given as

H1(Z,R/Z) ∼= R/Z −→ H2
b (Z,Z)

xmodZ 7−→ {(n,m) 7→ (nx)mod1 + (mx)mod1− (n+m)xmod1} .

But since x− xmod1 = bxc, the latter cocycle can be rewritten as

(n,m) 7→ b(n+m)xc − bnxc − bmxc . (1)

Let us describe the converse map H2
b (Z,Z)→ R/Z. Take a cohomology class [c] ∈ H2

b (Z,Z)
represented by a bounded cocycle c : Z2 → Z. Since H2(Z,Z) = 0, the cocycle c is the
coboundary c = db of an (unbounded in general) cochain b : Z→ Z. Define

b : Z −→ R
k 7−→ limn→∞

b(kn)
n ,

11



and note that the limit exists for the same reason as the rotation (or translation) number
treated above. Now it is clear that b is a homomorphism, and that the difference b − b is a
bounded function. However, b will not be integral in general, so we consider instead⌊

b
⌋

: Z −→ Z
k 7−→

⌊
b(k)

⌋
.

The difference
⌊
b
⌋
−b is still bounded, and hence db and d

⌊
b
⌋
represent the same cohomology

class in H2
b (Z,Z). Note that the cocycle d

⌊
b
⌋
has exactly the form described in (1), and the

inverse of the connecting homomorphism is given by

H2
b (Z,Z) −→ R/Z

[db] 7−→ − limn→∞
b(n)
n modZ.

Suppose now that we are given a representation h : Z −→ Homeo+(S1), and denote by

f = h(1) the image of the generator 1. Since f̃k and
(
f̃
)k

differ by an integral translation,
there exists u : Z→ Z such that

Tu(k) ◦ f̃k =
(
f̃
)k
. (2)

By the definition of h∗(e)(n,m), we have

Th∗(e)(n,m) = f̃n ◦ f̃m ◦
(
f̃n+m

)−1

= f̃n ◦ f̃m ◦
(
f̃n+m

)−1

◦
(
f̃
)−n
◦
(
f̃
)−m

◦
(
f̃
)n+m

,

and since the different lifts commute with each other, this expression can be rewritten as

f̃n ◦
(
f̃
)−n
◦ f̃m ◦

(
f̃
)−m

◦
(
f̃n+m

)−1

◦
(
f̃
)n+m

= T−u(n) ◦ T−u(m) ◦ Tu(n+m),

which shows that
−du = h∗(e).

Evaluating the homeomorphisms given in (2) on 0 gives

u(k) + f̃k(0) =
(
f̃
)k

(0),

so that since f̃k(0) ∈ [0, 1[, it follows that

u(k) =
⌊(
f̃
)k

(0)
⌋
.

We can now conclude that the image of h∗([e]b) ∈ H2
b (Z,Z) under the inverse of the connect-

ing homomorphism is

lim
n→∞

u(n)
n

modZ = lim
n→∞

(
f̃
)n

(0)

n
modZ = ρ(f),

which finishes the proof of the lemma.

Definition A (not necessarily bijective nor continous) map ϕ : S1 → S1 is said to be a degree 1
monotone map if there exists a lift ϕ̃ : R→ R which is (not necessarily strictly) monotone.
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Definition Let Γ be a group, and h1, h2 : Γ → Homeo+(S1) two homomorphisms. We say that
h1 is semi-conjugated to h2 if there exists nonempty invariant subsets K1,K2 ⊂ S1 for h1, h2

respectively, and a degree 1 monotone map ϕ : S1 → S1 such that ϕ induces a bijection
between K2 and K1 and h1(γ) ◦ ϕ = ϕ ◦ h2(γ), for every γ ∈ Γ.

Exercise Check that semi-conjugation indeed is an equivalence relation. Reflexivity and transi-
tivity are immediate. For the symmetry, use that if ϕ induces a bijection between invariant
subsets K2 and K1, and h1(γ) ◦ ϕ = ϕ ◦ h2(γ), for a degree 1 monotone map ϕ, then the
map ϕ∗ : S1 → S1 realizing the semi-conjugacy between h2 and h1 has to be defined as the
inverse of ϕ on K1, and on its complement S1 \K1 by its lift ϕ̃∗ : R→ R given as

ϕ̃∗(x) = sup
{
x′ ∈ K̃2 | ϕ̃(x′) ≤ ϕ̃(x)

}
,

where ϕ̃ : R→ R is a lift of ϕ, and K̃2 is the preimage of K2 under the projection R→ R/Z.

Warning! The classical definition of semi-conjugacy, requires the existence of a continuous degree
1 monotone map intertwining the actions of h1 and h2. But this definition is not symmetric,
and we need a symmetric definition, since we want to characterize actions for which the
pullback of the bounded Euler class is equal (and equality is a symmetric condition). In
the first papers of Ghys on the subject (for example [10]), and in most of the references
thereafter, semi-conjugacy, in the context of bounded cohomology, is defined by relaxing the
continuity condition. But this does not work! By doing so, one obtains that all actions are
semi-conjugated to the constant action 1 : Γ → Homeo+(S1) mapping Γ constantly on the
identity. Indeed, for any x0 ∈ S1, the constant map ϕx0(x) ≡ x0 is a degree one monotone
map, and

ϕx0 = 1 ◦ ϕx0 = ϕx0 ◦ h(γ).

The definition above is essentially what one can find in Ghys’ later paper [12].

Theorem (Ghys) Let Γ be a finitely generated group, and h1, h2 : Γ→ Homeo+(S1) two homo-
morphisms. Then

h∗1([e]b) = h∗2([e]b) ∈ H
2
b (Γ,Z)

if and only if h1 and h2 are semi-conjugated to each other.

Proof of Ghys’ Theorem. We start by showing that if h1, h2 : Γ → Homeo+(S1) are semi-
conjugated to each other, then h∗1([e]b) = h∗2([e]b). Let thus ϕ : S1 → S1 be a degree one monotone
map satisfying h1(γ) ◦ ϕ = ϕ ◦ h2(γ), for every γ ∈ Γ, and inducing a bijection on respective
invariant subsets of S1. Let ϕ̃ : R → R be the unique lift of ϕ with ϕ̃(0) ∈ [0, 1[. Because ϕ̃
induces a bijection on the lifts of the invariant subsets (otherwise it is not true in general), the two
products of the lifts differ by an integral translation, and there exists u : Γ→ Z such that

h̃1(γ) ◦ ϕ̃ ◦ Tu(γ) = ϕ̃ ◦ h̃2(γ).

Claim 1 du = h∗2(e)− h∗1(e).

Proof: Let γ1, γ2 ∈ Γ. The above equality applied to γ1, γ2 and γ1γ2 gives

ϕ̃ = h̃1(γ1) ◦ ϕ̃ ◦
(
h̃2(γ1)

)−1

◦ Tu(γ1),

ϕ̃ = h̃1(γ2) ◦ ϕ̃ ◦
(
h̃2(γ2)

)−1

◦ Tu(γ2),

ϕ̃ =
(

˜h1(γ1γ2)
)−1

◦ ϕ̃ ◦ ˜h2(γ1γ2) ◦ T−u(γ1γ2).
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Substituting the second equation in the first one, and the last one in the second one we get

ϕ̃ = h̃1(γ1)◦h̃1(γ2)◦
(

˜h1(γ1γ2)
)−1

◦ϕ̃◦ ˜h2(γ1γ2)◦
(
h̃2(γ2)

)−1

◦
(
h̃2(γ1)

)−1

◦Tu(γ1)+u(γ2)−u(γ1γ2).

By definition,

Te(h1(γ1),h1(γ2)) = h̃1(γ1) ◦ h̃1(γ2) ◦
(

˜h1(γ1γ2)
)−1

and also
Te(h2(γ1)h2(γ2)) = h̃2(γ1) ◦ h̃2(γ2) ◦

(
˜h2(γ1γ2)

)−1

,

so that we obtain

ϕ̃ = ϕ̃ ◦ Th∗! (e)(γ1,γ2)−h∗2(e)(γ!,γ2)+u(γ1)+u(γ1)−u(γ1γ2),

which proves the claim.

Claim 2 The cochain u is bounded.

Proof: Let γ ∈ Γ. By definition, h̃1(γ)(0) ∈ [0, 1[ and h̃2(γ)(0) ∈ [0, 1[. Also, recall that we have
chosen ϕ̃ such that ϕ̃(0) ∈ [0, 1[. We have on the one hand

ϕ̃ ◦ h̃2(γ)(0) ∈ ϕ̃([0, 1[) ⊂ [0, 2[ ,

and on the other hand

h̃1(γ)◦ϕ̃◦Tu(γ)(0) = Tu(γ)◦h̃1(γ)◦ϕ̃(0) ∈ Tu(γ)◦h̃1(γ)([0, 1[)) ⊂ Tu(γ)([0, 2[)) = [u(γ), u(γ) + 2[),

so the only chance for those two expressions to be equal is if the subsets [0, 2[ and [u(γ), u(γ) + 2[
have a nonempty intersection, which forces u(γ) ∈ {−1, 0, 1}.

Since the cocycles h∗1(e) and h∗2(e) differ by a bounded Z-valued coboundary, they indeed define
the same bounded cohomology class in H2

b (Γ,Z).
For the converse, suppose that h∗1([e]b) =h∗2([e]b) ∈ H2

b (Γ,Z). By defininition, there exists a
bounded cochain u : Γ→ Z such that h∗2(e)− h∗1(e) = du. Let

0 −→ Z −→ Γ −→ Γ −→ 1

be the central extension corresponding to the cohomology class h∗1([e]) =h∗2([e]) ∈ H2(Γ,Z). Let
s1, s2 : Γ→ Γ be the two set theoretic sections giving rise to the cocycles h∗1(e) and h∗2(e) respec-
tively and note that s2(γ) = s1(γ)i(u(γ)), where i denotes the injection i : Z→ Γ.

Define, for j = 1, 2, homomorphisms hj : Γ→ HomeoZR by

hj(i(m)sj(γ)) = Tm ◦ h̃j(γ),

for every γ ∈ Γ.

Exercise Check that hj indeed is a group homomorphism.

Define a map ϕ̃ : R→ R by

ϕ̃(t) = sup
{

(h1(α−1) ◦ h2(α))(t) | α ∈ Γ
}
,

for t ∈ R.
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Claim 3 ϕ̃ is well defined, i.e the supremum is not +∞.

Proof: The claim follows from the fact that for any t ∈ R, the set
{

(h1(α−1) ◦ h2(α))(t) | α ∈ Γ
}

is a bounded subset of R. Since both h1(α−1) and h2(α) commute with integral translation,
we have

(h1(α−1) ◦ h2(α))(t+m) = (h1(α−1) ◦ h2(α))(t) +m,

so that we can restrict to t ∈ [−1, 0[. Furthermore, both h1(α−1) and h2(α) are monotone
and hence their composition also, so for t ≤ 0 we have

(h1(α−1) ◦ h2(α))(t) ≤ (h1(α−1) ◦ h2(α))(0),

which shows that we can without loss of generality suppose that t = 0. Since

h1(α−1) ◦ h2(α) = (h1((Tmα)−1) ◦ h2(Tmα),

for every α ∈ Γ, and furthermore every element in Γ can be written (uniquely) as α =
i(m)s1(γ), it is enough to bound the set

{
(h1(s1(γ)−1) ◦ h2(s1(γ))(0) | γ ∈ Γ

}
. On the one

hand, we have

h1(s1(γ))−1(0) =
(
h̃1(γ)

)−1

(0) ∈ ]−1, 0] ,

and on the other hand

h2(s1(γ)) = h2(s2(γ)i(−u(γ))) = T−u(γ) ◦ h̃2(γ).

Together, this implies that

h1(s1(γ))−1h2(s1(γ))(0) ∈ ]−u(γ)− 1,−u(γ) + 1[ ,

which proves the claim.

Claim 4 ϕ̃ is monotone and commutes with integral translations.

Proof: Since, for every α ∈ Γ, both h1(α−1) and h2(α) commute with integral translation, the
same is true for ϕ̃. Moreover, Since both h1(α−1) and h2(α) are monotone, if t ≤ t′, then

(h1(α−1) ◦ h2(α))(t) ≤ (h1(α−1) ◦ h2(α))(t′),

for every α ∈ Γ, and hence also

ϕ̃(t) = sup
α∈Γ

{
(h1(α−1) ◦ h2(α))(t)

}
≤ sup
α∈Γ

{
(h1(α−1) ◦ h2(α))(t′)

}
= ϕ̃(t′),

which proves the claim.

Claim 5 ϕ̃ ◦ h2(γ) = h1(γ) ◦ ϕ̃, for every γ ∈ Γ.

Proof: Let γ ∈ Γ and t ∈ R. We have

ϕ̃ ◦ h2(γ)(t) = ϕ̃(h2(γ)(t))
= sup

{
(h1(α−1) ◦ h2(α))(h2(γ)(t)) | α ∈ Γ

}
= sup

{
h1(γ) ◦ h1(γ−1α−1) ◦ h2(αγ))(t)) | α ∈ Γ

}
= h1(γ) sup

{
(h1((α′)−1) ◦ h2(α′))(t)) | α ∈ Γ

}
= h1(γ) ◦ ϕ̃(t),

where to obtain the fourth equality, we have done the change of variable αγ = α′ and used
the fact that h1(γ) is monotone.
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It is immediate from Claim 4 that ϕ̃ descends to a unique degree one monotone map ϕ : S1 → S1,
and it follows from Claim 5 that

ϕ ◦ h2(γ) = h1(γ) ◦ ϕ,

for every γ ∈ Γ. Let now K̃1 be the image of ϕ̃, and define K̃2 ⊂ R as

K̃2 =
{

sup {x ∈ R | ϕ̃(x) = y}| y ∈ K̃1

}
.

Note that K̃1 and K̃2 are invariant by h1 and h2 respectively, and ϕ̃ induces a bijection between
K̃2 and K̃1. Taking now K1 and K2 to be the images of K̃1 and K̃2 under the natural projection
R→ R/Z, we have just shown that h1 and h2 are semi-conjugated, which finishes the proof of the
theorem.

Lecture IV

Consequences of Ghys’ Theorem
Corollary 1 Let h : Γ→ Homeo+(S1) be a homomorphism. Then h∗([e]b) = 0 ∈ H2

b (Γ,Z) if and
only if the action has a fixed point.

Proof Let 1 : Γ → Homeo+(S1) denote the trivial representation (mapping Γ constantly on the
identity), and note that h∗(1) = 0 ∈ H2

b (Γ,Z). Thus, by Ghys’ Theorem, h∗([e]b) = 0 ∈
H2
b (Γ,Z) if and only if h is semi-conjugated to 1. Suppose that h is semi-conjugated to 1.

Then there exists a degree 1 monotone map ϕ : S1 → S1 such that

h(γ) ◦ ϕ = ϕ ◦ 1 = ϕ.

In particular, any point in the image of ϕ is a fixed point for h. Conversely, let x0 be a fixed
point fo h, and let ϕx0 : S1 → S1 be the constant map onto x0. This is a degree 1 monotone
map. Furthermore, we have

h(γ) ◦ ϕx0 = ϕx0 ◦ 1.

Take now K1 = K2 = {x0} . Note that this set is invariant under both h and 1, and clearly,
ϕx0 induces a bijection between K2 and K1, so that h is semi-conjugated to 1.

Consequence (Ghys, Burger-Monod) For n ≥ 3, any action by SL(n,Z) by orientation pre-
serving homeomorphisms of the circle has to have a fixed point! Indeed, H2

b (SL(n,Z),Z) = 0.

If only some weaker vanishing of the bounded cohomology is known, then one can prove, similarly
as above:

Corollary 2 Suppose that H2
b (Γ,R) = 0 and that the commutator subgroup [Γ,Γ] has finite index

in Γ. Then any action by orientation preserving homeomorphisms of Γ on the circle has a
finite orbit.

The fact that the comparison map is injective in degree 2 for SL(n,Z) generalizes to higher rank
lattice, so the following consequence is immediate:

Consequence (Ghys [11], Burger-Monod [6]) Let Γ be a lattice in a higher rank simple Lie
group. Then every action by a Γ on the circle by orientation preserving homeomorphisms
has a finite orbit.
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In fact, the authors further show that if the action is further by C1-diffeomorphisms, then the
action factors through a finite group (this is much harder than proving the mere existence of a
finite orbit). For homeomorphisms, it is still an open question.

Corollary 3 Suppose that H2
b (Γ,R) = 0. Then any action by orientation preserving homeomor-

phisms of Γ on the circle is semi-conjugated to an action by rotation.

Milnor-Wood inequalities

Let M be a smooth manifold, and let h : π1(M) → Homeo+(S1) be a homomorphism. On the
product M̃×S1, there is a natural diagonal action of the fundamental group π1(M), given by Deck
transformations on the universal cover M̃ of M and by the action induced by h on the circle. The
quotient π1(M) \ M̃ × S1 is a natural circle bundle over M :

π1(M) \ M̃ × S1

↓
M.

A circle bundle ξ over a smooth manifold M is said to be flat if it is induced by a homomorphism
h : π1(M)→ Homeo+(S1).

Given a circle bundle ξ over a smooth manifoldM , the obstruction to the existence of a section
of ξ defines a cohomology class ε2(ξ) ∈ H2(M,Z) called the Euler class. Of course, the reader
will not be surprised by the fact that if ξ is flat, induced by the homomorphism h : π1(M) →
Homeo+(S1), then the Euler class ε2(ξ) ∈ H2(M,Z) is precisely the image, under the natural
map H2(π1(M),Z)→ H2(M,Z), of the pullback by h∗ of the cohomology class [e] ∈ Homeo+(S1)
considered previously. Thus the map H2(π1(M),Z)→ H2(M,Z) sends h∗([e]) to ε2(ξ).

IfM is an oriented 2-dimensional manifold, then its second singular cohomology groupH2(M,Z)
is, by Poincaré duality, isomorphic to Z. The isomorphism is given by taking the Kronecker prod-
uct of a cohomology class with the fundamental class [M ] ∈ H2(M,Z). If, again, ξ is a circle
bundle over M , then we define its Euler number χ(ξ) ∈ Z to be the image of the Euler class ε2(ξ)
under this isomorphism.

Theorem (Wood [23]) Let ξ be a circle bundle over a closed oriented surface Σg of genus g ≥ 1.
Then ξ is flat if and only if

|χ(ξ)| ≤ 2(g − 1).

Proof We will prove only the “only if” part. Suppose that ξ is induced by the homomorphism
h : π1(Σg)→ Homeo+(S1). Recall that a surface group has the following presentation

π1(Σg) =

〈
a1, b1, ..., ag, bg |

g∏
i=1

[ai, bi] = 1

〉
.

The theorem follows from the observation that

h̃(a1)h̃(b1)h̃(a−1
1 )h̃(b1)−1 · ... · h̃(ag)h̃(bg)h̃(a−1

g )h̃(b−1
g )

is an integral translation by precisely χ(ξ).
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Circle bundles of special interest are circle bundles of oriented R2-vector bundles. Those are defined
as follows: If E is an oriented R2-vector bundles over M , then the quotient

S(E) = E0/λx ∼ x, for x ∈ E0 and λ ∈ R+,

where E0 denotes the nonzero vectors in E, is naturally an oriented circle bundle over M . Now,
the obstruction to the existence of a section in S(E)→M is nothing else than the obstruction to
the existence of a nonvanishing section in E→ M , which is the classical Euler class of the vector
bundle, ε2(E) = ε2(S(E)) ∈ H2(M,Z). Again, the Euler number χ(E) ∈ Z is the image of the
Euler class ε2(E) under the canonical isomorphism H2(M,Z) ∼= Z.

We could now directly apply Wood’s inequality to vector bundles to obtain a bound on the
Euler number of flat vector bundles, but this would not quite be good enough (by a factor 2).
Instead, note that there is another natural circle bundle associated to the oriented vector bundle
E, namely

PS(E) = E0/λx ∼ x, for x ∈ E0 and λ ∈ R∗.

(The difference with S(E) is that λ is now allowed to be a negative number. Thus, the vectors x
and −x will be identified in PS(E), but not in S(E).)

We can now prove Milnor’s original inequality for oriented vector bundles, of which Wood’s
inequality above is a generalization to circle bundles. Recall that an oriented Rn-vector bundle over
a smooth manifold M is said to be flat if it is induced by a representation π1(M)→ GL+(n,R).

Theorem (Milnor [20]) Let E be an oriented R2-vector bundle over a surface Σg of genus g ≥ 1.
Then E is flat if and only if

|χ(E)| ≤ g − 1.

Proof Here also, we only prove the “only if” part. The point is that because S(E)→ PS(E) is a
double cover, 2 · χ(S(E)) = χ(PS(E)). If E is flat then it is induced from a representation
h : π1(M) → GL+(2,R) and the circle bundle PS(E) is induced by a representation h0 :
π1(M) → PGL+(2,R) given by composing h with the natural projection GL+(2,R) →
PGL+(2,R), where PGL+(2,R) denotes the quotient of GL+(2,R) by its center (the matrices
of the form λ · Id, for λ ∈ R∗). The natural action of PGL+(2,R) on the projective line
P 1R ∼= S1 induces a homomorphism ϕ : PGL+(2,R) → Homeo+(S1) and the circle bundle
PS(E) is of course induced by the homomorphism ϕ ◦ h0, and is hence flat. Thus, we can
apply Wood’s inequality to PS(E) and obtain

χ(PS(E)) ≤ 2(g − 1).

This finishes the proof of the theorem, since

|χ(E)| = |χ(S(E))| = 1
2
|χ(PS(E))| ≤ g − 1.

In higher dimensions, if E is an oriented Rn-vector bundle over a smooth manifold M , then again,
the obstruction to the existence of a nonvanishing section determines the Euler class εn(E) ∈
Hn(M,Z). If moreover M is an oriented n-dimensional manifold, then the Euler number χ(E) ∈ Z
is the image of the Euler class under the canonical isomorphism Hn(M ; Z) ∼= Z.

If E admits a flat structure, then the Euler class is in the image of

Hn(π1(M),Z)→ Hn(M,Z).
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Furthermore, Ivanov-Turaev and Gromov independently showed that the Euler class of flat bundles
can be represented by a bounded cocycle, or in other words, it is in the image of

Hn
b (π1(M),Z)→ Hn(π1(M),Z)→ Hn(M,Z).

(The proof of Ivanov-Turaev [17] is very direct and gives an explicit bounded cocycle representing
the Euler class of flat bundles, while Gromov’s proof [14] is more abstract and conceptual, and
eventually generalizes to all characteristic classes of flat G-bundles when G is a real algebraic
subgroup of GL(n,R).)

Lemma Let E be a flat oriented Rn-bundle over an n-dimensional manifold M . If π1(M) is
amenable, then χ(E) = 0.

Proof Consider the commutative diagramm

Hn
b (π1(M),Z) −→ Hn(π1(M),Z) −→ Hn(M,Z)

↓ ↓ ↓
0 = Hn

b (π1(M),R) −→ Hn(π1(M),R) −→ Hn(M,R).

Since the Euler class εn(E) ∈ Hn(M,Z) comes from a bounded class, its image in Hn(M,R)
goes through 0 = Hn

b (π1(M),R) and is hence 0. Now recall that in top dimension, the
inclusion of coefficients Z ↪→ R induces an injection

Hn(M,Z) ↪→ Hn(M,R),

so that also εn(E) = 0 ∈ Hn(M,Z).

Affine structure
LetM be a smooth n-dimensional manifold. Recall thatM admits an affine structure, if there exists
an atlas for M such that the corresponding transition functions are affine transformations of Rn.
We say that M is an affine manifold if it admits an affine structure. Examples of affine manifolds
are tori, Euclidean manifolds (for which the transition functions are Euclidean transformations of
Rn, i.e. products of rotations and translations), etc.

Affine manifolds are far from being understood, and there are many deep open conjectures on
them. Let us look at one of them:

ChernConjecture (1955) If M is a closed affine manifold, then χ(M) = 0.

Recall that χ(M) denotes the Euler-Poincaré characteristic of M and is defined as the alternating
sum of the Betti numbers of M :

χ(M) =
dim(M)∑
i=0

(−1)i dim(Hi(M,R)).

Moreover, a reformulation of a Theorem of Hopf tells us that

χ(M) = χ(TM).

As far as I know, the conjecture is only known to hold in the following cases: 1) π1(M) is
amenable (we will see a simple proof below), 2) M is a complete affine manifold (there is a one
page not so simple proof by Kostant and Sullivan [18]), 3) M is a surface admitting a hyperbolic
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structure [20] (we will see how this easily follows from Milnor’s inequality), 4) M is a Riemannian
manifold which is locally isometric to a product of hyperbolic planes [5] (of course, 4) generalizes
3) and in fact follows from generalized Milnor-Wood inequalities). Note that in cases 3) and 4)
χ(M) 6= 0, so that it makes more sense to speak about the converse of Chern’s conjecture, and
what one really proves is that a closed manifold which is locally isometric to a product of hyperbolic
planes cannot admit an affine structure.

The proofs presented here rely on two basic facts: First, if M is affine, then its tangent bundle
TM admits a flat structure. Second, the Euler class of flat bundles can be represented by a bounded
class.

Lemma If M is a closed affine manifold with amenable fundamental group, then χ(M) = 0.

Proof Since M is affine, TM is flat, so that, as above, χ(M) = χ(TM) = 0.

This simple argument is apparently due to Benedetti and Petronio [1]. The original proof of Hirsch
and Thurston [15] is substantially more difficult.

Corollary toMilnor’s inequality The only surface admitting an affine structure is the 2-torus.

Proof If M is an affine surface, then its tangent bundle TM admits a flat structure. If M is the
2-sphere, then the precedent lemma forces χ(M) = 0, but χ(S2) = 2. Suppose now that Σg
is a closed surface of genus g ≥ 1. Since TM is flat, it follows from Milnor’s inequality that

|χ(Σg)| = |χ(TΣg)| ≤
1
2
|χ(Σg)| ,

and this inequality is only possible if χ(Σg) = 2(1− g) = 0, so that g = 1.

As a last illustration of the potential of bounded cohomology, let me finish with a recent gener-
alization of Milnor-Wood’s inequality. The proof combines bounded cohomology, representation
theory and Margulis’ Superrigidity Theorem.

Theorem (Bucher-Gelander [5]) Let M be a closed Riemannian manifold of dimensions 2n
locally isometric to a product of n copies of the hyperbolic plane. Let E be an oriented
R2n-vector bundle over M . If E is flat, then

|χ(E)| ≤ 1
2n
|χ(M)| .

Corollary LetM be a closed Riemannian manifold of dimensions 2n locally isometric to a product
of n copies of the hyperbolic plane. Then M does not admit an affine structure.

Proof The corollary follows from the generalized Milnor-Wood inequality exactly as in Milnor’s
case: Namely if such a manifold M admits an affine structure, then its tangent bundle TM
admits a flat structure, so that by the Theorem,

|χ(M)| = |χ(TM)| ≤ 1
2n
|χ(M)| ,

which is impossible since χ(M) 6= 0 (this can for example be seen from Hirzebruch’s propor-
tionality principle [16]).
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