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Abstract

A novel constraint model for scheduling train trips on a network of tracks used in
both directions is described. We argue that a generalization of a job-shop scheduling
formulation can drastically decrease the problem size. Preliminary complexity and
performance results and a set of examples of schedules generated by our implementa-
tion are presented.

1 Introduction

To schedule train trips on a network of tracks is an optimization problem that resembles but
also differs in certain ways from other typical scheduling tasks. The paper describes a con-
straint model [VH 89] and solver for scheduling trains on a network of single tracks used in
both directions. This kind of problem can be modelled as a job-shop scheduling (JSS) prob-
lem [CP 89, AC 91] regarding train trips as jobs to be scheduled on tracks regarded as
resources. Each train trip traversing a track represents a task where the traversal time is taken
as the duration of the task. Since the tracks can be used in both directions the JSS formula-
tion requires each trip to demand exclusive use of the track as a resource for the duration of
the track traversal. In order to achieve reasonable schedules with such a model it is necessary
to keep traversal times and hence individual tracks short. This results in very large schedul-
ing problems (in terms of the number of tasks).

By generalizing this model to take into account two distinct durations for each task we
are able to use a much coarser net without losing precision. Since train trips travelling in
the same direction no longer require exclusive use of the track resource for the duration of
the traversal time the network can be used more efficiently without increasing the granular-
ity of the network representation.

The problem can be concisely stated as:

• Schedule a set of train trips over a fixed network of predetermined paths where trains
travel in both directions on single tracks connecting nodes where trains can meet and
overtake

• Maintain reasonable bounds on waiting and total times

The rest of the paper is organized as follows: First comes an introductory note illustrating a
geometric interpretation of our model. This is followed by a short description of the network
representation used and how the problem specifications are built and maintained in the form
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of a data structure (object representation) we call plans. Then we describe the constraint
model used and formulate constraints stating soundness criteria of the generated schedules.
This section is concluded with a discussion of the enumeration strategy used and some pos-
sibilities for improvement in this area.

We then briefly consider some complexity and performance issues and conclude the
paper with some notes on limitations in the model, some possible lines of future work and
with a set of examples.

2 A geometric intuition

The following two diagrams illustrate the difference between a job-shop scheduling formu-
lation and our model. We use an adaptation of diagrams traditionally used to represent train
schedules. Time is on the  axis and the height of each track represents the spatial distance
between the end points of each track. 

In the JSS formulation (fig. 1) there is only one duration associated with each start time.
This duration, which we call traversal time, is illustrated as the width of each task rectan-
gle. Rectangles on a single track must not overlap and track traversals belonging to a single
trip follows in sequence. 

Another relevant duration is the headway, i.e. the (time) distance between any two trains
departing from some location in the same direction on single track.

In the second diagram (fig. 2) the width of each rhombus represents the headway while
its extension in the x-axis represents the traversal time. The angle of the rhombus repre-
sents the speed of each individual traversal. In the example below we have chosen to give
slow trains a long headway and quick trains a short headway.

(Fig. 1)

(Fig. 2)
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It is easy to see that for comparable total times the number of trains that can be scheduled
with JSS on an identical network is significantly lower. It is possible to achieve a schedule
similar to the second one using a network with a larger number of (shorter) tracks but then
the size of the scheduling problem increases accordingly.

If job-shop scheduling can be seen as the problem of packing the rectangles of the regu-
lar Gantt diagram under the precedence constraints imposed by the jobs, the single track
train scheduling problem can be seen as the corresponding rhombus packing problem.

3 Network representation

A railroad network is represented as three interrelated sets:

• Locations (nodes)

• Tracks (arcs)

• Predetermined paths

Each location is characterized by a unique name, geographical coordinates, a set of tracks
adjoined to it and a set of paths passing through it while a track encodes the two locations
at its end points, a unique name, a length and a maximum speed at which trains may traverse
it. Each path, on the other hand, is determined by a unique name and an ordered sequence
of directed track traversals.

4 Problem representation - plans

We use the notion plan to denote a data structure representing a scheduling problem in terms
of a given network and a set of required train trips with limitations on departure and arrival
times at the start and end points of a given path. 

Trips are determined by the path the train is required to traverse, the specification of con-
straints on arrival and departure times at start and end points of the path, average speed for
involved vehicles and a unique name. 

The scheduling problem is extracted from the plan as a set of trips each consisting of a
set of time slots representing the track traversals of the trip in the required schedule. Fur-
thermore the set of slots associated with each track and path is extracted.

Each slot encodes a (unique) name, the name of a train trip traversing a track, the name
of the traversed track, the direction of the track traversal, headway and traversal times.

The scheduling problem can now be solved by imposing inequalities for all departure
and arrival times associated with each trip, serializing the slots associated with each track
and searching for schedules consistent with these constraints. 

In this process we can choose to constrain also the (accumulated) waiting and total time
for each trip and the total time required to execute the entire schedule. There is a trade-off
between these two quality measures of the generated schedule such that plans with high
demands on (short) waiting times will, in general, have a longer total time and vice versa.
See the examples of section 10.1 for an illustration of this phenomenon.
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5 Constraint model

Slots represent traversals of tracks by trips at specific time intervals. We use a vector of finite
domain variables to represent departure times for such traversals and associate with each
slot a variable and not one but two constant durations: 

• headway: (time) distance between any two trains departing from some location in the
same direction on single track

• traversal time: time during which no two trains in opposite direction may use a single
track

This model is similar to those used for job-shop scheduling (see e.g. [CP 89, AC 91]) but dif-
fers essentially in the use of two durations for each task. The model resembles JSS if for
each slot headway is identical to traversal time i.e. if no two trains can ever simultaneously
use the same track.

5.1 Constraints

There are two distinct sets of constraints used in the model. The first set is for maintaining
the precedence of the track traversals for each single trip. The only uncertainty here is how
much slack (waiting time) to allow at each node, for each trip and for the complete schedule. 

The second set of constraints is used to enforce a satisfiable serialization of all the slots
associated with each track. To summarize:

1. For each trip all track traversals must follow in the sequence defined by its path and not
overlap

2. For each track

• Any two trains travelling in the same direction must respect headway (even if speeds
are different)

• Any two trains in opposite direction must not simultaneously use the same (single)
track

We will now examine the formulation of these constraints in some detail.

5.1.1 Trip constraints

For all slots associated with a trip select uniquely:

• One finite domain variable to represent departure time

• One finite domain variable to represent waiting time (slack) at the location at the end
of the traversal

and state:

• One sum constraint per slot to represent precedence between departure and arrival
times and upper bounds on waiting times

More formally, assume that we have for each trip unique finite domain variables represent-
ing departure and arrival times,  and , and a vector  of slots

 representing the tracks the trip traverses. Assume furthermore that this vector is
DepTimei ArrTimei Tripi

Tripij
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ordered by the path the trip traverses. Let the slots be represented as records using “.” as a
field access operation and use the fields , ,  and 
to represent the departure time, the waiting time at the end of the traversal, the traversal time
and (local) headway of the slot. The first two contain unique finite domain variables while
the second two are fixed durations associated with the slot. The following equality between
the departure time of the first slot and that of the whole trip must hold:

then for each slot  in the vector but the last the following equality must hold:

For the last slot  this is replaced by:

 and 

The waiting times at each location can furthermore be limited either individually or by sums
over the waiting times associated with each trip. In addition we may state limits on the latest
arrival time allowed in a particular schedule. These two parameters can, as we shall later see,
be used to select schedules with different properties.

5.1.2 Track constraints

Define a disjointness constraint as:

which may be implemented e.g. by constructive disjunction.
Then, for each track traversed by some trip:

1. For each pair of trips traversing a single track in the same direction a disjointness con-
straint ensures that headway is respected at both departures and arrivals.

2. For each pair of trips traversing the track in opposite directions a disjointness constraint
ensures that trains will not collide.

This second case corresponds to exclusive use of the track as resource and is equivalent to
the situation in job-shop scheduling. The first case however uses essentially the fact that we
consider two distinct durations for each slot.

Assume furthermore that we have for each track  a set of slots denoted 
representing all trips traversing the track. Then for each pair  of slots in
the set: 

1. If the two trips traverse the track in the same direction the following (constraint) must
hold

depTime waitTime travTime headway

Tripi1.depTime DepTimei=

Tripij

Tripij.depTime Tripij.travTime Tripij.waitTime+ + Tripi j 1+( ).depTime=

Tripin

Tripin.depTime Tripin.travTime+ ArrTimei= Tripin.waitTime 0=

Disjoint T1 D1 T2 D2, , ,( ) T1 D1+ T2≤( ) T2 D2+ T1≤( )∨⇔

Tracki Trackij
Trackik Trackil( , )

Disjoint Trackik.depTime Distanceikl Trackil.depTime Distanceilk, , ,( )
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where 

Note that this formalization in itself does not guarantee that two trains running in the
same direction will not run into each other. This is the case only when the local head-
ways (for each slot) are longer than the maximum traversal time variance.

2. If the two trips traverse the track in opposite directions instead the following (con-
straint) must hold

Note the similarity with the standard job-shop scheduling formulation in the simple case of
avoiding collisions (2). The choice between the two cases is completely determined by the
relative direction of the traversals and does not in itself generate search. 

The strength of the model is to a large extent determined by the propagation of the dis-
junctions implicit in the disjointness constraints. Standard operational semantics of con-
structive disjunction (see e.g. [BP 95]) seems to provide reasonable propagation. 

There are more intricate issues involving search. We will briefly sketch some of them in
the following section.

5.2 The constraint solver

Since the model implicitly uses disjunctions in the disjointness constraints for the tracks, to
enumerate the departure times generally involves search. We have investigated two distinct
methods to do this. 

• The most straightforward approach is to enumerate the departure times themselves
in some order, rely on propagation to further restrict the domains of remaining depar-
ture times and to detect failure in the case of an inconsistent instantiation. 

• An alternative approach is to serialize all the slots for each track. The propagation
behaviour of constructive disjunction then ensures that enumeration of the departure
times can be done without search if the minimum or maximum value of each domain
is consistently chosen (See e.g. [BP 95]). This possibility and its implications is fur-
ther discussed in section 8.1.

5.2.1 Enumeration of departure times

The performance figures given in section 7 below was achieved with an approach using the
number of constraints associated with each variable as a variable ordering criterion and
bisecting the domain of each departure time trying first the lower half of the domain for each
variable.

Clearly such a strategy does not lend itself well to optimization. The search tree for this
formulation is simply too large. However given reasonable upper bounds on waiting times
it is a quick way to find good solutions. Unfortunately search explodes when the bounds

Distanceixy
max Headwayix Headwayix Trackix.travTime Trackiy.travTime–+,( )

=

Disjoint Trackik.depTime Trackik.travTime Trackil.depTime Trackil.travTime, , ,( )
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place us close to optimal total time which effectively excludes branch and bound search for
optimal solutions. 

6 Some complexity results

For most realistic problems it is not entirely clear what is a good problem size measure. The
number of trips for a given net is a measure which comes naturally to mind but the number
of slots for problems sharing such a size varies irregularly with the particular paths selected
for each problem, at least for small problems sizes (number of trips less than 100 on a net-
work of about 45 nodes).

Even if we use the number of slots as a size measure, the complexity varies with the
actual selection of paths in the problem. This phenomenon arises because the number of
constraints grows quadratically with the number of slots associated with each single track.
Some problems distribute their slots evenly over the tracks. These are relatively easy prob-
lems. Difficult problems have a few very “tight” tracks with a large number of slots. For
such problems the number of constraints can grow very quickly.

The number of variables used to represent the problem are first of all 2 for each slot: One
for the departure time and one for the waiting time. From a complexity point of view the
second is redundant but in practice it is essential.

There is furthermore one arithmetic equality constraint stated for each slot. So far every-
thing is linear. The real complexity comes from the serialization of the track traversals. We
state one disjointness constraint for each pair of trips traversing it. This operation amounts
to finding each subset of size 2 of the slots associated with a track, i.e.

where the measure  is the number of trips traversing a single track.
For most realistic problems average and maximum  will vary greatly from track to

track and from plan to plan. Some typical averages are listed in (Figs. 3 and 4) below.

7 Performance

Performance figures are rough and since the main limitation is memory the problem size we
can handle is not really large enough to do a more thorough empirical time complexity anal-
ysis. 

We currently schedule 200 trips traversing on the average 6 tracks each in a network con-
sisting of 45 tracks where the average number of trips passing a single track is 28 and the
number of variables and constraints used are 5541 and 73281 respectively. A first schedule
is found in about 74 seconds on a 120 Mhz Pentium PC with 40 MB of RAM memory. This
is searching for a “good” but not necessarily optimal solution (in terms of total time to exe-
cute the complete plan) where individual waiting times are bounded by a fixed (5%) frac-
tion of the traversal time. Optimal solutions for smaller examples can be found by
(manually) decreasing an upper bound for the total time but for larger examples (
trips) search times tends to increase very fast close to an optimal solution. 

N

2 
  N N 1–( )

2
---------------------- O N

2
( )= =

N
N

> 60
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On a 248MHz Sun Ultra Sparc using 512 Mb of RAM memory we schedule 1 000 trips
in a network of 45 tracks where the average number of trips passing a single track is 138
and the number of variables and constraints used are 9 227 and 586 201 respectively in
about 25 minutes. This approaches a realistic size for the highly practical problem of
scheduling all major train movements in the Swedish rail network during 24 hours.

The corresponding figures for some other sample problems are given in (Figs. 3 and 4)
below.

(Fig. 3)

(Fig. 4)

8 Future work

Since there is currently a lot of time and mainly memory spent in search, search behaviour
has to be analysed in more detail. Both domain dependent heuristics and general search pro-
cedures such as hill climbing techniques or limited discrepancy search ([XSS 92, HG 95])
should be investigated.

An alternate approach would be to attempt to define global constraints for our model
using e.g. edge finding [CP 94] and transitive closure techniques. Some initial experiments
in this direction seem to indicate that the required schedules are too sparse (under-con-
strained) for these techniques to provide significant improvements in propagation behav-
iour but this possibility should be investigated further. Since memory consumption seems
to be the main limiting factor of how large problems we can attack, global constraints may
also be useful to reduce the overall memory consumption.

The model lacks limitation on vehicle and staff resources as well as limits on how many
trains that can actually meet in any one location. These are serious limitations in practice
and essential for this kind of technique to be useful in solving real life problems. There is
as far as we can see nothing in our model that would not extend naturally to this more com-
plex domain. We address the issues of track limitations and vehicle allocation in a current
project.

120 MHz Pentium using 16 Mb of memory
No. of trips 25 50 75 100 125 150 175 200
No. of tracks used 44 45 45 45 45 45 45 45
No. of slots 145 345 450 532 728 901 1 066 1 245
Av. no. of trips/track 3,29 7,67 10,00 11,82 16,18 20,02 23,69 27,67
Av. no. tracks/trip 5,80 6,90 6,00 5,32 5,82 6,01 6,09 6,23
No. of Vars 222 497 677 834 1105 1353 1593 1847
No. of constraints 472 2 126 3 565 4 870 8 652 12 962 17 814 24 427
Propagator invocations 8 725 73 664 128 403 195 074 491 555 866 931 1 349 553 2 085 021
Time (seconds) 2,1 4,0 5,9 11,9 15,2 19,0 30,5 73,9

248 MHz Ultra sparc using 512 Mb of memory
No. of trips 200 400 600 800 1000
No. of tracks used 45 45 45 45 45
No. of slots 1 245 2 490 3 735 4 980 6 225
Av. no. of trips/track 27,67 55,33 83,00 110,67 138,33
Av. no. tracks/trip 6,23 6,23 6,23 6,23 6,23
No. of Vars 1847 3692 5537 7382 9227
No. of constraints 24 427 95 260 212 500 376 147 586 201
Propagator invocations 2 085 021 15 014 919 48 477 686 115 295 819 223 643 484
Time (seconds) 9 73 290 716 1500



9

In practice it will probably also be both possible and necessary to subdivide the complete
problem into several smaller and relatively independent sub-problems. For larger realistic
problems such as producing schematic schedules several months in advance problem sub-
division is most likely the only possible approach. The standard way to do this is to subdi-
vide the problem into that of producing several weekly and daily schedules and to do
detailed scheduling for separate geographic regions given non-local constraints on e.g.
interregional trains. This aspect is also addressed in the current project.

8.1 Enumeration of boolean variables representing serialization choices

We have been experimenting with serializing the slots for each track before actually assign-
ing values to the departure times but have so far not been able to reproduce the performance
results given with the naive strategy above. It appears that enumerating departure times gives
better propagation thus eliminating most of the search while a bad serialization choice early
in the enumeration process can potentially generate a huge amount of search much later.

We believe however that this approach will eventually prove to be superior. First the
search tree in this formulation identifies all solutions that do not result in a reordering of
the slots within a given track. This means that it will be more realistic to search for optimal
or close to optimal solutions, possibly using the naive approach to determine reasonable
upper bounds.

Second it is possible with such an approach to formulate very intricate search strategies.
It may e.g. be a good idea to first serialize the tracks with the largest number of slots or
with the largest number of constraints summed over all its slots. Such tracks would repre-
sent tight resources in the network.

It could also be a good idea to choose first to serialize long tracks or to use the fact that
the upper bound on total time is to a large extent dependent on a few relatively long trips, at
least for the kind of problem sizes considered so far.

To formulate a good strategy using such ideas is of course not trivial and presently repre-
sents future work. It may also turn out that generalizing existing methods to implement
global constraints for job-shop scheduling problems e.g. edge finding (see e.g. [BP 95])
and/or transitive closure is feasible. This would represent a complementary approach to
refining the present results.

Choosing to represent potential schedules by a boolean vector also allows for more flexi-
ble rescheduling and incremental updates of existing schedules. Investigations of these
aspects of constraint programming is currently under way within our group.

9 Conclusions

We have described a novel constraint model for train scheduling and evaluated a correspond-
ing solver on a number of realistically sized problems. With a relatively straightforward
solver we have been able to attack problems approaching those appearing in actual practice.
It is notable also that even though the simple solver we used in the performance tests does
not lend itself well to optimization, the schedules found are in general quite close to manu-
ally found optima. 
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Our modelling approach seem therefore to represent a major improvement of more tradi-
tional alternatives.

10 Sample schedules

The following diagrams illustrate some sample schedules generated by our implementation.
The implementation was done completely in the Oz programming language [Sm 95, ST 95]
using the embedded Tcl/Tk interface for the GUI parts. The diagrams encode time on the 
axis and spatial distance between locations on a given path on the  axis. The width of the
rhombi representing the trips encode the variance of traversal time for each track traversal.
The angle of the rhombi sides encodes the speed of the train during the traversal with angles
larger than  encoding trips moving in opposite direction.

10.1 Trade-off between total time and waiting time

The trade-off between total time and waiting time is nicely illustrated by the following three
schedules.

In the first (fig. 5) we have set a very tight limit on the waiting time for all trains at the
intermediate location (Södertälje). So tight, in fact, as to exclude any meetings at this loca-
tion. In the second schedule (fig. 6) we loosen this bound slightly to allow a maximum of
two trains to meet at this location. In the last (fig. 7) finally we allow an arbitrarily long
waiting time thus letting all three trains to meet at this point. Note how the total time
decreases throughout this process.

Note also that headway is respected even where trains travel at different speeds. The
steeper the angle the quicker the train.

(Fig. 5)

(Fig. 6)

(Fig. 7)
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10.2 Some larger schedules

The following examples illustrate some larger schedules and how much bounds on the wait-
ing times influences the sparseness of the schedules. The following diagrams represent iden-
tical fragments (all traversals of the tracks of one particular path) of 2 different 60 trip
schedules. The first (fig. 8) with low tolerance on waiting times, the second (fig. 9) with high
tolerance on waiting times. Note also how the total time is decreased with about 25% by
bounding waiting times to allow approximately three trips to meet at each location.

(Fig. 8)

(Fig. 9)
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