
Finding a Simple Path
with Multiple Must-include Nodes

Hars Vardhan∗, Shreejith Billenahalli∗, Wanjun Huang∗, Miguel Razo∗, Arularasi Sivasankaran∗, Limin Tang∗,
Paolo Monti†, Marco Tacca∗ and Andrea Fumagalli∗

∗The University of Texas at Dallas, TX, USA
{hxv071000, sxb071100, wxh063000, mrazora, axs075200, lxt064000, mtacca, andreaf}@utdallas.edu

†The Royal Institute of Technology, Kista, Sweden
pmonti@kth.se

Abstract—This paper presents an algorithm to find a simple
path in the given network with multiple must-include nodes in the
path. The problem of finding a path with must-include node(s)
can be easily found in some special cases. However, in general,
including multiple nodes in the simple path has been shown
to be NP-Complete. This problem may arise in network areas
such as forcing the route to go through particular nodes, which
have wavelength converter (optical), have monitoring provision
(telecom), have gateway functions (in OSPF) or are base stations
(in MANET). In this paper, a heuristic algorithm is described that
follows divide and conquer approach, by dividing the problem in
two subproblems. It is shown that the algorithm does not grow
exponentially in this application and initial re-ordering of the
given sequence of must-include nodes can improve the result. The
experimental results demonstrate that the algorithm successfully
computes near optimal path in reasonable time.

I. INTRODUCTION

Network standards [1] [2] allow loose definition of routing
by requiring one or more nodes to be in the route of Link State
Packet. This problem may arise in various networking areas
such as optical networks, OSPF (Open Shortest Path First)
protocol, telecommunication networks, and MANET (Mobile
ad-hoc networks).

The problem of including node(s) in the path is polynomial
time solvable only in some scenarios described in Section II.
The shortest path with multiple must-include nodes can be
seen as a more general case of the well known traveling
salesman path (TSP) problem, which is NP-complete. Instead
of traveling all nodes as in the original TSP, this problem
requires to travel only a subset of the nodes from source to
destination. Akin to the TSP problem, the problem of finding
shortest path with multiple must-include nodes is shown to be
NP-Complete [3].

In this paper, a heuristic algorithm is proposed to compute
a simple path which contains a given ordered set of must-
include nodes, i.e., set I . The algorithm’s primary objective
is to find at least one simple path, which satisfies the must-
include constraint. However, the nature of the algorithm itself
leads to finding near shortest path solutions. The algorithm
comprises two main steps: (1) considering each pair of con-
secutive nodes in I to represent a segment of the entire
end-to-end path, and then computing candidate paths for the
segment; (2) concatenate segments’ candidate paths, one from

each segment, in order to make a simple path from source
to destination. The max-flow [4] approach is used to find
candidate paths, which yields maximum number of edge-
disjoint paths for individual segments. The time complexity of
step (1) is O(k|V ||E|2), where |V | and |E| are the number of
nodes and edges in the network and k is the size of set I . Step
(2) uses backtracking algorithm for combining segment paths.
The worse case complexity of the backtracking algorithm is
O(λk), where λ is the maximum degree of the node in the
network. However, in practice, the run time of this second step
is affected by the number of pairs of candidate paths across
segments, which are disjoint. The number of such disjoint
path pairs decreases with increasing value of k

λ , as explained
in Section II. Consequently, the run time of step (2) stays
reasonably low even at large values of k and it has minimal
effect on the algorithm’s run time.

As intuition suggests, the order of the nodes in set I may
significantly affect the algorithm outcome. Two cases are
considered. In one case, the node order in I is randomly given,
and cannot be changed. In the other case, the nodes in I can be
re-ordered prior to running the algorithm. Experimental results
presented in the paper indicate that the proposed algorithm is
able to find a simple path with must-include nodes and requires
reasonable run time.

II. ALGORITHM DESCRIPTION

Given a directed graph G = (V,E) and a set I ⊂ V , the
objective is to find a simple path P from source s ∈ V to
destination t ∈ V . Further, the set of must-include nodes I
may be given as an ordered set. Let k = |I| and ui ∈ I ,
where i = 1, 2, 3..., k, be the nodes in I . Also, let π(x) denote
the index of node x in P , then P must have the following
properties:

∀ui ∈ I =⇒ ui ∈ P; i = 1, 2, 3...., k (1)
∀ui, uj ∈ I ∧ i < j =⇒ π(ui) < π(uj) (2)

Simple solutions to this problem can be found in two special
scenarios. If k = 1 and the given graph is undirected, the
problem can be solved by applying max-flow algorithm once.
And, if the constraint of simple path is removed, then the
problem is reduced to computing shortest path between every
pair of nodes (or segment) along P . However, in general, i.e.,

for directed graph, when k ≥ 2 and the path must be simple,
the problem is NP-Complete. A straightforward solution to
the problem can be obtained by directly using K-shortest path
algorithm [5] results in shortest (optimal) path, but the required
value of K may be large in most cases, thus making the
solution impractical.

Algorithm 1 incNodePaths(s, t, I , allPaths)
1: j ← 0, segj ← (s, Ij)
2: for j = 1 to j < I.size do
3: segj ← (Ij−1, Ij)
4: end for
5: segj ← (Ij , t)
6: ∀e : e ∈ E, capacity(e)← 1
7: for j = 0 to j <= I.size do
8: v1 ← segj .first, v2 ← segj .second
9: for all ui ∈ I : ui 6= v1 ∧ ui 6= v2 do

10: ∀e : e passing through node ui; capacity(e)← 0
11: end for
12: compute flows F =

⋃
f(i, j) ∀ ui, uj ∈ V in order

to maximize the flow between v1 and v2
13: m← 0
14: while ∃i, j : f(i, j) > 0 do
15: Trace path Pjm from v1 to v2
16: m← m+ 1
17: end while
18: end for
19: loop
20: P ← φ
21: ret← combinePaths(0, P , P)
22: if ret = −1 then
23: Break
24: end if
25: allPaths ← P , P ← P − P
26: end loop

First, the problem is addressed with both of the constraints
given in “Eqn. (1)” and “Eqn. (2)”. The algorithm follows
divide and conquer approach. Firstly, it computes multiple
candidate paths for each segment. Then, combining paths, one
from each segment such that they do not form a loop, gives the
solution. The algorithm is formally described in Algorithm 1
and Algorithm 2.

Let I = {u1, u2,, uk} and segments segi is defined as
follows: seg0 = (s, u1), seg1 = (u1, u2),, segk = (uk, t).
Conversely, we can say s = seg0.first, u1 = seg0.second =
seg1.first,, uk = segk.first = segk−1.second. Proce-
dure incNodePaths(s, t, I , allPaths) first computes all edge-
disjoint paths Pi for segi then, procedure combinePaths(m, P ,
P), described in Algorithm 2, is called to compute a simple
path by combining paths, one from each of the segments.

Steps 7 − 18 of Algorithm 1 use max-flow approach to
compute all possible edge-disjoint paths for each of the
segments. So, the time complexity of the steps 7 − 18 of
Algorithm 1 is O(k|V ||E|2). Algorithm 2 is a backtracking

Algorithm 2 combinePaths(m, P , P)
1: if m > k then
2: return 1
3: end if
4: ret← −1
5: for all path p ∈ Pm do
6: if ∃ p : p ∪ P not making a loop then
7: P.push back(p)
8: ret← combinePaths(m+ 1, P , P)
9: if ret = −1 then

10: P.pop back() // {Undone last step}
11: end if
12: end if
13: end for
14: return ret

algorithm that iterates through all possible cases until it finds
a solution which turns into k multiplications of the number of
edge-disjoint paths in each of the segments. Here, the number
of paths for each segment is bounded by λ. Hence the worse
case complexity of Algorithm 2 is O(λk). However, careful
inspection reveals that complexity is in practice a polynomial
function of k, as explained next. The number of candidate
paths in each of the segments is an increasing function of λ. In
the presence of a large number of segments (large value of k),
the candidate paths in each of the segments are more likely to
(be incompatible) contain some node that is also contained in
paths of other segments. Algorithm 2 is designed to efficiently
prune further iterations which may lead to loop. On the other
hand, if the number of candidate paths per segment, which
are not making loop with others, is high then the backtracking
algorithm terminates early as it finds with ease a simple path
from s to t. So, effectively the run time of Algorithm 2 does
not grow exponentially with k.

The max-flow computation uses shortest path for augment-
ing paths [6]. Also, we sort and index all paths in P according
to the hop-count. Hence, nature of the algorithm results in
near-shortest possible path.

Further, if the constraint given in “Eqn. (2)” can be relaxed,
the outcome of the Algorithm 1 can be improved by re-
ordering the nodes of I . The re-ordering of I can be done
using simple algorithm such as depth first traversal and the
reordered set I ′ of must-include nodes can be used instead of
I in Algorithm 1.

III. EXPERIMENTAL RESULTS

Simulation is carried out on several instances of input pa-
rameters to verify the effectiveness of the proposed algorithm.
The input parameters are the topology layout and the list
of traffic requests, each defined by both (s, t) pair and set
I . Network topologies are generated randomly keeping the
number of nodes at n = 50 and varying λ. s and t of
each request are chosen randomly. Similarly, k must-include
nodes are chosen randomly in the topology, excluding both
s and t as possible choices. For each tuple (n, λ, k), 100

requests are created and their average results are presented.
The performance parameters computed in the experiments are:
1) Nsucc - Number of times at least one simple path is found,
2) Texp - Total experiment run time. The suffix (W) and (R)
denotes the result of the experiment without reordering of I
and with reordering of I , respectively. All of the experiments
are conducted on the same hardware-software platform.

First, parameter Nsucc is analyzed with respect to λ as
well as with respect to k. The study of parameter Nsucc is
shown in Figs. 1-2. As λ increases, Nsucc increases if k

Fig. 1. Nsucc vs λ: k = 20 Fig. 2. Nsucc vs k: λ = 6

remains constant (Fig. 1). Nsucc decreases with increasing
values of k (Fig. 2). These plots support the earlier claim
that the availability of more disjoint candidate paths for every
segment favors the success rate of the algorithm. Indeed, if
we increase the value of λ, max-flow algorithm tends to find
more disjoint candidate paths for each segment, hence, results
tend to improve. Also, increasing the ratio k

λ (by increasing
k), candidate paths computed for different segments are more
likely to share some nodes in set V − I . Consequently, it
becomes increasingly difficult for the algorithm to find a loop-
less path from s to t.

In order to study parameter Texp, two additional parameters
are defined: 1) Tflow - Total computation time by steps
7 − 18 of Algorithm 1, 2) Tcomb - Total computation time
by Algorithm 2, where Texp = Tflow + Tcomb. The study of
parameter Texp is shown in Figs. 4 - 5. As expected, Texp
increases polynomially with λ (Fig. 5), keeping k constant, as
the computation time of the candidate paths for every segment
is O(V |E|2), which is proportional to λ2. Parameters Tflow
and Tcomb versus k are plotted in Fig. 3. Tflow is a function of
k(n−k), which is shown by experiment in Fig. 3. Considering
Tcomb, when k becomes relatively high (e.g., > n

2), the vast
majority of candidate paths computed for the segments are not
disjoint, thus allowing Algorithm 2 to quickly determine that
a solution may not exist and terminate swiftly. Also, Tcomb is
relatively very low as compared to Tflow as shown in Fig. 3.
The combined result for Texp(W) as well as for Texp(R)
is shown in Fig. 4. The increasing vertical distance between
Texp(W) and Texp(R) in Fig. 4 shows that the re-ordering of
I results in more number of candidate paths and hence, higher
value of Tflow(R). These results support the earlier claim that
Algorithm 1 does not grow exponentially in practice.

Overall, the reordering of set I is shown to improve the out-
come of Nsucc (Figs. 1-2). The depth first traversal approach
is used to re-order the nodes in I which is applied k times.
The computation time of this step is directly proportional to
k. As shown in Fig. 5 the reordering step has a limited impact
on Texp.

Fig. 3. Tflow(W) vs k: λ = 6 Fig. 4. Texp vs k:λ = 6

Last, Texp required by KSP approach is compared with that
of flow approach described in Algorithm 1, when allowing
reordering of set I . For comparison, the K-shortest path algo-
rithm is used to exhaustively find the shortest path from s to t,
which contains all nodes of I . This is computationally costly,
and applicable only to small size networks, e.g., n = 25,
λ = 4, k = 4. In Fig. 6, Texp is plotted for each of the LSP
requests. It can be seen that Texp for flow approach varies
within small range as oppose to Texp for KSP approach. In
most cases, KSP-approach needs much longer time than what
is required by Algorithm 1.

Fig. 5. Texp vs nodal degree (λ):
n = 50, k = 20

Fig. 6. Texp(Flow) vs Texp(KSP)
n = 25, λ = 4, k = 4

IV. CONCLUSION

The requirement of including multiple nodes in the compu-
tation of end-to-end routing paths may find many applications
in today’s networks, e.g., optical, Ethernet, and mobile net-
works. The problem of including node(s) in the path is easily
solvable in some cases. However, in general, including 2 or
more nodes can be shown to be NP-complete. In this paper, a
heuristic algorithm is presented to compute a simple path with
multiple must-include nodes. The heuristic algorithm follows
the divide and conquer approach, by dividing the problem
into two subproblems. The experimental results show that our
algorithm computes near-shortest path containing all of the
include nodes in reasonable time.

REFERENCES

[1] D. Awduche, L. Berger, D. Gan, V. S. T. Li, and G. Swallow, “RFC 3209
- RSVP-TE: Extensions to RSVP for LSP Tunnels,” December 2001.

[2] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus, “RFC
2702 - Requirements for Traffic Engineering Over MPLS,” September
1999.

[3] “Finding a simple path with multiple must-include nodes,” The University
of Texas at Dallas, TX, USA, Tech. Rep., 2009. [Online]. Available:
http://opnear.utdallas.edu/publications/reports/UTD-EE-2-2009.pdf

[4] J. Edmonds and R. M. Karp, Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems, New York, NY, USA, 1972.

[5] E. de Queirs Vieira Martins and M. M. B. Pascoal, “A new implementa-
tion of yen’s ranking loopless paths algorithm.” 4OR, vol. 1, no. 2, pp.
121–133, 2003.

[6] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Second Edition. The MIT Press, September 2001.

