Green Mobile Backhaul in Heterogeneous Wireless Deployments

P. Monti1, J. C. W. A. Costa2, F. S. Farias2, M. Fiorani1,3, M. Nilson1, S. Tombaz1, A. Västberg1, L. Wosinska1

1KTH Royal Institute of Technology, Kista, Sweden
2Universidade Federal do Para, Belém, Brazil
3University of Modena & Reggio Emilia, Modena, Italy
Outline

• HetNet deployment and role of BH
• Case study with different HetNet solutions
 - Macro BS + pico BS: outdoor deployment
 - Macro BS + femto BS: indoor deployment
• BH power consumption assessment
• Conclusions
Energy efficiency becoming a priority in mobile broadband access

- Mobile broadband data usage is experiencing a dramatic growth

- Power consumption will increase to keep up with traffic demand
- Energy prices increase (expected: 3x in 7 years)
- Clear challenge ahead: meeting the expected 2020-2025 traffic levels maintaining current/low power consumption figures
Possible solution: HetNet deployments

- HetNet is an alternative to macro cell densification
- Rationale: tailor network deployment to the expected traffic levels
 - selectively add small high-capacity BS only where it is needed (hotspots)
- Result
 - smaller cell sizes (advantageous path loss)
 - capacity provided by macro cells
 - coverage provided by Pico/Micro/Femto BS
HetNet deployment – an example
HetNet: role of backhaul unclear

- Most studies consider only the aggregated power consumption of the base stations
- Contribution of the backhaul to the total network power is omitted/neglected
- Analysis of the power consumption for HetNet deployment scenarios including the effect of BH is needed
- Two HetNet case studies are considered:
 - macro + pico: outdoor deployment
 - macro + femto: indoor deployment
Case study: HetNet outdoor deployment

Cost (i.e., $) effective HetNet deployment for a area of 4×4km with 3G UMTS macro and pico BS

- Each BS type assumed to have
 - maximum supported throughput s_{max} [Mbps/km²]
 - maximum range δ_{max} [km]
- Number of base stations required is determined sequentially
 - macros are deployed first to provide coverage
 - picos added where extra capacity needed
- Two BH technologies: MW and fiber

- Peak user downstream data rate of 100Mbps in total

Traffic backhauled through a *hub* node connected to an area aggregation point, i.e., *sink* node

- Single/multiple hubs, function of topology and architectural choice
- If multiple backhaul links originates or terminate at a node, *switch* is needed
- *Ring*: good for resiliency, latency might me an issue, limited number of sites because of capacity issues
- *Star*: simplest one, might have LOS limitation for MW links
- *Tree*: sensitive to faults to feeder links, better delay than ring
MW-based backhaul power model

\[P_{\text{tot}}^{MW} = \sum_{i=1}^{m} N_i P_i + P_{bh}^{MW} \]

\[P_i = a_i P_{tx} + b_i \]

\[P_{bh}^{MW} = P_{\text{sink}} + \sum_{j=1}^{N_{BS}} P_j^{MW} \]

\[P_j^{MW} = P_{j,\text{agg}}(C_j) + P_{\text{switch}}(N_{j}^{\text{ant}}, C_j) \]

\[P_{j,\text{agg}}(C_j) = \begin{cases} P_{\text{low-c}}, & \text{if } C_j \leq T_{\text{low-c}} \\ P_{\text{high-c}}, & \text{otherwise} \end{cases} \]

\[P_{\text{switch}}(N_j^{\text{ant}}, C_j) = \begin{cases} 0, & \text{if } N_{j}^{\text{ant}} = 1 \\ P_S \left(\frac{C_j}{C_{\text{MAX}}^{\text{switch}}} \right), & \text{otherwise} \end{cases} \]

\[P_{\text{sink}} = P_{\text{sink,agg}}(C_{\text{sink}}) + P_{\text{sink,switch}}(N_{\text{sink}}^{\text{ant}}, C_{\text{sink}}) \]

\[P_{\text{sink,agg}}(C_{\text{sink}}) = \begin{cases} P_{\text{low-c}}, & \text{if } C_{\text{sink}} \leq T_{\text{low-c}} \\ P_{\text{high-c}}, & \text{otherwise} \end{cases} \]

\[P_{\text{sink,switch}}(N_{\text{sink}}^{\text{ant}}, C_{\text{sink}}) = \begin{cases} 0, & \text{if } N_{\text{sink}}^{\text{ant}} = 1 \\ P_S \left(\frac{C_{\text{sink}}}{C_{\text{MAX}}^{\text{switch}}} \right), & \text{otherwise} \end{cases} \]

Fiber-based backhaul topology and power model

\[P_{\text{tot}}^{\text{FIB}} = \sum_{i=1}^{m} N_i P_i + P_{\text{bh}}^{\text{FIB}} \]

\[P_i = a_i P_{tx} + b_i + c_i \]

\[P_{\text{bh}}^{\text{FIB}} = \left[\frac{1}{C_{\text{switch}}^{\text{MAX}}} \left(\sum_{i=1}^{m} C_i \right) \right] P_s + \left(\sum_{i=1}^{m} N_i \right) P_{dl} + N_{ul} P_{ul} \]

Backhaul power consumption: MW vs. Fiber

- Macro + Pico case
- Two scenarios: small size (left) and large size microwave topologies (right)

Backhaul impact on total network power consumption: outdoor case

- Three scenarios: no backhaul, MW backhaul and fiber backhaul

![Graph showing power consumption vs. area throughput for different backhaul scenarios.](image)
Case study: HetNet indoor deployment

Step 1: Traffic forecast
- mobile subscribers
- penetration rate of tablets, smartphones, laptops...
- user types: heavy, ordinary
- active users at busy hours
- Population density
- Number of buildings
- User demand
- Traffic distribution

Step 2: Wireless Network Dimensioning
- femto offloading gain
- bandwidth
- macro capacity
- femto penetration rate
- BS power consumption
- Average traffic per BS
- Peak rate per BS
- Number of BSs, types

Step 3: Backhaul Network Dimensioning
- technology (fiber, MW, copper)
- topology
- switch capacity
- number of ports

Step 4: Assessment of total power consumption

Total Power Consumption = Wireless + Backhaul
HetNet indoor deployment parameters

- Area: 10 x 10 km² with 300,000 users
- 100,000 apartments and 10,000 buildings
- User density: $\rho = 3000$ user/km² i.e., average EU city [Earth project]
- Femto penetration rate (η) \in (0.1, 0.6)
- Indoor users covered by femto BS, outdoor users by macro BS

<table>
<thead>
<tr>
<th>Year</th>
<th>h</th>
<th>s_{pc}/r_{pc}^{heavy}</th>
<th>$s_{tablet}/r_{tablet}^{heavy}$</th>
<th>$s_{s.phone}/r_{s.phone}^{heavy}$</th>
<th>$R_{max} = \max_t(R(t))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>10</td>
<td>0.1 / 56.25</td>
<td>0.03 / 28.1</td>
<td>0.3 / 7</td>
<td>2.6</td>
</tr>
<tr>
<td>2015</td>
<td>20</td>
<td>0.2 / 900</td>
<td>0.05 / 450</td>
<td>0.5 / 112.5</td>
<td>82.8</td>
</tr>
<tr>
<td>2020</td>
<td>30</td>
<td>0.3 / 2700</td>
<td>0.1 / 1350</td>
<td>0.6 / 337</td>
<td>474.3</td>
</tr>
</tbody>
</table>
Indoor deployment: backhaul architectures

- Femto BS will not drive the deployment of a completely independent backhaul infrastructure
- Rely on existing residential broadband access technologies (backhaul and user data share the access bandwidth)
- Considered BH options:
 - FTTN + VDSL
 - FTTB with PtP optical links
 - FTTH with passive optical networks (PON)
 - Microwave only

\[P = \sum_{i=1}^{m} N_i P_i + P_{bh}, \]
BH with FTTN + VDSL

\[P_{MBH}^{FTTN} = N_{femto} P_{modem} + N_{DSLAM} (P_{DSLAM} + 2P_{SFP}) + N_s^F P_s^F + 2N_{macro} P_{SFP} + N_{ul} P_{SFP} \]
BH with FTTB with PtP optical links

\[P_{MBH}^{FTTB} = N_b(P_{GES} + 2P_{SFP}) + 2N_{macro}P_{SFP} + N_s^F P_s^F + N_{ut}P_{SFP+} \]
BH with FTTH using PON

\[P_{MBH}^{FTTH} = (N_{femto} + N_{macro})P_{ONU} + N_{OLT}P_{OLT} + N_{ul}P_{SFP+} \]
BH with microwave only

Microwave Hub

SFP+

Metro Network

$P_{MBH}^{MW} = \sum_{j=1}^{N_b+N_{macro}+N_{hub}} P_j^{MW} + N_{GES}P_{GES} + N_{ul}P_{SFP+}$

$P_j^{MW} = \begin{cases} P_{low-c} & \text{if } N_{ant} = 1 \\ P_{high-c} + \frac{C_i}{C_{switch}}P_{SFP+} & \text{otherwise} \end{cases}$
Indoor case: total power consumption

- FTTN using VDSL
- FTTB using P2P optics
- FTTH using PON
- Microwave
Conclusions

- Presented two case studies assessing the impact of BH in HetNet deployments
- Power consumption of BH is important part of the total network power consumption
- It needs to be carefully included in any deployment strategy with objective of minimizing total network power consumption
- From a pure power consumption perspective a fiber based solution outperforms all the other options, but other factors of TCO shall also be included in future studies
References

• P. Monti, S. Tombaz, L. Wosinska, J. Zander, "Mobile Backhaul in Heterogeneous Network Deployments: Technology Options and Power Consumption", in Proc. of IEEE International Conference on Transparent Optical Networks (ICTON), July 2-6, Warwick, UK, 2012

Green Mobile Backhaul in Heterogeneous Wireless Deployments

P. Monti
pmonti@kth.se
http://web.it.kth.se/~pmonti

Submission Deadline
January 10

http://www.ondm2014.eu