Practical testbed demonstration of

REM enabled transmitter localization in indoor environments

Daniel Denkovski, Marko Angjelichinoski, Vladimir Atanasovski and Liljana Gavrilovska {danield, markoang, vladimir, liljana}@feit.ukim.edu.mk

> Scandinavian workshop on testbed based wireless research Stockholm, November 27th, 2013

Statisti processed da statistics extracti	etc.) MCDs informati	ement on ivers dels Fields		 Sensor Transmitter with unknown position 	r_1
spectrum measuremen REM Storage and Ac storing raw and proces	ble Devices (MCDs) – all its cquisition unit (REM SA) issed data (both static and ionsible for requesting me	– main REM storage enti dynamic)	ity capable of - T th ng and D Th	pted he model should be parar ne transmitter(s) e localization techniqu	eceived Signal Strength (RSS) should be meterized w.r.t. the unknown position(s) o e should estimate the unknown tter(s) using the observed RSS values el
	ocalization Toolbox	× Single Transmit	ter Localization		Multiple Transmitters Localization
REM Manager: Localization Toolbox	Full Search		Grid S	Search	Full Search
	Maximum Likelihood	Least Squares [2]	Maximum Likelihood [3]	Least Squares [4]	Expectation Maximization with Gaussian Mixture Model [5]
	- Simplified path loss				- Simplified path loss model under log-
Assumptions	model in log-normal shadowing	- Simplified path loss model	- Simplified path loss model in log-normal shadowing	- Simplified path loss model	 normal shadowing The number of transmitters is unknown Gaussian Mixture Model (GMM, parameterized w.r.t. the unknown positions and Tx power) is used to model the distribution of received power
Assumptions Operation	model in log-normal		model in log-normal	- Searches through a grid of points performing LS fitting of the model	 The number of transmitters is unknown Gaussian Mixture Model (GMM, parameterized w.r.t. the unknown positions and Tx power) is used to

Section 2 Control And Simulation Results

Highest deviation between simulation/experimental performances experienced in the DySPAN scenario due to the **heterogeneity of the used equipment**. - The Least Squares-Grid algorithm proves to be a viable solution

Performance of the **ML-FS single** transmitter localization and **EM-GMM multiple** transmitter localization algorithms (Skopje setup) and the respective **bounds**

♦ References

DySPAN 2011 experimental setup

[1] V. Atanasovski et al., "Constructing Radio Environment Maps with Heterogeneous Spectrum Sensors," IEEE DySPAN 2011 demonstration, Aachen, Germany, May, 2011. (best demo award). [2] L. Lin and H. C. So, "Best Linear Unbiased Estimator Algorithm for Received Signal Strength Based Localization," in 2011 Proc. EUSIPCO Conf. 2011, Barcelona, Spain, Sep. 2011. [3] R. K. Martin, R. Thomas, "Algorithms and Bounds for Estimating Location, Directionality, and Environmental Parameters of Primary Spectrum Users," IEEE Trans. Wireless Comm., vol. 8, no. 11, pp. 5692-5701, Nov. 2009.

[4] D. Denkovski, M. Angjelicinoski, V. Atanasovski and L. Gavrilovska, "Practical assessment of RSS-based localization in indoor environments," IEEE MILCOM 2012, Orlando, Florida, USA, Oct 29 – Nov 1, 2012. [5] I. Dagres, A. Poydoros, D. Denkovski, M. Angjelicinoski, V. Atanasovski, and L. Gavrilovska, "Algorithms and Bounds for Energy-based Multi-source Localization in Log-normal Fading," IEEE GLOBECOM 2012 Workshop: Green Internet of Things, Anaheim, California, USA, December, 2012

Ss Cyril and Methodius University in Skopje Faculty of Electrical Engineering and Information Technologies (FEEIT)

Institute of Telecommunications (ITK) Wireless Networks Group http://wingroup.feit.ukim.edu.mk

