An Experimental Evaluation of Selective Cooperative Relaying for Industrial Wireless Sensor Networks

Nikolaj Marchenko, Torsten Andre, Günter Brandner, Wasif Masood, and Christian Bettstetter

> Institute of Networked and Embedded Systems University of Klagenfurt, Austria

Quick Intro

Quick Intro

- Lots of theoretical work on cooperative relaying
- Some experimental studies (40+ articles):
 - 1 Software-Defined Radios: Mostly PHY Layer, few nodes

2 Wireless Sensor Nodes: MAC/Network layer, many nodes

- Monitoring and control of production processes
- Harsh environment for wireless signal propagation
- Very strict requirements on link reliability and delay
- Standards: WirelessHART, ISA100.11a, Zigbee IA Profile

Relay Selection

Relay Selection

- Which metrics to use for relay selection?
 - Channel quality info, residual battery life, etc.
- 2 How selection is coordindated?
 - Signaling messages, contention mechanism, etc.
- 3 How often a relay is updated?
 - Update requirements and policy.

I. Periodic Relay Selection

A relay is selected strictly at periodic time intervals T_{sel}

- random contention of candidates in window w.
- ▶ based on current Link Quality Indicators S R and R D.

II. Adaptive Selection

- ► A new relay selection when in a window W_a more than ε_a ACKs are lost.
- Selection and retransmission procedure same as periodic

Relay Selection

III. Reactive Selection

Selection is performed after each missing ACK for direct S-D transmissions among nodes that

- 1 have received the packet correctly
- 2 have a good channel to the destination

DATA delivery by \boldsymbol{S} fails

DATA is delivered by \boldsymbol{S}

Test Environment

Test Environment

Hardware

- Crossbow TelosB
- TinyOS implementation
- Transmission: 2.4 GHz, 256 kbit/s, TxPower: -4 dBm

7 nodes, 6 tested links

- Two kind of experiments:
 - Trace-based analysis on individual link: Node 6 transmits to D every 160 ms, other nodes retransmit
 - 2 Explicit experimental comparison over all links

Performance Results: Trace-Based Analysis

- Periodic selection: every 200 packets
- 2 Adaptive selection: if error rate > 10% for last 50 packets.

Number of neighboring nodes

Performance Results: Trace-Based Analysis

Performance Results: Trace-Based Analysis

Direct Comparison

Performance Results: Direct Comparison

- Measurements on 3 days, each 12 hours.
- Total 810K DATA packets sent by source nodes
- 33K on each link and each scheme, over 6 hours time.
- Periodic selection: $T_{sel} = 400 \cdot 160 ms = 64 sec$
- Adaptive selection: $W_a = 100$, $\varepsilon_a = 0.1$

Table: Mean Results over the Network

	direct	time div.	periodic	adaptive	reactive	
delivery ratio, %	81.2	85.7	96.9	97.9	98.9	
selections per 100 pkts	-	-	1.08	1.11	22.7	
number of candidates	-	-	3.69	3.86	3.43	
selection success, %	-	-	94	91	92	
relaying success,%	-	-	78	82	95	

Performance Results: Direct Comparison

Performance Results: Direct Comparison

Conclusions

- 1 Cooperative relaying provides up to 99% delivery ratio
- 2 Short-term outages are also avoided
- 3 Adaptive selection provides best tradeoff between delivery ratio and selections overhead

Publications

- N. Marchenko, et al. An Experimental Study of Selective Cooperative Relaying in Industrial Wireless Networks. Under review in IEEE Trans. Industrial Informatics, 2013.
- T. Andre, et al. *WiNMee* Workshop, May 2013.
- T. Andre, et al. GLOBECOM'12.

Thank You for Your Attention!