

FUTURE RADIO ACCESS IMPLEMENTATION & DEMONSTRATION

SCANDINAVIAN WORKSHOP ON TESTBED-BASED WIRELESS RESEARCH
NOVEMBER 27TH 2013

vicknesan.ayadurai@ericsson.com mikael.prytz@ericsson.com Wireless Access Networks, Ericsson Research, Stockholm

GOAL

"To study and investigate new wireless communications mechanisms via prototyping and proof-of-concept"

CONTENT

Platform: the WARP board
Hardware: pcores
Software: elements
Real-world
Concepts to-date
Timeline
Demonstration
Conclusion

- > http://warp.rice.edu
- Off-the-shelf wireless prototyping kit
- > RICE support: reference design
- Online community support
- > Ethernet interface, ISM-band radio
- "Dumb" electronics around a "smart"FPGA (Xilinx Virtex II Pro)

- > http://warp.rice.edu
- Off-the-shelf wireless prototyping kit
- > RICE support: reference design
- Online community support
- > Ethernet interface, ISM-band radio
- "Dumb" electronics around a "smart"FPGA (Xilinx Virtex II Pro)

- > http://warp.rice.edu
- Off-the-shelf wireless prototyping kit
- > RICE support: reference design
- Online community support
- > Ethernet interface, ISM-band radio
- "Dumb" electronics around a "smart"FPGA (Xilinx Virtex II Pro)
- > FPGA:
 - > "fixed" portion: PC-like
 - "flexible" portion: PC's peripherals (pcores)

- > http://warp.rice.edu
- Off-the-shelf wireless prototyping kit
- > RICE support: reference design
- Online community support
- > Ethernet interface, ISM-band radio
- "Dumb" electronics around a "smart"FPGA (Xilinx Virtex II Pro)
- > FPGA:
 - > "fixed" portion: PC-like
 - "flexible" portion: PC's peripherals (pcores)
- Build pcores with the "flexible", write
 C code to run on the "fixed" to interact
 with pcores

HARDWARE: PCORE

SISO OFDM

 Home-grown: developed together with our university partners @ UCSD

Single OFDM radio, 4MHz bandwidth, ISM band operation (MAX2829 chip)

HARDWARE: PCORE

Data Bits

I/Q Samples

Control

TX

SISO OFDM

- > Home-grown: developed together with our university partners @ UCSD
- > Single OFDM radio, 4MHz bandwidth, ISM band operation (MAX2829 chip)

HARDWARE: PCORE

SOFTWARE: ELEMENTS

- Home-grown: mainly written in Kista (embedded programming, C)
- > Low-level protocols:
 - Radio MAC: addressing and power-control
 - IP/ethernet for wired communications
- > Layer-2 bridge: SISO OFDM—ethernet
- Control modules for interacting with running board, changing configuration on-the-fly
- Same software on all nodes (differentiation via DIP switch)
- Support modules for data export (i.e., for logging, visualization, etc.)

REAL-WORLD: NODES

- WARP board = Layer-2 ethernet bridge:
 - → Wireless SISO OFDM ←→ wired 100BaseTX
- Tether WARP-board to a FreeBSD PC via dedicated 100BaseTX ethernet
 - > PC: higher layers
 - WARP board: lower layers
- > Wireless node = PC + WARP board

Application
Traffic generator source/sink

Transport (UDP)
Uni-directional flows

Network (IP)
Routing over WAN

Ethernet
100Mbps UTP
Radio MAC
Addressing over-the-air
PHY (SISO)
QPSK, 1/3-coding, sync, etc.

The Protocol Stack

Over-the-air wireless node-to-node IP communication possible!

REAL-WORLD: THE LAB

Lab

- Part of
 Ericsson
 Research,
 Wireless
 Access
 Networks
- Located in Kista, Stockholm

CONCEPTS: TO-DATE

Concepts demonstrated to-date:

- Autonomous relay mechanism
 - In-between node auto-relays when SRC-DST endpoint communications fail
- Uplink CoMP
 - UE uplink transmission detected by 2 BS
 - I/Q samples exchanged via BSs' ethernet backhaul and MRCcombined for better performance
- RSSI sampler for Wi-Fi load studies
 - Estimate Wi-Fi 2.4GHz channel utilization based on RSSI values
- Bi-directional network coding
 - Measurements of over-the-air XOR network coding behaviour
- Network-assisted device-to-device communications

CONCEPTS: D2D

- Applies to devices in close proximity
- > Exploit radio's natural broadcast characteristic
- > Single-hop vs. multi-hop via the network
- Shorter distances → lower transmit power
- > Higher modulation/bitrates
- Offload network traffic
- General goodness overall!

CONCEPTS: NA-D2D

- > Networked society: 50 billion diverse devices
 - > Alarm clock awakens coffee maker
 - Washing machine notifies tumble dryer to warm up
- Advantages of "network-controlled"
 - > Network is ubiquitous: works everywhere
 - > "Zero" configuration no need for SSIDs, WEP/WPA, "discoverable", passkeys, etc.
 - Licensed spectrum operation
- DSLR-TV example: sequence of events
 - > Communications commence in "classic" cellular manner
 - Network discovers endpoints are in close proximity
 - > Endpoints are reconfigured, resources re-assigned
 - › Benefits of D2D enjoyed!

CONCEPTS: NA-D2D

- > Networked society: 50 billion diverse devices
 - Alarm clock awakens coffee maker
 - Washing machine notifies tumble dryer to warm up
- Advantages of "network-controlled"
 - > Network is ubiquitous: works everywhere
 - > "Zero" configuration no need for SSIDs, WEP/WPA, "discoverable", passkeys, etc.
 - Licensed spectrum operation
- DSLR-TV example: sequence of events
 - > Communications commence in "classic" cellular manner
 - > Network discovers endpoints are in close proximity
 - > Endpoints are reconfigured, resources re-assigned
 - › Benefits of D2D enjoyed!

TIMELINE

- Single-cell
- 2 devices

NA-D2D

- Transit from TDMA cellular to D2D
- System timeslots savings

Distributed power control

- D2D pair self-manage power control
- Exploit closer proximity

Intermediate relay

- "other" node helps out D2D pair
- Further system-wide power-savings

2010 2011 2012 2013

- Introduction of an over-the-air synchronization "overlay"
- Setup consists of a single "Master" node, and multiple "Slave" nodes
- Master node generates unique SYNC beacon every 10ms
- Slaves listen for SYNC. Upon sync,
 both have a concept of a 'TDMA frame'
 →can subsequently determine timeslots
- Radios are only powered-on for active timeslots (otherwise idle)
- Software used to configure timeslots

- We emulate a single-cell TDMA cellular mobile system
- Three nodes: a BLUE network-node (BS), a GREEN device (TV), and a RED device (camera)
- The Sequence is as follows...

- We emulate a single-cell TDMA cellular mobile system
- Three nodes: a BLUE network-node (BS), a GREEN device (TV), and a RED device (camera)
- > The Sequence is as follows...
- 1 The BLUE BS is 1st powered on
- 2 periodic SYNC transmitted every 10ms
- 3 SLOT0 and SLOT5 allocated for DL and UL control (DLC & ULC)

- We emulate a single-cell TDMA cellular mobile system
- Three nodes: a BLUE network-node (BS), a GREEN device (TV), and a RED device (camera)
- The Sequence is as follows...
- 1 The GREEN TV is powered on
- ② Detects SYNC; understands framing
- 3 Sends ATTACH-REQ to BS on the ULC
- BS authenticates TV, then assigns UL&DL data slots via the DLC

- We emulate a single-cell TDMA cellular mobile system
- Three nodes: a BLUE network-node (BS), a GREEN device (TV), and a RED device (camera)
- The Sequence is as follows...
- 1 Similarly, the RED Camera is powered on
- ② Detects SYNC; understands framing
- 3 Sends ATTACH-REQ to BS on the ULC
- 4 BS authenticates Camera and assigns UL&DL data slots via DLC

- We emulate a single-cell TDMA cellular mobile system
- Three nodes: a BLUE network-node (BS), a GREEN device (TV), and a RED device (camera)
- > The Sequence is as follows...
- 1 User data generated by GREEN arrives at BS
- 2 From packet-headers, BS forwards data onward to RED
- 3 Similarly for data in the RED → GREEN direction

→ How to determine direct GREEN→RED link?

- 1 RED receives data on DL slot (SLOT3)
- Additionally, BS instructs RED via DLC, to also listen to SLOT7 (i.e., "eavesdrop" on GREEN's UL transmissions)
- 3 RED should buffer these packets overheard on SLOT7
- 4 Simultaneously, BS also buffers packets received on SLOT7
- Some point in the future, buffered packets from RED are sent to the BS for the network to evaluate

- → How to determine direct GREEN→RED link?
- 1 RED receives data on DL slot (SLOT3)
- Additionally, BS instructs RED via DLC, to also listen to SLOT7 (i.e., "eavesdrop" on GREEN's UL transmissions)
- 3 RED should buffer these packets overheard on SLOT7
- 4 Simultaneously, BS also buffers packets received on SLOT7
- 5 At some point in the future, buffered packets from RED are sent to the BS for the network to evaluate
- Similarly, repeat for the RED→GREEN link

For the direct GREEN→RED link, the network compares its own (i.e., BS) measurement, with received RED's report
Wirelass node RLUE's console output

Wireless node BLUE's console output					
	[745.006] D2D slot 7 direct-mode measurements:				
	[745.006] =>Rx SN: 80 81 82 83 84 85 86 87 8	3 89			
BS's own measurement	[745.006] =>RSSI: 179 189 181 176 185 184 181 182 19) 180			
RED's measurement received @BS	[745.006] D2D_CTRLMSG_RPT_MEAS received from Node 9 @ :	FID=24			
\bigcup	[745.006] =>Rx SN: 80 81 82 83 84 85 86 87 8	3 89			
	[745.006] =>RSSI : 291 283 292 288 288 299 283 296 28	1 294			

Identical SNs in both measurement, and stronger RSSI in RED's report
 − direct GREEN→RED link GOOD!

For the direct GREEN→RED link, the network compares its own (i.e., BS) measurement, with received RED's report

Wireless node BLUE's console output					
	[745.006] D2D slot 7 direct-mode measurements:				
	[745.006] =>Rx SN: 80 81 82 83 84 85 86 87 88 8	39			
BS's own measurement	[745.006] =>RSSI: 179 189 181 176 185 184 181 182 190 18	30			
RED's measurement received @BS	[745.006] D2D_CTRLMSG_RPT_MEAS received from Node 9 @ FID=	24			
	[745.006] =>Rx SN: 80 81 82 83 84 85 86 87 88 8	39			
	[745.006] =>RSSI: 291 283 292 288 288 299 283 296 284 29)4			

- Identical SNs in both measurement, and stronger RSSI in RED's report
 direct GREEN→RED link GOOD!
- Reassign slots, notify device RED via DLC SLOT3 now FREE!

For the direct GREEN→RED link, the network compares its own (i.e., BS) measurement, with received RED's report

	Wireless node BLUE's console output				
	[745.006] D2D slot 7 direct-mode measurements:				
	[745.006] =>Rx SN: 80 81 82 83 84 85 86 87 88 89				
BS's own measurement	[745.006] =>RSSI : 179 189 181 176 185 184 181 182 190 180				
RED's measurement received @BS	[745.006] D2D_CTRLMSG_RPT_MEAS received from Node 9 @ FID=24	4			
	[745.006] D2D slot 7 direct-mode measurements:				
	[745.006] =>Rx SN: 80 81 82 83 84 85 86 87 88 89				
	[745.006] =>RSSI: 291 283 292 288 288 299 283 296 284 294				

- Identical SNs in both measurement, and stronger RSSI in RED's report
 direct GREEN→RED link GOOD!
- Reassign slots, notify device RED via DLC SLOT3 now FREE!
- Similarly for the RED→GREEN direction SLOT2 now FREE!

2012: POWER CONTROL

Concept

- > Inter-device distance "closer"
 - should require less transmit-power

Challenge

 Network-independent device-managed power-control mechanism

- Implemented: MAC-based power-control
 - Incorporated power-control into our simple radio MAC headers
 - 2 Receiver always ACKs received packet
 - 3 Transmitter up/down power based on ACK/no-ACK
 - MAC header contains RSSI_{delta} of last received packet: other-end always knows how "loudly" transmitted packet was received

Concept

> Thriftier to take "smaller hops"

$$(P_{SR} + P_{RD}) \ll P_{SD}$$

- Positive: system-wide power utilization will reduce
- Negative: additional delays, i.e., 2 transmissions from S to D, instead of 1.

Challenge I

> How do determine the best R to repeat?

Challenge II

> How to change topology?

Challenge III

Mobility and topology changes

DEMONSTRATION TODAY 💓

D2D power control

- MAC-based
- > Between direct-communicating device-pairs

D2D repeaters

Device-based repeater for multi-hop direct-communicating device pairs

CONCLUSION

"To study and investigate new wireless communications mechanisms via prototyping and proof-of-concept"

- Designed and prototyped various NA-D2D mechanisms
- Implementation behaved mostly as expected
- Discovered subtle real-world issues from implementation (timing, asymmetries)
- > Fed discoveries back to design process more robust mechanism

ERICSSON