
1

A Randomized Countermeasure Against Parasitic
Adversaries in Wireless Sensor Networks

Panagiotis Papadimitratos2⋆, Jun Luo1⋆, Jean-Pierre Hubaux2

Abstract—Due to their limited capabilities, wireless sensor
nodes are subject to physical attacks that are hard to defend
against. In this paper, we first identify a typical attacker called
parasitic adversary, who seeks to exploit sensor networks by
obtaining measurements in an unauthorized way. As a counter-
measure, we first employ a randomized key refreshing: with low
communication cost, it aims at confining (but not eliminating) the
effects of the adversary. Moreover, our low-complexity solution,
GossiCrypt, leverages on the large scale of sensor networks to
protect data confidentiality, efficiently and effectively. GossiCrypt
applies symmetric key encryption to data at their source nodes
and re-encryption at a randomly chosen subset of nodes en route
to the sink. The combination of randomized key refreshing and
GossiCrypt protects data confidentiality with a probability of
almost 1; we show this analytically and with simulations. In
addition, the energy consumption of GossiCrypt is lower than a
public-key based solution by several orders of magnitude.

Index Terms—Confidentiality, Security, Probabilistic Key Re-
freshing and En-route Encryption, GossiCrypt

I. INTRODUCTION

Although wireless sensor networks (WSNs) have been ac-
tively investigated for a quite long time, their wider adoption
still faces certain obstacles, among which the security issues
become increasingly prominent [19]. Significant efforts have
been made to address these issues (see [15] and the references
therein). However, the issue of ensuring only authorized access
to the sensor-collected data are not well addressed, especially
considering that sensor nodes can be physically compromised.
This is the main focus of our paper.

A straightforward way to prevent unauthorized access is
end-to-end data encryption, with a unique symmetric key
shared between the sink and every node. However, as making
a sensor node tamper-resistant is too costly, it is fairly easy for
an adversary to actively exploit the poor physical protection
of nodes, for example, to physically access the node memory
and extract the symmetric key used for data encryption. Such
an attack is vastly simpler than a cryptanalytic one against the
key, and the adversary’s ability to progressively compromise
different nodes makes the situation even worse.

In this paper, we focus on a novel type of adversary we term
parasitic: It seeks to exploit a WSN, e.g., deployed for scien-
tific measurements, industrial (mining, oil) field data, or even
patients’ health data collection, rather than disrupt, degrade,

1Jun Luo is with the School of computer Engineering, Nanyang Techno-
logical University, Singapore.

2Panagiotis Papadimitratos and Jean-Pierre Hubaux are with School of
Computer and Communication Sciences, EPFL (Swiss Federal Institute of
Technology in Lausanne), CH-1015, Lausanne, Switzerland.

⋆Panagiotis Papadimitratos and Jun Luo are equally contributing authors.

or prevent the WSN operation. A parasitic adversary aims
at obtaining measurements with the least expenditure of own
resources, and the least disruption of the WSN it “attaches”
itself to. Essentially, the longer the parasitic relation of the
adversary with a fully functioning WSN remains unnoticed,
the more successful the parasitic adversary will be.

One immediate solution against (symmetric) key compro-
mise is to let sensors encrypt each outgoing measurement with
the public key of the sink, a solution we term throughout the
paper as the Public Key Encryption (PKE) scheme. Unfor-
tunately, public-key operations (both software and hardware
implementations), albeit computationally feasible, consume
energy approximately three orders of magnitude higher than
symmetric key encryption [20]. An alternative countermeasure
is key refreshing. However, as the WSN operator can hardly
infer which keys were compromised, a costly network-wide
key refreshing protocol would have to be invoked frequently
to eliminate the effects of the adversary.

Consequently, the challenge lies in protecting data confi-
dentiality against parasitic adversaries in an energy-efficient
manner. To address this, we first propose a randomized key
refreshing (RKR) mechanism: it infrequently installs new
sensor-sink shared symmetric keys to randomly selected nodes.
As a complement, we then propose GossiCrypt to leverage on
the multitude of a WSNs. GossiCrypt employs a probabilistic
en route re-encryption scheme; the source node always en-
crypts the data and the relaying nodes en route to the sink
“flip a coin” to “decide” whether to perform re-encryption.
This combination, RKR-GossiCrypt, provides a strong and
efficient defence against a parasitic adversary: It is highly
improbable that the adversary would be able to decrypt the
data, as it would need to compromised all the keys used at the
source and for en-route encryptions.

Our main contribution is a simple, low-cost, yet effective
scheme to ensure sensor data confidentiality. The effectiveness
and the efficiency of our scheme are shown analytically
and through experimental validation. We find that RKR-
GossiCrypt, which relies primarily on symmetric key opera-
tions and infrequent public key operations, achieves confiden-
tiality with a probability almost 1. Our analytical and exper-
imental validation also shows that RKR-GossiCrypt achieves
very significantly (two to three orders of magnitude) lower
network overhead and hence lower delays than the public-key
encryption of the sensor readings. Another contribution we
make is the introduction of the parasitic adversary, which is
realistic for a wide range of commercial and tactical WSNs.
To the best of our knowledge, this type of adversary is novel,
yet realistic and highly effective, unless thwarted.

2

In this paper, we first provide the system and adversary
models. Then, we present an overview of our scheme and
present in detail its constituent protocols. In Sec. V and VI, we
analyze our scheme and provide an experimental validation.
Finally, we conclude in Sec. VII. Due to space limitations, we
omit the literature survey and discussion sections, available
in the accompanying technical report [15] and the conference
paper [14].

II. SYSTEM MODEL

Each sensor node has a unique identifier Si, and the network
sink is denoted as Θ. Each node Si shares a symmetric
key, Ki,Θ, with the sink, and knows the sink public key,
PuKΘ. The data of interest are described with the help of
two parameters, T and δ; the user seeks to collect data:

• From a fraction 0 < δ ≤ 1 of the WSN nodes,
• Over a period of T seconds, for each node Sj , for j =

1, . . . , ⌈δN⌉.
In general, T = kt0, with k > 0 an integer and t0 for a single
sensor measurement, and δ will be a significant fraction of N .

We assume that N ranges from hundreds to thousands,
as, for example, in WSNs for commercial inventory, habitat
monitoring, industrial and mining field data, and geological
measurements. Experience from prior deployments, with node
placement sparser than the monitored physical system and
relatively long history of measurements to capture the studied
phenomena, teaches that data sensed by each and every node
is significant. This implies that in-network data aggregation is
not an option in such deployments; we assume this is so in this
work. We also assume WSNs enabling applications that do not
undergo development. Thus, the entire operating system (apart
from certain tunable parameters) is stored in read-only memory
(ROM). Finally, due to cost considerations, WSN nodes are
neither tamper-resistant nor do they store cryptographic keys
in tamper-resistant components.

III. ADVERSARY MODEL

The parasitic adversary consists of two entities: a pEaves-
dropper that positions itself at a strategic location to overhear
data traffic, and a pCompromiser that physically compromises
nodes and provides the obtained keys to the pEavesdropper.

More specifically, a parasitic adversary:
1. Seeks to obtain the WSN data collected according to the

parameters δ and T , in an unauthorized manner;
2. Can be physically present, at each point in time, only

a much smaller fraction of the area covered by ⌈δN⌉
sensor nodes;

3. Can physically access data stored at sensor nodes and
retrieve their cryptographic keys;

4. Is mobile and can compromise different nodes over time,
with a rate of at most one sensor per τ seconds; we
assume τ ≪ T .

The characteristics of the parasitic adversary reflect its
realism. Constrained presence (assumption 2) is meaningful
because, otherwise, the adversary could deploy its own WSN
and trivially obtain the data it wants. The adversary exploits
obvious weaknesses of WSNs (assumption 3): poor physical

pEavesdropper

pCompromiser

Sink
(legitimate users)

Fig. 1. The parasitic relation of the adversary with a WSN. Nodes whose
keys have been compromised are highlighted in black.

protection makes it relatively easy to obtain data encryption
keys [9]. Furthermore, it can utilize its resources intelligently.
Assumption 4 shows that the adversary (the pCompromiser
in particular) can be in the proximity of different nodes for
periods of time during which it compromises the node and
retrieves the symmetric key. We illustrate the parasitic relation
of the adversary with a WSN in Fig. 1.

The parasitic adversary is unobtrusive, i.e., it cannot modify
the implemented protocols stored in ROM (Sec. II). The
adversary could remain within range of the compromised
node and trivially intercept all its transmissions. But such
an attack would be self-defeating: Assumption 2 implies
that the adversary would then capture much less than ⌈δN⌉
measurements. In other words, assumption 2 embodies the
hardness to deploy a network of eavesdroppers: The overall
cost for leaving pEavesdropper nodes behind such that the
adversary always remain physically attached to a significant
fraction of the sensor nodes would be comparable to deploying
a WSN by the adversary.

We assume that the protocol design and implementation
are such that remote node compromise is prevented. We also
assume that the sink cannot be compromised by the adversary.
Moreover, denial-of-service (DoS) attacks, including jamming
in various protocol layers [21], Sybil/Node replication at-
tacks [18], or “wormhole” formation [17] are beyond the scope
of this work: countermeasures to those attacks can coexist
with our protocols. Nor do we consider physical destruction
of WSN nodes, which would not benefit the adversary.

IV. RKR-GOSSICRYPT

We describe briefly our solution here, referring the reader
to [15], [14] for a precise description of the protocol. We
first describe our random key refreshing (RKR) mechanism,
which thwarts the parasitic adversary in a light-weight fashion.
However, as RKR may be unable to fully mitigate the key com-
promise, we propose GossiCrypt to strengthen confidentiality,
i.e., to prevent any unauthorized access to the data collected
by the WSN. More formally, we do not seek to protect every
piece of data coming from every single sensor. Rather, our
goal is the following (∆, T)-Confidentiality property, for some
protocol-specific constant 0 < ∆ < 1:

3

(∆, T)-Confidentiality: Data collected from a WSN compris-
ing N nodes are (∆, T)-confidential if the adversary cannot
obtain all measurements performed by more than ⌈N∆⌉
sensor nodes over a given time interval T .

This is a safety property, i.e., a property related to a
system-specific unwanted situation: Obtaining measurements
from a given fraction of sensor nodes over a period of time,
meaningful to the system and application (as well as the
adversary), is prevented. In Sec. V-A we will show that RKR-
GossiCrypt satisfies this property against parasitic adversaries
with probability almost one under realistic scenarios.

We emphasize that we do not seek to provide sensor
data authenticity and integrity; our scheme can complement
any other scheme that provides end-to-end (e.g., sensor-to-
sink) or hop-by-hop (e.g., sensor-to-sensor) or other security
mechanism [15], [14]. But we do not mandate authenticity and
integrity because the adversary that compromises the key(s)
of a node can then impersonate the node and inject fabricated
messages on its behalf. Any such action does not benefit the
parasitic adversary that seeks to breach data confidentiality.

A. Random Key Refreshing (RKR)

To defend against the progressive compromising of WSN
nodes, the {Ki,Θ} keys are refreshed, i.e., they are replaced
with new {K ′

i,Θ} keys. The sink is typically unaware of which
nodes are already compromised. At the same time, the adver-
sary is also unaware of which keys are being refreshed: As
it will be explained shortly, the key refreshment is randomly
performed and initiated by any sensor node, and the adversary
can be certain that a key is refreshed only if it (re)compromises
(physically accesses) the node.

Due to the space constraints, we omit the detailed descrip-
tions of the key refreshing protocols and refer the interested
readers to [15], [14]. Basically, the protocols (both symmetric-
key and public-key based) are variants of the ISO/IEC stan-
dards [1], [2]. However, there are two major differences:

1. The key refreshing protocol is initiated by individual
sensor nodes and it is not interactive. Basically, a node
generates a new key and it transports it to the sink. If
an interactive key establishment protocol were used, the
pEavesdropper could eavesdrop all messages sent from
the sink, and hence gain a significant advantage: it would
get to know which nodes were refreshed and would then
promptly re-compromise them.

2. The key refreshing protocol message is encapsulated as
the payload of the data encryption protocol, presented
in Sec. IV-B. This hides the relatively infrequent key
refreshing traffic among data traffic, hence it prevents
the adversary from detecting the key refreshing events
by intercepting the traffic.

More precisely, a node uses a random point process gen-
erator [5], RGen(λ), to generate key refreshing events with
intensity λ. Upon each event, the node generates a new key
K ′

i,Θ and includes it in a newly created message, along
with a flag to indicate to the sink that a new key, rather
than a piece of data, is in the message payload. The whole

Fig. 2. Securing data collection with GossiCrypt. Even though the data
source and another two nodes en-route already have their keys compromised,
the encryption applied by one correct node is sufficient to thwart the adversary.

message, after encryption, externally appears identical to any
measurement/data reporting message.

Given a particular system design for the nodes, it is not
very difficult to have an arguably pessimistic estimation of
the rate of physical node compromise, as per Sec. III. Then,
based on this estimate of τ−1, the key refreshing rate λ can
be selected accordingly by the sink, and conveyed to all nodes
via a (broadcast) authenticated control message (possibly, long
after the deployment if also needed). Confidentiality of λ is
not needed, as the adversary would, at best, compromise nodes
at its maximum possible rate τ−1.

To prevent an otherwise easy disruption and/or even Denial
of Service (DoS), RKR messages include a symmetric au-
thenticator using Ki,Θ. This is not to ensure authentication in
the presence of the parasitic adversary (which can compromise
node key(s) and hence forge RKR messages), but to allow key
refreshing only with knowledge of a prior key. A parasitic
adversary is capable of launching a DoS attack, but this is
not the adversary’s objective. More important, the adversary
would not gain anything by preventing data decryption at the
sink (e.g., by a forged RKR message): Si would later refresh
its key to some K ′′

i,Θ (at the next random event) and then
encrypt its data with K ′′

i,Θ (which the adversary would obtain
only if it re-compromised Si).

Our scheme always operates with the latest key established
by RKR and it does not revert under any circumstances (e.g.,
inability to decrypt messages or other disruption) to an older
Ki,Θ. A disruptive adversary could at most, after physically
compromising a node, cause a transient DoS for that node.
But this could signal the attack to the WSN user, contrary to
the objectives of a parasitic adversary.

B. GossiCrypt

We distinguish sensors as data sources and relaying nodes,
each assuming either role at different times. As illustrated in
Fig. 2, GossiCrypt is executed by nodes on the path from a
source to a sink, with the source, Si, always encrypting its
data with Ki,Θ and each relaying node, Sj , randomly (with
probability q) re-encrypting the data with Kj,Θ.

The sink can correctly decrypt a message if it knows the
sequence of encryptions applied to it. In its basic form [15],
[14], GossiCrypt appends the identifiers of the re-encrypting
nodes to a message. However, the increasing message size
with the number or re-encryptions might offset the benefit of

4

GossiCrypt in large networks. Here, we propose to compress
the identifier string in case of long paths, to reduce the
GossiCrypt overhead at the expense of (i) a mild increase of
processing at the sink (or the server of the WSN owner) that is
not resource-limited, and (ii) a very low probability of having
messages across long paths discarded.

Initially, the identifiers of the re-encrypting nodes are ap-
pended. If the message size grows beyond a certain threshold,
compression is invoked at a re-encrypting node. As shown
in Sec. V-B, the advantage of GossiCrypt over PKE-ECC
disappears after the tenth re-encryption due to the cumulated
identifiers. Therefore, the threshold can be set such that the
compression takes place before the tenth re-encryption. The
compression is based on a Bloom filter [4]. Assume that an m-
bit string is consumed by the identifiers when the compression
is invoked. This identifier string is then replaced by an 8-
bit counter C and an empty Bloom filter of m − 8 bits. The
identifiers are added to the filter following the standard k-hash
mapping,1 and the cardinality of the identifier set is stored in
the counter. Here the k-hash mapping takes si∥Si (where si
is the sequence number of Si in the encryption sequence),
instead of Si, as an input. From then on, any re-encrypting
node will add its identifier into the filter and update C.

The sink queries all possible values deduced from si∥Si

(where si ≤ C and Si can be any node identifier) to
recover the encryption sequence. The length of the Bloom filter
(hence the compression threshold) should be large enough
to guarantee a negligible false positive probability. If we
assume a 16-bit node identifier and a threshold that invokes the
compression at the tenth re-encryption, we get a 152-bit Bloom
filter, whose false positive probability is less than 0.77% if 15
nodes conduct re-encryption. The sink may also utilize the
network topology information to speed up the query (limiting
the scope of Si) and also to discern false positive cases.

V. PROTOCOL ANALYSIS

A. Security Analysis

We first describe a model for the joint effect of key com-
promise and refreshing. Then we evaluate the performance of
RKR-GossiCrypt against the (∆, T)-Confidentiality property
(Sec. IV). The model and analysis presented here are new
and enhanced compared to those in [15], [14], capturing more
precisely the adversarial behavior by considering location (in
addition to the refinement of the adversary in Sec. II). Our
analysis, accompanied by simulation results in Sec. VI, shows
that even with a significant fraction of sensor nodes com-
promised, RKR-GossiCrypt safeguards confidentiality with
probability almost one.

Fundamental for the analysis is the fraction of correct, i.e.,
not compromised, nodes. Our eventual goal is to model the
state of the system, the number of correct nodes, as a stochastic
process. The security analysis on RKR-GossiCrypt is then
based on the stationary regime of this process. To achieve
this, we need to identify three components: system size, key
refreshing process, and key compromising process.

1There is no need for k different hash functions; we may apply hashing
once and slice the output into k sections.

{2,0,0} {0,2,0} {0,0,2}

{2,0,1} {2,1,0} {0,2,1} {1,2,0} {0,1,2} {1,0,2}

{2,1,1} {1,2,1} {1,1,2}

Example network

The Markov chain

Fig. 3. A 3-node line network and its corresponding Markov chain. A
link between two nodes indicates a neighborhood relation. The solid, dashed,
dotted arrows represent different transitions.

The system size depends on the behavior of the adversary.
In general, we assume that the sink and the adversary share
the same interest. This implies that, as we briefly mentioned
in Sec. IV-A, the system is a known subset of nodes with size
N ′ ≤ N , which includes the data source nodes of interest (the
δ fraction of N as defined in Sec. II), and all the intermediate
nodes between the sources and the sink. We hereafter slightly
abuse the terminology by viewing N as the system size.

Given the behavior of the key refreshing protocol (in par-
ticular the random point process generator RGen(λ)), the key
refreshing process can be modeled as a Poisson processes with
intensity λ. The key compromising process, on the contrary,
cannot be modeled as a homogeneous random process (in
terms of the system state), as the transition rate is location
dependent: the adversary can only compromise nodes that are
geographically close. Therefore, we have to first model the
system in a microscopic way by looking at the state of nodes,
and then extrapolate a macroscopic model of the system state.

We define the state space of nodes as E = {0, 1, 2},
where 0 means correct, 1 means compromised, and 2 means
infectious. To clarify the terminology, a compromised node
with an adversarial node (pCompromiser) in its vicinity is
labeled infectious in the sense that the “infection”, i.e., the
compromise of possibly another node in the network, appears
to continue spreading from the latest-in-time location of the
pCompromiser (which coincides with that of the infectious
node).

Under this microscopic model, the system state is repre-
sented by an N -dimensional vector in EN , with only one
element taking the value of 2. Note that the transition from
one state to another is potentially affected by the location of
the infectious node (or the pCompromiser). In other words,
a node with state 0 or 1 may transit to 2 only if it has a
neighbor in state 2, and such a transition takes place with
intensity τ−1. Given the aforementioned, it is easy to see that
a Markov chain can be used to describe transitions among
(microscopic) system states. Fig. 3 illustrates such a chain for
a simple network. The adversary co-located with an infectious
node k will compromise every neighboring node at an identical
rate τ−1

Nk
(where Nk is the neighborhood size of k), even if

some of them might have already been compromised. This
is so because the adversary is unable to tell which keys
were refreshed by the sink. Directly computing the stationary
distribution of this microscopic chain is not easy. Fortunately,

5

0 1 2 i i+1 N-1

n
0

n
1

n
2

n
i-1

n
i

n
i+1

n
N-2

m
1

m
2 m3

m
i

m
i+1 m

i+2
m

N-1

Fig. 4. Aggregated Markov chain representing the system state (the number
of correct nodes). Note that the state N − 1 has no self-transition.

what we are really interested in is the macroscopic system
state: the number of correct nodes. The macroscopic chain
can be obtained by aggregating the states of the microscopic
chain: the i-th macro-state is the aggregation of all the micro-
states with i 0s. Using the aggregation, we can now describe
the system states as a continuous Markov chain {X(t)}t≥0

driven by Poisson processes, as shown in Fig. 4. For example,
we have N = 3 (the number of nodes in the network)
after aggregating the chain shown in Fig. 3. We compute the
aggregated transition rates νi and µi as:

νi =
(N − 1− i)λ

N
(1)

µi =
N∑

k=1

∑min(Nk,i)
j=max(1,Nk+i+1−N) j

(
Nk

j

)(
N−1−Nk

i−j

)
τ
(
N−1

i

)∑N
k=1 Nk

 (2)

The chain {X(t)}t≥0 is an instance of the birth-death process
with a finite number of states. It has the following stationary
distribution (the detailed computation is omitted here; we refer
to [15]):

π0 =

{
1 +

ν0
µ1

+
ν0ν1
µ1µ2

+ · · ·+ ν0ν1 · · · νN−1

µ1µ2 · · ·µN

}−1

(3)

πi = π0
ν0ν1 · · · νi−1

µ1µ2 · · ·µi
(4)

The stationary distribution has the following properties:

• The system can rarely be free either of correct nodes
(X(t) = 0) or of compromised nodes (X(t) = N − 1),
because both π0 and πN−1 vanish with increasing N .

• The most likely state (i.e., argmaxi πi) depends on the
magnitude of λ and τ−1. The larger the value of λτ
(the ratio between the rate of refreshing and that of
compromising) is, the closer is this state to N − 1.

These properties are reflected on Fig. 5: Even if the system
is more efficient in refreshing keys than the adversary is in
compromising them (λτ = 1.5), there are still approximately
40% compromised nodes.

Next, we evaluate the probability of having at least one
correct node re-encrypting the data on a routing path of length
L from a source to the adversary. Let a random variable Y be
the number of correct nodes re-encrypting the data and hence
Y =

∑M
m=1 Ωm, M ≤ L, where M is the random variable

representing the number of nodes that re-encrypt the data and
{Ωm} are i.i.d. Bernoulli variables indicating the state of each
of the M nodes (Ωm = 1 if correct and 0 otherwise). We
want to calculate P{Y > 0} = 1 − P{Y = 0}, the success
probability (in the sense that GossiCrypt successfully provides
confidentiality). To this end, we make use of the generating
function gY (z) of Y , because P{Y = 0} = gY (0) and,

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of correct nodes

τ = 1
τ = 0.6
τ = 1.5

Fig. 5. Stationary distribution π with N = 100, λ = 1, and τ = 0.6, 1, 1.5.
The y-axis is the probability density corresponding to a certain number of
correct nodes. Since only the product λτ matters, we choose the values of λ
and τ arbitrarily without a dimension.

q 0.5 0.6 0.7 0.8 0.9
L

5 0.8258 0.8875 0.9303 0.9590 0.9773
6 0.8772 0.9273 0.9591 0.9783 0.9894
7 0.9134 0.9531 0.9760 0.9886 0.9950
8 0.9390 0.9697 0.9859 0.9940 0.9977
9 0.9570 0.9804 0.9917 0.9968 0.9989
10 0.9697 0.9873 0.9951 0.9983 0.9995
11 0.9786 0.9918 0.9871 0.9991 0.9998
12 0.9849 0.9947 0.9983 0.9995 0.9999

TABLE I
SUCCESS PROBABILITY P{Y > 0} UNDER DIFFERENT VALUES OF L

(PATH LENGTH) AND q (COIN FLIP PROBABILITY).

by the rule of random sum of i.i.d. variables [5], gY (z) =
gM (gΩ(z)). Therefore,

P{Y = 0} = gM (gΩ(0)) = EM [P{Ω0 = 0}m]

=
L∑

m=1

P{Ω0 = 0}m
(
L

m

)
qm(1− q)L−m

=
L∑

m=1

(
N − Eπ(X)

N

)m (
L

m

)
qm(1− q)L−m (5)

given the stationary distribution π of {X(t)}t≥0. We illustrate
the success probability P{Y > 0} under different values of L
and q in Table I, assuming N = 100, λ = 1, and τ = 1.5.
We might think the case where P{Y > 0} = 0.8258 (for
L = 5 and q = 0.5) is unfavorable (because the adversary
can decrypt the data with probability 0.1742). However, the
data the adversary might decrypt (with probability 0.1742)
is just one measurement of a given node; the probability of
observing a meaningful data history goes to zero (e.g., the
probability of obtaining three measurements by the same node
is already very low: 0.17423 = 0.0053). We assume events
of decrypting two measurements by a node are independent,
based on the randomized operation of GossiCrypt even if data
are transmitted across the same routing path.

We have analyzed to this point the system state process and
the per-message protection due to GossiCrypt given the path
length L. In general, L is a random variable. If we knew its

6

probability distribution P(L), the probability of breaking the
confidentiality of a single measurement (T = t0) from a given
node (∆ = 1/N) would be

Ft0,
1
N

= EL[1− P{Y > 0}] (6)

What we are interested in though, as per our specification, is
the confidentiality with respect to any ∆ ≥ 1/N , and T = kt0
for integer k ≥ 1. Clearly, this depends on P(L), which in turn
depends on a complex manner on the relative placement of the
sink and source nodes, but also on the pattern of the adversary
compromising nodes. As a result, we proceed without making
an assumption on P (L), rather we reason on whether our
scheme satisfies the (∆, T)-Confidentiality property with an
asymptotic argument.
Claim: RKR-GossiCrypt guarantees the (∆, T)-
Confidentiality property for ∆ ≥ 1/N with probability
P (with N being the system size), and P → 1 when T ≫ t0.

The proof is given in [15], [14] and it is omitted here.
As shown in Fig. 5, it is always preferable to have λτ > 1
(although λτ < 1 can be compensated by aggressively setting
q (i.e., a high value)). Maintaining a relatively high refresh
rate is not difficult: Whereas the adversary compromises keys
via its physical presence, keys are refreshed through a simple
protocol invoked by each node separately. A conservative way
to achieve this is to estimate τmin (the lower bound of τ) and
to set λ > τ−1

min. Estimating τ online can be preferable. We
also note that the convergence of P persists even if λτ < 1
but with a lower speed.

B. Energy Expenditure

As we mention in Sec. I, PKE is an alternative solution
to thwart a parasitic adversary. We show here that PKE is
inferior to RKR-GossiCrypt because of its much higher energy
expenditure. For a quantitative comparison between PKE and
RKR-GossiCrypt, we make the following assumptions:

1. Each node identifier consumes 16 bits, and for Gos-
siCrypt, the identifier compression starts at the tenth re-
encryption.

2. Each message (sensor reading) has a length of 20 bytes.2

3. GossiCrypt makes use of AES-128 encryption.
4. The PKE can either be RSA-1024 or ECC-160.3

5. The energy expenditure for transmission is 0.21 µJ/bit.
Most parameters refer to MICA2 nodes, based on available
experimental results. Note that the fourth assumption strongly
favors PKE, with its 80-bit security compared with the AES
128-bit security level. The energy costs are taken from [20].
Although hardware implementations could significantly reduce
energy consumption for all primitives [8], [3], [7], the order
of difference is maintained. Table II compares GossiCrypt

2The size is designed to transport the new keys. For sensor readings that
are of a smaller size, padding is used to fill up the message. As shown in
our analysis, RKR-GossiCrypt is still superior to PKE in terms of energy
consumption, even with the padding overhead.

3Rabin PKE, in theory, is more efficient than RSA (though the difference
can be as low as one modular multiplication for low RSA exponent operations)
[16]. However, we are not aware of sensor network software implementations
for Rabin PKE. Moreover, Rabin appears to be costlier than RSA in certain
implementations in other platforms [6].

GossiCrypt PKE-RSA PKE-ECC
Comp. 32.4µJ/msg 14.1 mJ/msg 53.4 mJ/msg

160 bits + increase of 1024 bits 320 bits
Comm. 16q bits per hop per message per message

TABLE II
COMPARISON BETWEEN GOSSICRYPT AND PKES.

with two variants of PKE in terms of computation4 and
communication complexity.

We have the following observation on Table II: First, the
energy expenditure in the computation of GossiCrypt at a
source node is 2 to 3 orders of magnitude lower than those of
PKEs. Second, the energy expenditure in the communication
of GossiCrypt for each node en-route is again lower than
those of PKEs. Considering the basic GossiCrypt [14], or its
counterpart with the compressed identifiers (Sec. IV-B): for
16 bit node identifiers, the advantage in terms of transmission
is valid for path lengths of up to 10q−1 (for PKE-ECC)
and 54q−1 (for PKE-RSA) hops (note that q < 1). If the
compression is used, the advantage of GossiCrypt remains
for a longer path length, whose specific value depends on
the tolerable false positive probability and also on the sink’s
ability to further reduce this probability using topology infor-
mation. The additional computation cost for RKR-GossiCrypt
compared with PKE stems from key refreshing and en-route
re-encryption; we denote the former by crefresh. Based on the
analysis in Sec. V-A, let us assume a refresh rate equal to
the adversary compromise rate (i.e., λτ = 1). For T = kt0,
let τ = T/k as per the definition of the parasitic adversary,
or in other words, the adversary compromises one node
per measurement period t0. Then, for a (sub-)network of
N nodes, each node will be refreshed on the average once
every N measurement periods. Given an average number C
(Sec. IV-B) of re-encryptions for each message, the advantage
for RKR-GossiCrypt during this period is approximately the
ratio of (N+1)×C×cGC+crefresh

N×cPKE
≈ N+1

N
C×cGC

cPKE
with symmetric-

key based key refreshing (as cGC ≈ crefresh) or ≈ 1
N

crefresh
cPKE

with public-key based key-refreshing (if C×cGC

cPKE
≪ 1), where

cGC and cPKE are the computation costs for GossiCrypt and
PKEs, respectively, given in Table II.

As the advantage of RKR-GossiCrypt over PKEs is tremen-
dous without public-key encryption, we consider here RKR
only with ECC-based public-key encryption. In this case,
the cost of refreshing is dominated by one ECC encryption,
thus crefresh

cPKE
≈ 1. Therefore, the ratio 1

N
crefresh
cPKE

decreases as
N grows, thus making RKR-GossiCrypt increasingly advan-
tageous. For example, if N = 100, RKR-GossiCrypt can
be 100 times less costly than PKE-ECC. For PKE-RSA,
crefresh ≈ 3cPKE and RKR-GossiCrypt is still 33 times less
costly. However, the very high communication cost of PKE-
RSA is a significant disadvantage that renders that scheme
impractical.

The comparison above might seem unfair, as it could
be argued that using PKE on a per-message basis is not

4The computational complexity is measured in different units for
symmetric-key and public-key encryption in [20], thus we fix the message
size in order to compare them.

7

1/4

t
-1

1/4

l
Q

A

Q ASink Adversary

Fig. 6. Simulation: We approximate the key refreshing process (Sec. IV-A)
as a 2D random walk in this regular grid. For illustration purposes, Θ, the
symbol used for the sink, is used to indicate this random walk. We also
approximate the node compromise by the adversary, shown above by A, as
a 2D random walk. Black and white dots illustrate compromised and correct
nodes respectively.

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

of correct nodes

Analytical pdf
Empirical pdf 1
Empirical pdf 2
Empirical pdf 3
Empirical pdf 4

Fig. 7. Stationary distribution of the number of correct nodes.

necessary; for example, PKE could be used only to “transport”
a symmetric key from each source sensor node to the sink.
Then, such end-to-end symmetric keys could be used for data
encryption. However, as we emphasized in Sec. I, in order for
such conventional key refreshing to reach the security level
achieved by RKR-GossiCrypt, conventional key refreshing
has to be performed frequently for almost all nodes. Given
our assumption that the adversary compromises one node per
measurement period t0, without GossiCrypt all N (symmetric)
keys would have to be refreshed every t0. As crefresh ≥ cPKE

in general, it would be more efficient to just use PKE on a
per-message basis.

VI. EXPERIMENT RESULTS

We implement RKR-GossiCrypt and the benchmark PKE
scheme in TinyOS [10] and we perform simulation ex-
periments with TOSSIM [12] and in Matlab. The detailed
TinyOS/TOSSIM implementations and experiments are con-
cerned with performance aspects, and are presented in
Sec. VI-B. The effectiveness of RKR-GossiCrypt, in terms of
data confidentiality, is evaluated through the simpler Matlab
simulations in Sec. VI-A. 5

5Considering implementation aspects, including the MAC/PHY layers,
would make simulations cumbersome for large networks, and they would
not add to the validation of the analytical derivation.

0.5 0.6 0.7 0.8 0.9

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
(Y

>
0)

q

Simulation

Analysis

Fig. 8. Success probability P{Y > 0} as function of the GossiCrypt
parameter q.

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

 F

k

Simulation

Analysis

Fig. 9. The probability of breaching the confidentiality of k measurements
from a given node Fkt0,

1
N

as function of k.

A. Protocol Effectiveness

We assume a grid network where nodes appear on a
√
N ×√

N square lattice. The movements of the adversary follow
a 2D random walk: it takes an identical probability 1/4 in
choosing one direction out of four possibilities. The intervals
between two successive events follow exponential distributions
with mean λ−1 and τ respectively. We assume N = 100,
λ = 1, and τ = 1.5. To remove the boundary effect, we
project the lattice on a torus: moving out of the one side of
the lattice leads to entering on the opposite side. We illustrate
these settings in Fig. 6.

As the stochastic process described above is aperiodic and
positive recurrent, all its states are ergodic [5]. Therefore,
we can use statistics over time to characterize the stationary
distribution. We run each simulation for 11000 transitions and
truncate the first 1000 points (warm-up period, so that results
are measured in a steady state). Fig. 7 shows the compar-
ison among four empirical stationary distributions resulting
from four simulation runs and the analytical one obtained in
Sec. V-A.

It is clear that the analytical results describe the stationary
regime of the system very well. Based on these statistics,
we can again verify the success probability P{Y > 0}

8

by randomly choosing routing paths between nodes and the
adversary. For brevity, we only illustrate the case with L = 6 in
Fig. 8 (showing the medians and 95% quantiles) and compare
the results with the analytical ones shown in Table I. The
comparison shows that the analytical results are a bit over-
optimistic, but the differences with the experiment results are
negligible.

Finally, we verify our claim that RKR-GossiCrypt guar-
antees the (∆, T)-Confidentiality property with probability
almost one when T = kt0 is sufficiently long. To this end,
we randomly choose two nodes on the grid and consider
one as the source and the other as the data collector. By
applying GossiCrypt to the shortest path between the two
nodes, we can evaluate the quantity Fkt0,

1
N

for different
values of k. As shown in Fig. 9, this probability converges
very fast to zero with an increasing k, according to both
simulation and analytical results. This corroborates our claim
that P = 1−FT,∆ → 1.

To summarize our analysis (Sec. V-A) and experimental
results in this section: We show that, for any protocol- or
application-specific objective ∆ ≥ 1/N , the confidentiality of
the sensed data can be safeguarded with a probability almost
equal to one. Although this seems to require that a sufficiently
high number of measurements (or equivalently long period
T) are of interest, analytic and experimental values show that
even very short sequences (e.g., T = 5t0) of measurements
originating from a single source node can be protected with
probability fast approaching one. This is achieved thanks to
the GossiCrypt en-route encryption, resulting in particularly
robust operation even when approximately 40% of the nodes
are compromised by the adversary (as shown by Fig. 7).

B. Protocol Efficiency

We implement RKR-GossiCrypt in TinyOS 1.x and nesC,
using the corresponding libraries for data collection, appli-
cations, sensor-PC communication, etc. We implemented the
protocol with all the cryptographic functionality, leveraging on
existing cryptographic libraries, TinySec [11] and TinyECC
[13], for symmetric and public key operations respectively.
The implementation was integrated in the TOSSIM simula-
tion framework, which also provided simple data collection
applications. We utilize CrossBow Mica2 motes and the cor-
responding models in TOSSIM [12]. In the simulations, we
consider three relatively simple settings: (i) a fork topology of
13 nodes, with three source sensor nodes at the ends of three
branches converging into a single path, and the sink at the end
of this, (ii) a line topology of 10 nodes with a source sensor
node and the sink at the two ends of the line, and (iii) randomly
generated topologies of 30 nodes, with a randomly placed sink
and all nodes reporting readings, as well as variants of the
experiments for settings (i) and (ii) with all nodes sending
readings to the sink. Here, due to space limitations, we present
the results from setting (i).

We measure (I) the data (sensor readings) acquisition delay
in seconds, D, that is, the period from the data reading
transmission until the successful reception at the sink, (II)
the key refreshing delay in seconds, R, that is, the period

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

q

D
at

a
D

el
ay

GossiCrypt−RKR
GossiCrypt only
PKE

Fig. 10. Data (sensor reading) delay, D, in seconds, as a function of q.

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

q

R
ef

re
sh

 D
el

ay

GossiCrypt−RKR
RKR only

Fig. 11. Key refreshing delay, R, in seconds, as a function of q.

from the transmission of the key refreshing message until its
successfully reception at the sink, and (III) the total network
(transmission) overhead, T , measured as the total number of
bytes sent over the wireless network by all nodes, divided by
the total number of useful bytes delivered at the sink.

The simulated time is 2000 seconds, sensor readings are
obtained every 6 seconds, the average key refreshing period
takes values from 60, 300, 900 seconds, and the q param-
eter takes values from 0.1, 0.3, 0.5, 0.8. The cryptographic
parameters are as those in Sec. V-B: 80-bit symmetric key
for SKIPJACK, and 160-bit elliptic curve encryption both for
the key refreshing messages and the benchmark PKE. For
simplicity, only results with a key refreshing period of 60
seconds are shown.

Fig. 10 shows that D, the sensor reading delay, for the
combined GossiCrypt and RKR is consistently less than half
of that of PKE. The reason is clearly the combination of the
higher transmission delays over the same path for the public
key encrypted readings. For GossiCrypt-RKR, the effect of
the infrequent refreshing operations (and the corresponding
transmissions) on the data acquisition is amortized. Even with
the one key refreshing per minute, more than 90% of the
transmissions of a source node are symmetric-key encrypted
(Recall: one reading per 6 seconds).

We do not factor into D and R the public key encryption

9

0 0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

q

O
ve

rh
ea

d

GossiCrypt−RKR
GossiCrypt only
PKE

Fig. 12. Total network (transmission) overhead, T , as a function of q.

processing delay, for three reasons. First, TOSSIM allows for
the fine-grained timing of network and radio operations, but it
does not model code execution time. 6 Moreover, public key
processing delays dwarf the network delays, thus yielding re-
sults even farther in favor of the combined GossiCrypt+RKR.
In addition, the periods of data readings and key refreshing
operations are significantly higher than the delay for a public
key encryption, allowing key refreshing operations for RKR
to be processed when the node performs no other task.

In Fig. 10, the increase of q causes a mild increase in
D, but this is less than 11% from q = 0.1 to q = 0.8,
thanks to the efficient symmetric key operations and the
smaller size packets (compared to PKE). For comparison,
Fig. 11 shows the delay for a key refreshing R, and the larger
size packets result in R on the average up to 45% higher
than the data reading delay. But, again, refreshing operations
are relatively infrequent. Moreover, we confirm that the en-
route re-encryption of key refreshing messages, as expected,
does not affect delays (Recall: key refresh messages are not
distinguished and are handled as data by intermediate nodes).

Finally, Fig. 12 shows the total network overhead T , ac-
counting for all cryptographic and other headers sent over
the wireless medium, considering typical sensor readings of
five 5 bytes (e.g., the Surge application provided in TOSSIM).
GossiCrypt+RKR result in a total overhead that is lower than
41% to 53% of that of PKE. Note that the PKE overhead (and
delay earlier in Fig. 10) is not dependent on q. Moreover, note
that the GossiCrypt implemented here is the basic one, as in
[14]. This means that the overhead increasing mildly with the
increase of q and path length. Thus, the shown performance
is an upper bound of the overhead, which does not increase
for high path lengths.

VII. CONCLUSION

As security becomes an important requirement for WSNs,
the salient characteristics of WSNs clue the more relevant
threats and types of exploit to thwart with practical defense
mechanisms. With this consideration in mind, we identify here

6Cryptographic processing delays are investigated in detail in the literature,
as discussed in Sec. V-B. Our implementation serves the purpose of a proof
of concept, and we do not attempt to replicate those investigations here.

a novel threat, the parasitic adversary, targeting exactly the
most valuable asset of a WSN, its measurements. The parasitic
adversary is a practical and realistic threat because of (i) its
well-aimed exploit, unauthorized access to WSN data, (ii) its
well-chosen methods, targeting at the weakest system point,
the low physical sensor node protection, and (iii) its resource
constraints and “low-profile” operation.

The second and main contribution of this paper is RKR-
GossiCrypt, a scheme to ensure WSN data confidentiality.
GossiCrypt’s two building blocks are a probabilistic en route
encryption of the data towards the sink and a key refreshing
mechanism, both leveraging on the scale of WSNs. The former
relies on very simple key management assumptions, it is
simple in operation. The latter reverses the impact of the
physical compromise of sensor nodes.

Our evaluation shows that RKR-GossiCrypt can prevent the
breach of WSN confidentiality in a wide range of settings.
Even though the adversary could obtain solitary or sparse
measurements, our analysis and simulations show that RKR-
GossiCrypt prevents the compromise of a meaningful set of
measurements over a period of time with probability going to
one. The most intriguing feature of RKR-GossiCrypt lies in its
ability to ensure data confidentiality with simple and low-cost
mechanisms. We believe that such approaches that leverage
on the WSN characteristics, rather than imitating iron-clad
approaches from other distributed computing paradigms, can
be effective in addressing security challenges for wireless
sensor networks.

ACKNOWLEDGEMENTS

The authors would like to thank Sibel Demirkol for her help
with the implementation of GossiCrypt.

This work was funded in parts by the NCCR/MICS.

REFERENCES

[1] ISO, Information Technology - Security Techniques - Key Management
- Part 2: Mechanisms Using Symmetric Techniques. In ISO/IEC 11770-
2, International Standard, 1996.

[2] ISO, Information Technology - Security Techniques - Key Management
- Part 3: Mechanisms Using Asymmetric Techniques. In ISO/IEC 11770-
3, International Standard, 1999.

[3] G. Bertoni, L. Breveglieri, and M. Venturi. ECC Hardware Coprocessors
for 8-bit Systems and Power Consumption Considerations. In Proc. of
the 3rd IEEE ITNG, 2006.

[4] B. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, 1970.

[5] P. Breḿaud. Markov Chains, Gibbs Fields, Monte Carlo Simulation,
and Queues. Springer, New York, 1999.

[6] Crypto++ library benchmarks, http://gd.tuwien.ac.at/privacy/crypto/
libs/cryptlib/benchmarks.html.

[7] G. Gaubatz, J.-P. Kaps, and B. Sunar. Public key cryptography in sensor
networks – Revisited. In Proc. of the 1st ESAS, 2004.

[8] P. Hamalainen, T. Alho, M. Hamalainen, and T. Hamalainen. Design and
Implementation of Low-area and Low-power AES Encryption Hardware
Core. In Proc. of the 9th EUROMICRO DSD, 2006.

[9] C. Hartung, J. Balasalle, and R. Han. Node Compromise in Sensor
Networks: The Need for Secure Systems. Technical Report CU-CS-
990-05, University of Colorado at Boulder, 2005.

[10] http://www.tinyos.net/.
[11] C. Karlof, N. Sastry, and D. Wagner. TinySec: A Link Layer Security

Architecture for Wireless Sensor Networks. In Proc. of the 2nd ACM
SenSys, 2004.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate and
Scalable Simulation of Entire TinyOS Applications. In Proc. of the 1st
ACM SenSys, 2003.

10

[13] A. Liu and P. Ning. TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks. In Proc. of the 7th IPSN,
2008.

[14] J. Luo, P. Papadimitratos, and J.-P. Hubaux. GossiCrypt: Wireless Sensor
Network Data Confidentiality Against Parasitic Adversaries. In Proc. of
the 5th IEEE SECON, 2008.

[15] J. Luo, P. Papadimitratos, and J.-P. Hubaux. GossiCrypt: Wireless Sensor
Network Data Confidentiality Against Parasitic Adversaries. Technical
Report LCA-REPORT-2007-002, EPFL, 2010.

[16] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[17] P. Papadimitratos, M. Poturalski, P. Schaller, P. Lafourcade, D. Basin,
S. Capkun, and J.-P. Hubaux. Secure Neighborhood Discovery: A
Fundamental Element for Mobile Ad Hoc Networking. IEEE Com-
munications Magazine, 46(2):132–139, 2008.

[18] B. Parno, A. Perrig, and V. Gligor. Distributed Detection of Node
Replication Attacks in Sensor Networks. In Proc. of IEEE Symposium
on Security and Privacy, 2005.

[19] A. Perrig, J. Stankovic, and D. Wagner. Security in Wireless Sensor
Networks. Commun. ACM, 47(6):53–57, 2004.

[20] K. Piotrowski, P. Langendoerfer, and S. Peter. How Public Key
Cryptography Influences Wireless Sensor Node Lifetime. In Proc. of
the 4th ACM SASN, 2006.

[21] A. Wood and J. Stankovic. Denial of Service in Sensor Networks. IEEE
Computer, 35(10):54–62, 2003.

