
Green’s Hyperplane Restriction Theorem:

an extension to modules

Ornella Greco

Royal Institute of Technology, Department of Mathematics, S-10044
Stockholm, Sweden. E-mail address: ogreco@kth.se

Abstract

In this paper, we prove a generalization of Green’s Hyperplane Restriction
Theorem to the case of modules over the polynomial ring, providing in partic-
ular an upper bound for the Hilbert function of the general linear restriction
of a module M in a degree d by the corresponding Hilbert function of a
lexicographic module.
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1. Introduction

The extremal properties of the Hilbert function constitute a relevant topic
in commutative algebra and, within this topic, an important role is played
by lexicographic ideals and binomial representation of integers.
Many results about extremal behavior of Hilbert functions have been proved.
In particular, Macaulay’s Theorem (see [1, 2, 3]), which characterizes the pos-
sible Hilbert functions of homogeneous K-algebras; or, the analogous result
for exterior algebra, proved by Kruskal and Katona (see [4, 5]), which also
provides a characterization of f -vectors of simplicial complexes.
More recently, in [6], Hulett proved an extension of Macaulay’s Theorem to
modules over the symmetric algebra.
Another classical, but slightly recent, result in this topic is the Hyperplane
Restriction Theorem (HRT), given by Green in [7], which gives a bound for
the codimension of the generic linear restriction of a vector space generated
in a certain degree by the codimension of a lex-segment space with same
degree and dimension. This result was also used by Green to give another,
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less technical, proof of Macaulay’s Theorem.
It has been also been applied by several authors (see for instance [8, 9, 10])
to get some results about level and Gorenstein algebras, with focus on the
weak Lefschetz property.

In this paper, we will focus on Green’s theorem, trying to follow Hulett’s
path in generalizing these results to modules over the polynomial ring.
One generalization in this direction has already been done by Gasharov ([11]),
but we will give an extension of Green’s theorem that provides a bound which
is actually achieved by lexicographic modules.

We will first give the tools to state Green’s Hyperplane Restriction Theo-
rem: namely we introduce the binomial expansion of a positive integer, also
called Macaulay representation, then, the concept of generic linear forms.
Afterwards, we will state Green’s theorem.

In the next section, we will extend some of these definitions to the sub-
module of a finitely generated free module, in particular we will define a
monomial order induced by the deglex ordering, and will provide the concept
of lexicographic module, which is a particular class of monomial modules.
We first try to extend Green’s theorem in the simplest case of a rank 2 mod-
ule, by proving an inequality of Macaulay representations. Later we prove
by induction a new inequality which imply the main theorem, namely the
extension of the Hyperplane Restriction Theorem to the case of modules over
the polynomial ring.

As a consequence of our theorem, we will derive a result which constitute
another version of the theorem ”after scaling”, which means that we divide
by the respective Hilbert function of the polynomial ring.

Finally, we apply our main theorem to level algebras, by giving some con-
ditions in which the bound given by the extension to modules of the Green’s
Hyperplane Restriction Theorem is more useful than the one obtained trough
the Green’s Hyperplane Restriction Theorem.

2. Green’s Theorem

Let S = K[x1, . . . , xn], where K is an infinite field, and let S be standard
graded. Let us fix the deglex monomial ordering on S with x1 > x2 > · · · >
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xn, namely

xa >deglex xb ⇔ |a| > |b| or |a| = |b| and a >lex b,

(see [12]). Notice that in a homogeneous component Sd the monomial order-
ings, deglex and lex, coincide.

Definition 2.1. Let a, d ∈ N, then the d-th Macaulay representation of a
(also called the binomial representation of a in base d) is the unique way to
write

a =

(
ad
d

)
+

(
ad−1
d− 1

)
+ · · ·+

(
aδ
δ

)
,

where ad > ad−1 > · · · > aδ ≥ δ and δ = min{i | ai ≥ i}.
Let us set

(
c
d

)
= 0 whenever c < d, then, given the d-th Macaulay represen-

tation of a, let us define the integer

a〈d〉 =

(
ad − 1

d

)
+

(
ad−1 − 1

d− 1

)
+ · · ·+

(
aδ − 1

δ

)
.

Sometimes it will be convenient to use the extended d-th Macaulay represen-
tation, i.e.

(
ad
d

)
+
(
ad−1

d−1

)
+ · · ·+

(
a1
1

)
, where ad > ad−1 > · · · > a1 ≥ 0.

Moreover, since
(
a
b

)
= 0 if a < b, we will set the numerators of such binomial

coefficients in the Macaulay representation equal to zero.

Observation 2.2. If a =
(
ad
d

)
+
(
ad−1

d−1

)
+· · ·+

(
a1
1

)
and b =

(
bd
d

)
+
(
bd−1

d−1

)
+· · ·+

(
b1
1

)
,

a ≥ b if and only if (ad, . . . , a1) ≥lex (bd, . . . , b1).

Definition 2.3. Let d ∈ N, a lex-segment is a set constituted by all mono-
mials in Sd lexicographically larger or equal than f , for some f ∈ Mon(Sd).
A K-vector subspace V of Sd is a lex-segment space if Mon(Sd) ∩ V is a
K-basis of V and a lex-segment.

Definition 2.4. A graded monomial ideal I in S is said to be lexicographic
if, for all degrees d, the homogeneous component Id is a lex-segment space.

Definition 2.5. We say that a property P holds for a generic linear form
` if there is a non-empty Zariski open set U ⊆ S1 such that P holds for all
` ∈ U .

If V ⊆ Sd a lex-segment space, we denote by V` the image of V in S/(`).
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Proposition 2.6. [2, Proposition 5.5.23] Let K be an infinite field, d ∈ N,
V ⊆ Sd a lex-segment space. Then:

1. For a generic linear form ` ∈ S1, there is a homogeneous linear change
of coordinates φ : S → S such that φ(V ) = V and φ(`) = xn;

2. For a generic linear form ` ∈ S1, we have

codimK(V`) = codimK(Vxn) = codimK(V )〈d〉.

So, after a general change of coordinates, we may assume that the generic
linear form is xn.

From now on, we will denote by HF (M,d) the Hilbert function of the S-
module M in degree d, i.e. dimK(Md). Moreover, if ` ∈ S1 is a linear form
and R = S/I, we denote by R` the ring S/[I + (`)].

Theorem 2.7 (Green’s Hyperplane Restriction Theorem). Let I be a homo-
geneous ideal in S, d ∈ N, then

HF ((S/I)`, d) ≤ HF (S/I, d)〈d〉,

where ` is a generic linear form. Moreover, equality holds when Id is a lex-
segment space.

3. Extension to modules

In the case of the restriction of an S-module M to a generic hyperplane
` we expect not only an upper bound on the Hilbert function HF (M`, d),
but also that this upper bound is fully described by lexicographic modules,
in complete analogy with Green’s theorem.
In this section, we will be able to prove some numerical properties of the
Macaulay’s representations, that will lead to a version of Green’s HRT for
modules valid in any characteristic of the infinite field K.

Let F be a finitely generated graded free S-module, let us fix a homogeneous
basis {e1, e2, . . . , er} and let deg(ei) = fi, where, without loss of generality,
we may assume that and f1 ≤ f2 ≤ · · · ≤ fr.
We now define the monomial modules and we induce a monomial ordering
on F in such a way that the concept of lexicographic module may be defined.
We also define another monomial ordering on F , a particular revlex, that
will let us use the tool of generic initial modules in our circumstances.
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Definition 3.1. A monomial in F is an element of the form mei where
m ∈ Mon(S). A submodule M ⊆ F is monomial if it is generated by
monomials, in this case it can be written as I1e1⊕ I2e2⊕ · · · ⊕ Irer, where Ii
is a monomial ideal for i = 1, 2, . . . , r.

One can extend a monomial ordering, defined in the polynomial ring S,
to a finitely generated free S-module in a really natural way, in particular
here we define the deglex ordering in F .

Definition 3.2. Given two monomials in F , mei and nej, we say that
mei >deglex nej if either i = j and m >deglex n in S or i < j. In partic-
ular, we have that e1 > e2 > · · · > er.

Again, as in the polynomial ring, when we restrict to a precise homo-
geneous component, the two induced monomial orderings, deglex and lex,
coincide.

Definition 3.3. A monomial graded submodule L is a lexicographic module
if, for every degree d, Ld is spanned by the largest, with respect to the
lexicographic order (or deglex), HF (L, d) monomials.

Let us now recall the definition of reverse lexicographic order on F as
given in ([13, pg. 339]), some easy results about it.

Definition 3.4. The reverse lexicographic order on F is defined by choosing
an order on the basis of F , say e1 > · · · > er and by setting mei >revlex nej
iff either deg(mei) > deg(nej) or the degrees are the same and m >revlex n
in S or m = n and i < j.

Remark 3.5. Notice that the deglex is a POT (Position over Term) monomial
order, on the contrary the revlex is TOP (Term over Position) monomial
order.

Definition 3.6. The initial module of a submodule M , denoted by in(M),
is the submodule of F generated by the set {in(m)| m ∈ M}, i.e. by all the
leading terms (according to the lexicographic order or deglex or revlex) of
elements in M .

Proposition 3.7. [13, Proposition 15.12] Suppose that F is a free S-module
with basis {e1, . . . , er} and reverse lexicographic order. Let M be a graded
submodule.
Then in(M + xnF ) = in(M) + xnF and (in(M) :F xn) = in(M :F xn).
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Let us define the concept of generic initial module as done in ([14, Chap-
ters 1 and 2]).
Let GL(n) be the general linear group. It acts on S by (aij)xj =

∑n
i=1 aijxi.

Let GL(F ) be the group of the S-module automorphisms of F . An element
φ in GL(F ) is a homogeneous automorphism and can be represented by a
matrix (tij), with tij ∈ Sfi−fj , where φ(ei) =

∑r
j=1 tijej. We also have an

action of GL(n) on GL(F ) given by a · φ = aφa−1, for all a ∈ GL(n) and
φ ∈ GL(F ). The two groups together act on F by mean of their semi-direct
product G = GL(n) o GL(F ).
Let us consider B(n) the subgroup of GL(n) of upper triangular invertible
matrices: from the action given above, a matrix in B(n) will send x1 to a
multiple of itself, and xn to the linear combination of all variables xi’s with
coefficients the last column of tha matrix. Let B(F ) be the subgroup of
all automorphisms in GL(F ) represented by lower triangular matrices: they
send each el to an S-linear combination of e1, . . . , el. Let B = B(n)oB(F ).
Pardue, in [14], proved the generalization to modules of the Galligo’s the-
orem, in a more general setting than ours, and in particular he proved the
following result:

Proposition 3.8. Let M ⊂ F be a graded module, and let < be a monomial
order on F , then there exists a Zariski open set U ⊆ G such that in<(φM) is
constant for every φ ∈ U . Moreover, in<(φM) is fixed by the action of group
B.

Definition 3.9. The monomial submodule in<(φM), φ ∈ U , is called the
generic initial module of M , and denoted by gin<(M).

The generic initial module has really nice properties in case we use, as
monomial order on F , the revlex order defined above.

Proposition 3.10. For a generic linear form ` and a graded submodule M
of F , we have that

gin(M`) = gin(M)xn .

The revlex gin(M) has the properties in 3.7, and moreover, since it is
B-fixed, we can work in generic coordinates, and choose the coordinates in
such a way that ` = xn.

If ` ∈ S1 is a linear form, and M a graded submodule of F , let us de-
note by (F/M)` the restriction of the module F/M to `, which is equal to
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F/(M + `F ). Notice that F` is a module over S` and that S` can be thought
as polynomial ring in n− 1 variables.

Before the statement of the main theorem of the section, we are going to
prove two propositions, regarding the behavior of the function ∗〈d〉 : N → N
(in our convention N includes 0): in particular we need to provide an upper
bound to the function a〈d1〉 + b〈d2〉, where d1 ≥ d2, generalizing [11, Lemma
4.4]; and then, we will extend the latter inequality to the sum of r = rank(F )
integers.
These two proposition will be just the numerical translations of the exten-
sion of Green’s theorem, respectively in the rank(F ) = 2 case, and in the
rank(F ) = r case.

Lemma 3.11. [11, Lemma 4.4, Lemma 4.5] For any a, b, d ∈ N, the two
following inequalities hold: a〈d〉 + b〈d〉 ≤ (a+ b)〈d〉; a〈d+1〉 ≤ a〈d〉.

Remark 3.12. If a, d ∈ N and a =
(
ad
d

)
+ · · · +

(
aδ
δ

)
(aδ ≥ δ) is the d-th

Macaulay representation of a, then

(a− 1)〈d〉 = a〈d〉 if and only if aδ = δ.

Proposition 3.13. Given a, b ∈ N, a ≤ N1 =
(
n+d1−1

d1

)
, b ≤ N2 =

(
n+d2−1

d2

)
and d1 ≥ d2, d1, d2 ∈ N, then

a〈d1〉 + b〈d2〉 ≤

{
(a+ b)〈d2〉 if a+ b ≤ N2,

(a+ b−N2)〈d1〉 + (N2)〈d2〉 if a+ b ≥ N2.

Proof We will now prove the claim by induction on i = a+ b.
The case i = 0 is trivial. Thus, let the claim be true for all a′, b′ such that
0 < a′ + b′ < i.
Let a =

(
ad1
d1

)
+ · · · +

(
ad2
d2

)
+ · · · +

(
a1
1

)
, b =

(
bd2
d2

)
+ · · · +

(
b1
1

)
, where some

of the last top coefficients in the two Macaulay representations may be zero,
and let us denote these Macaulay representations as vectors a = (ad1 , . . . , a1)
and b = (bd2 , . . . , b1).
Let us now distinguish between two cases.

First Case If the d1-Macaulay representation of a ends after degree d2,
i.e. min{i| ai ≥ i} ≤ d2, we write a = (ad1 , . . . , ad2 , . . . , a1) and
b = (bd2 , . . . , b1), where in both vectors the last entries, after degree
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d2, may be zero.
Then, we redefine a and b as follows, sorting them entry by entry:

a = (ad1 , . . . , ad2+1,min{ad2 , bd2}, . . . ,min{a1, b1}),
b = (max{ad2 , bd2}, . . . ,max{a1, b1}).

Observe that, in this process, we are decreasing a of the same amount
we increase b (we are not modifying a + b) and we are not changing
a〈d1〉 + b〈d2〉, since the sum of the two binomial expansions will still
contain the same terms. Moreover, in this way, we obtain that the
Macaulay representation of a ends sooner than that of b.
The idea is to find a′, b′ such that a′+ b′ = a+ b and a ≥ a′, b′ ≥ b and
such that the following are satisfied:

1. a′〈d1〉 + b′〈d2〉 ≥ a〈d1〉 + b〈d2〉;

2. if i < N2, either a′ = 0 and b′ = i; if i ≥ N2, either a′ = i − N2

and b′ = N2; or at least one between a′ and b′ has Macaulay
representation ending with a binomial coefficient of the form

(
t
t

)
(since, in this case, we can use Remark 3.12 and apply induction
hypothesis).

So, we can suppose that

a = (ad1 , . . . , ad2 , ad2−1, . . . , as, 0, . . . , 0)

b = (bd2 , bd2−1, . . . , bt, 0, . . . , 0),

where as > s and bt > t (otherwise we can use Remark 3.12 and apply
induction hypothesis), and s ≥ t.
We need to show how to find a′ and b′, by decreasing a and increasing
b of the same amount in three different cases.
In the case in which s = t = 1, we have a1 > 1 and b1 > 1, we
can consider (ad1 , . . . , ad2 , . . . , a1 − 1) and (bd2 , . . . , b2, b1 + 1), without
changing a〈d1〉 + b〈d2〉. Applying this several times we will get to the
point in which a1 = 1, so we have reached the desired a′ and b′.
The second case is when t = 1 and s > 1, here we have to write(
as
s

)
=
∑s

j=0

(
as−(j+1)
s−j

)
, and then consider (ad1 , . . . , ad2 , . . . , as+1, as −

1, . . . , as − s) and (bd, . . . , b2, b1 + 1) (we are decreasing a and increas-
ing b by 1). After this step, we are again in the first case.
Notice that in all the three cases, whenever it occures that, after
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the changes, two consecutive entries are the same (so the vector ob-
tained does not represent a Macaulay representation), say the tale
is (. . . , c(position i), c, 0, . . . , 0), we should transform it into (. . . , c +
1(position i), 0, . . . , 0); after this, we may compare and sort the two
vectors: namely, it can happen that b1 + 1 = b2, then we have to con-
sider (bd2 , . . . , b2+1, 0) and then we sort again by taking the min{ai, bi}
and the max{ai, bi}.
The last case is when s > t > 1: here we write

(
as
s

)
=
∑s−t

j=0

(
as−(j+1)
s−j

)
+(

as−(s−t+1)
t−1

)
; so we consider:

(ad1 , . . . , ad2 , . . . , as+1, as − 1, . . . , as − (s− t+ 1) (position t),

as − (s− t+ 1) (position t− 1), 0, . . . , 0)

(bd2 , bd2−1, . . . , bt, 0, . . . , 0),

the first vector does not correspond to a Macaulay representation since
the last two non zero entries are the same. Nevertheless, when we resort
the two vectors by taking the min and the max in each modified degree,
we will, in particular, exchange the number as − (s− t+ 1) in the first
vector in position t − 1 with the 0 in the same position in the second
vector; thus, after this exchange, the two vectors will correspond to
Macaulay representations, and we shall proceed, depending on the case
the belong.

Second Case When the Macaulay representation of a ends before the de-
gree d2, say in degree j, say k is the smallest degree for which bk ≥ k.
If d2 > 1, then let us consider the decomposition:(

aj
j

)
=

j∑
i=k+1

(
aj − (j − i+ 1)

i

)
+

(
aj − (j − k)

k

)
;

so we write

a = (ad1 , . . . , aj+1, aj − 1, . . . , aj − (j − d2 + 1), . . . ,

aj − (j − k), aj − (j − k), 0, . . . , 0),

again this is not a Macaulay representation, then we compare, entry
by entry, with b moving the smaller entries in the new vector a and the
larger entries in b.
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The only case in which this cannot work is in the trivial case b = (β),
a = (ad1 , . . . , α, α) (after having used the previous decomposition) and
α = β, in this situation we just consider (ad1 , . . . , α, α−1) and (β+ 1).

So, for all the possible cases we have found a way to subtract to a and add
to b the same number in such a way that the function f(x, y) = x〈d1〉 + y〈d2〉
does not decrease: we will continue, recursively, to do this until we get the
extremal cases, or until one of the two numbers has Macaulay representation
ending with

(
t
t

)
.

2

With the following two examples, we aim to clarify the idea of the previous
proof in both cases.
Example

Let us consider a = 9 =
(
4
2

)
+
(
3
1

) ∼= (4, 3) and b = 14 =
(
5
2

)
+
(
4
1

) ∼= (5, 4).
This choice belongs to the first case, and since s = t = 1, the first thing to
do is:

a ∼= (4, 3)→ (4, 2), b ∼= (5, 4)→ (5, 5),

since (5, 5) is not a Macaulay representation, we should write it as (6, 0).
Now we can compare the two obtained vectors, (4, 2) and (6, 0), so that we
have

(4, 2)→ (4, 0), (6, 0)→ (6, 2).

Now we are in the first case, in the subcase where 2 = s > t = 1. Thus by
applying the instructions:

(4, 0)→ (3, 2), (6, 2)→ (6, 3).

Now, applying again the instructions for the first case when s = t = 1, we
get:

(3, 2)→ (3, 1) ∼= a′, (6, 3)→ (6, 4) ∼= b′,

and we can stop since we have, as last entry,
(
1
1

)
. Notice that a+b = a′+b′ =

23, and that a′〈2〉 + b′〈2〉 = 15 > 14 = a〈2〉 + b〈2〉 2

Example

As an example of the second case, let us consider a = 35 =
(
7
4

) ∼= (7, 0, 0, 0)

and b = 21 =
(
6
4

)
+
(
4
2

) ∼= (6, 4, 0). Then by applying the argument:

(7, 0, 0, 0)→ (6, 5, 5, 0),
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and by comparing entry by entry we get

(6, 5, 5, 0)→ (6, 5, 4, 0), (6, 4, 0)→ (6, 5, 0),

thus now we are in the first case. 2

Observation 3.14. Notice that the previous proposition is just the numerical
translation of the generalization of Green’s HRT to the case in which we
have F = Se1 ⊕ Se2, with e1 >deglex e2, deg(e1) = f1, deg(e2) = f2 and
f1 ≤ f2. In fact, for any degree d ∈ N, we set d1 = d− f1, d2 = d− f2, and
N1 =

(
n+d1−1

d1

)
= dimk(Sd1), N2 =

(
n+d2−1

d2

)
= dimk(Sd2).

Remark 3.15. The previous proposition implies the first part of Lemma 3.11:
in fact, when we have f1 = f2, and so N1 = N2 = N , we can repeat the same
argument of the proof of Proposition 3.13, with the only difference that we
continue decreasing a and increasing b of the same amount until a = 0 and
b = i, i.e. without distinguish between the cases in which i ≤ N and i ≥ N .

The following proposition just extends the previous inequality to the case
of more summands.

Proposition 3.16. Let d1, . . . , dr ∈ N a non-increasing sequence, and set
Ni =

(
n+di−1

di

)
. Let a1, . . . , ar be non-negative integers such that, for each i,

ai ≤ Ni. Let j be the integer such that
∑r

i=j+1Ni <
∑r

i=1 ai ≤
∑r

i=j Ni, then
the following inequality holds:

r∑
i=1

ai〈di〉 ≤

(
r∑
i=1

ai −
r∑

i=j+1

Ni

)
〈dj〉

+
r∑

i=j+1

Ni〈di〉.

Proof Let us start with the case j = r, i.e. 0 <
∑r

i=1 ai ≤ Nr, then to prove
the inequality, i.e.

∑r
i=1 ai〈di〉 ≤ (

∑r
i=1 ai)〈dr〉, it is enough to use Lemma

3.11.
Let us prove the statement by induction on r. The case r = 2 is given by the
previous result, let us now suppose that the inequality holds for s < r. Let∑r

i=j+1Ni <
∑r

i=1 ai ≤
∑r

i=j Ni. We then distinguish between two cases.
In case aj + aj+1 ≤ Nj+1, then aj〈dj〉 + aj+1〈dj+1〉 ≤ (aj + aj+1)〈dj+1〉.

Since
∑r

i=j+1Ni <
∑r

i=1 ai ≤
∑r

i=j Ni ≤ Nj−1 +
∑r

i=j+1Ni, we can apply
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the induction to have the following:

r∑
i=1

ai〈di〉 ≤
r∑

i=1,i 6=j,j+1

ai〈di〉 + (aj + aj+1)〈dj+1〉 ≤

(
r∑
i=1

ai −
r∑

i=j+1

Ni

)
〈dj−1〉

+

+
r∑

i=j+1

Ni〈di〉 ≤

(
r∑
i=1

ai −
r∑

i=j+1

Ni

)
〈dj〉

+
r∑

i=j+1

Ni〈di〉.

In the case in which aj + aj+1 > Nj+1, then, by the base of induction,
aj〈dj〉 + aj+1〈dj+1〉 ≤ (aj + aj+1 − Nj+1)〈dj〉 + Nj+1〈dj+1〉. We have that aj +

aj+1 −Nj+1 ≤ Nj and
∑r

i=j+2Ni <
∑r

i=1 ai −Nj+1 ≤ Nj +
∑r

i=j+2Ni, thus
by induction:

r∑
i=1,i 6=j,j+1

ai〈di〉+(aj+aj+1−Nj+1)〈dj〉 ≤

(
r∑
i=1

ai −
r∑

i=j+1

Ni

)
〈dj〉

+
r∑

i=j+2

Ni〈di〉,

By adding Nj+1〈dj+1〉 to both sides, we get

r∑
i=1

ai〈di〉 ≤

(
r∑
i=1

ai −
r∑

i=j+1

Ni

)
〈dj〉

+
r∑

i=j+1

Ni〈di〉.

2

The idea for the extension of the Green’s theorem to modules is to re-
duce to the monomial case: a monomial submodule is direct sum of monomial
components, and so we may just apply Theorem 2.7 to each of these compo-
nents. Afterwards we need to bound the Hilbert function of the quotient by
the monomial submodule by the Hilbert function of the quotient by lexico-
graphic module.

Let us now give a definition that will be used inside the statement of our
generalization of Green’s theorem, and then we are ready to prove our main
result.

Definition 3.17. Let M be a submodule in F , where F be a finitely gen-
erated graded free S-module, and m ∈ N. Set di = m − fi ({d1, d2, . . . , dr}
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is a non-increasing sequence) and Ni =
(
n+di−1

di

)
= dimKSdi . Then, if∑r

i=j+1Ni ≤ HF (F/M,m) ≤
∑r

i=j Ni, for some j, we define

HF (F/M,m){m,r} =

(
HF (F/M,m)−

r∑
i=j+1

Ni

)
〈dj〉

+
r∑

i=j+1

Ni〈di〉.

Theorem 3.18. Let F = Se1 ⊕ · · · ⊕ Ser where deg(ei) = fi for all i. Let
M be a submodule in F , then

HF ((F/M)`,m) ≤ HF ((F/L)`,m)

where ` is generic linear form, m ∈ N, and L is a submodule that in degree
m is generated by a lex-segment of length HF (M,m).
Moreover,

HF ((F/L)`,m) = HF (F/M,m){m,r}.

Proof Assume that M is a monomial submodule of F . Otherwise, let us take
the generic initial module of M , gin(M), with respect to the monomial order
revlex. We get a new submodule which has the same Hilbert function of
M and moreover is a monomial submodule of F . We have that gin(M)xn =
gin(M`). If we work in generic coordinates, we can choose ` = xn and so we
get that HF ((F/M)`, d) = HF ((F/gin(M))`, d). So we may substitute M
by gin(M) in order to get a monomial submodule. Thus, we can write M as
I1e1 ⊕ · · · ⊕ Irer, where each Ii is a monomial ideal, hence a homogeneous
ideal in R.
Let d ∈ N and ` be a generic linear form, then

(F/M)` = F/(M + `F ) ∼= F/[(I1 + (`))e1 ⊕ · · · ⊕ (Ir + (`))] ∼=
(S/I1)`e1 ⊕ · · · ⊕ (S/Ir)`er.

So we have that, by applying Green’s HRT to each (S/Ii)`,

HF ((F/M)`,m) =
r∑
i=1

HF ((S/Ii)`,m− fi) ≤
r∑
i=1

HF (S/Ii,m− fi)〈m−fi〉.

(1)
Finally, by Proposition 3.16, the last sum in (1) is bounded by(

HF (F/M,m)−
r∑

i=j+1

Ni

)
〈m−fj〉

+
r∑

i=j+1

Ni〈m−fi〉

13



for some j. The last term is exactly HF ((F/L)`,m) where L is a submodule
such that Lm is generated by a lex-segment of length HF (M,m) (according
to the monomial ordering induced to the module).

2

3.1. Green’s HRT after scaling for modules

We now derive from last theorem a result, that will give the possibility
to apply Green’s HRT in case it is difficult to have the Macaulay binomial
representations. The idea is to consider the Hilbert function up to a multi-
plication by an integer. In this way, we will obtain a linear inequality, that
will hold for all modules.

Corollary 3.19. Let T be a module over S = K[x1, . . . , xn], generated in
degree 0, and let ` be a generic linear form, d ∈ N, then

HF (T`, d) ≤ n− 1

n+ d− 1
HF (T, d).

Proof For any integer δ, we have that HF

(
δ⊕
i=1

T`, d

)
= δHF (T`, d), so we

can choose δ such that there is β ∈ N satisfying the following equality

δHF (T, d) = βdimK(Sd) = β

(
n+ d− 1

d

)
,

so by Theorem 3.18 we have

HF

(
δ⊕
i=1

T`, d

)
≤ β

(
n+ d− 1

d

)
〈d〉

= β

(
n+ d− 2

d

)
=

β

(
n+ d− 1

d

)
n− 1

n+ d− 1
=

n− 1

n+ d− 1
HF

(
δ⊕
i=1

T, d

)
,

then, dividing by δ, we get the claim. 2

Observation 3.20. This corollary can be described by the expression ”after
scaling” because the last fraction satisfies the following equality

n− 1

n+ d− 1
=

dimK(Rd)

dimK(Sd)
,
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where S = K[x1, x2, . . . , xn] and R = K[x1, x2, . . . , xn−1] ∼= S`.
Therefore, the claim of the Corollary may be written as:

HF (Tl, d)

HF (Sl, d)
≤ HF (T, d)

HF (S, d)
,

so we have scaled by respective value of the Hilbert function of the rings over
which we have the two modules.

4. Application to level algebras

In this section we will apply the extension of the Green’s HRT to level
algebras.

Definition 4.1. Let A = S/I = A0 ⊕ · · · ⊕ Ac be an artinian K-algebra.
Let us consider the socle of A, which is defined by soc(A) = annm(A), where
m = ⊕i>0Ai. If soc(A) = U0 ⊕ · · · ⊕ Uc, we say that A is level of type b if
soc(A) = Uc = Ac and dimK(Ac) = b. We say that A is Gorenstein when it
is level of type 1.

Let A = A0⊕· · ·⊕Ac be a level algebra with Hilbert function (h0, h1, . . . , hc).
By considering the dual of A, A∨ = HomK(A,K), we get a level module,
since is an artinian S-module with generators in a single degree, and with
one-dimensional socle, i.e. also concentrated in a single degree.
We want to consider the multiplication by a generic linear form ` ∈ A1.
We first apply Theorem 2.7. In this way we get the following bound on the
Hilbert function of the ideal (`).

dimK(`)i ≥ hi − (hi)〈i〉, 0 ≤ i ≤ c.

We can also apply Theorem 3.18 to the level module M = A∨(−c). No-
tice that M has Hilbert function (hc, hc−1, . . . , h0). We get in this case the
following bound for the module `M :

dimK(`M)i ≥ hc−i − (hc−i){i}, 0 ≤ i ≤ c.

In the right hand side of this inequality, a{i} denotes q(si)〈i〉 + r〈i〉, where
a = qsi + r and si =

(
i+n−1

i

)
.

We observe that (`) ∼= (`M)∨(−c− 1). This implies that we can give two
lower bounds for the Hilbert function of (`), namely hGMi and hGi , where we
set hGMi = hi − (hi){c−i} and hGi = hi+1 − (hi+1)〈i+1〉.
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We would like to find conditions in which hGMi > hGi , so when the bound
given by the HRT for modules is better than the one given by the Green’s
HRT.

In [15], Geramita, Harima, Migliore and Shin, in case the polynomial ring
S has three variables, provided a list of all the possible Hilbert functions for
level algebras of socle in degree 3, 4, 5 and in degree 6 and type 2. Among
these, the condition hGMi > hGi is true only for the ones contained in Table 1
in page 16.

Position h hGM hG

2 1, 3, 3, 3, 2 1, 3, 2, 1 1, 2, 3, 2
2 1, 3, 3, 3, 3 1, 3, 2, 1 1, 2, 3, 3
2 1, 3, 3, 3, 3, 2 1, 3, 3, 2, 1 1, 2, 3, 3, 2
4 1, 3, 6, 8, 5, 2 1, 3, 5, 5, 2 1, 3, 6, 4, 2
4 1, 3, 6, 9, 5, 2 1, 3, 5, 5, 2 1, 3, 6, 4, 2
4 1, 3, 6, 10, 6, 2 1, 3, 5, 6, 2 1, 3, 6, 5, 2
2 1, 3, 3, 3, 3, 3 1, 3, 3, 2, 1 1, 2, 3, 3, 3
4 1, 3, 6, 8, 5, 3 1, 3, 5, 5, 2 1, 3, 6, 4, 3
4 1, 3, 6, 10, 6, 3 1, 3, 5, 6, 2 1, 3, 6, 5, 3
2 1, 3, 3, 3, 3, 3, 2 1, 3, 3, 3, 2, 1 1, 2, 3, 3, 3, 2
3 1, 3, 4, 4, 4, 3, 2 1, 3, 4, 3, 3, 1 1, 3, 3, 4, 3, 2
3 1, 3, 4, 4, 4, 4, 2 1, 3, 4, 3, 3, 2 1, 3, 3, 4, 4, 2
4 1, 3, 5, 6, 5, 4, 2 1, 3, 4, 5, 3, 2 1, 3, 5, 4, 4, 2
4 1, 3, 6, 8, 6, 4, 2 1, 3, 5, 6, 3, 2 1, 3, 6, 5, 4, 2
5 1, 3, 6, 8, 10, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 8, 5, 2
5 1, 3, 6, 9, 10, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 8, 5, 2
5 1, 3, 6, 9, 11, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 9, 5, 2
5 1, 3, 6, 9, 12, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 9, 5, 2
5 1, 3, 6, 10, 10, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 8, 5, 2
5 1, 3, 6, 10, 11, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 9, 5, 2
5 1, 3, 6, 10, 12, 6, 2 1, 3, 5, 6, 6, 2 1, 3, 6, 9, 5, 2

Table 1: Hilbert functions of artinian level algebras

Proposition 4.2. For i such that the following conditions are all verified,
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we have that hGMi ≥ hGi :
i+ 1 ≤ c− i;
hi = hi+1;

sc−i =
(
(c−i)+n−1

c−i

)
> hi+1.

Proof We have that hGMi = hi − (hi){c−i} = hi+1 − (hi+1){c−i}. Since
sc−i > hi+1, (hi+1){c−i} = (hi+1)〈c−i〉. We may then compare (hi+1)〈c−i〉 and
(hi+1)〈i+1〉, using Lemma 3.11, and the fact that i+ 1 ≤ c− i, so we get that
hGMi ≥ hGi . 2

The previous condition does not characterize all cases in which hGMi > hGi ,
but only the ones in bold font in the table. Notice that if in the first col-
umn we have a certain number i this means, according to our notation, that
hGMi−1 > hGi−1.

Question. What are the sufficient conditions for which the bound given by
the HRT for modules is better than the bound given by the classical HRT?
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