
Abstract

In this work, we study the factorization in A[x], where A is an

Artinian local principal ideal ring (briefly SPIR), whose maximal ideal,

(t), has nilpotency h: this is not a Unique Factorization Ring, in fact

its elasticity is infinity, but we can write, in quite a unique way, an

element x ∈ A[x] as the product of a nilpotent element, tk, of a unit, u,

and of a finite number, say r, of monic primary polynomials, g1, . . . , gr.

Then, we extend this result to the case in which A is an Artinian

principal ideal ring: to do this, we observe that such a ring can be writ-

ten as a direct product of finitely many SPIR’s, A1, . . . , An; using this

result, we get that an element (f1, . . . , fn) ∈ A1[x]⊕· · ·⊕An[x] ∼= A[x],

whose components are all non-zero, can be expressed as the product

of a zerodivisor, of a unit, and of finitely many primary elements, and

this product is quite unique.

Finally, we give the definition of Unique Factorization Ring ac-

cording to Fletcher, briefly F-UFR, and we study the factorization in

a polynomial ring over an F-UFR, B: and, using the fact that B is a

direct product of finitely many UFD’s and SPIR’s, we get that an el-

ement in B[x], whose components are all non-zero and non-units, can

be expressed as the product of a unit, of finitely many F-irreducible

elements, of finitely many primary elements, and of elements, whose

components are units and zerodivisors.
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Introduction

In this work, we deal with the factorization of polynomials over Artinian

principal rings.

Our aim in the beginning was to generalize the result below to the case of a

polynomial ring over an Artinian local principal ring.

Theorem 0.1 ([10], Prop 3.8) Each non-zero polynomial f in Zpn [x] can be

written as

f = pkuf1f2 · · · fr,

where 0 ≤ k < n, u is a unit, and f1, f2, . . . , fr are monic polynomials,

such that µ(f1), µ(f2), . . . , µ(fr) are powers of irreducible and pairwise dis-

tinct polynomials, g1, g2, . . . , gr ∈ Zp[x], respectively .

Moreover, k ∈ Nn is unique, u ∈ Zpn [x] is unique modulo pn−kZpn [x], and

also the polynomials f1, f2, . . . , fr are uniquely determined (up to ordering)

modulo tn−kZpn [x].

Where µ : Zpn [x]→ Zp[x] is the natural extension of the canonical projection

to the polynomial rings.

This theorem is proved in the Frei-Frisch’s paper, Non-unique factorization

of polynomials over residue class rings of integers, [10]. This paper deals

with the factorization of polynomials over the residue class of the integers

Zpn , where p is a prime element of Z. The authors found out that the ring

Zpn [x] is not a unique factorization ring. Actually, they reminded the concept

of elasticity of a ring, that intuitively can be described as a measure of how

much the ring is not a unique factorization ring, and they found out that

Zpn [x] has infinite elasticity. But, in this ring, each element can be factored

in a unique way as the product of a power of p, pk, of a unit u, and of

finitely many monic primary coprime polynomials, g1, . . . , gm, which have
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the property that their canonical projections in the integral domain Zp[x]

are monic irreducible polynomials, as the above theorem says.

As Zpn is an Artinian, principal, local ring, it has only one maximal

ideal, (p), that is nilpotent with nilpotency n. The structure of this ring

is very interesting, because in it we can define a p-adic valuation, and we

can also extend this map to the polynomial ring over Zpn . For this reason,

we have tried to extend the results contained in [10] to the general case of

the polynomial ring A[x], where A is an Artinian, principal, local ring, with

maximal ideal (t). We note that such a ring, Artinian, local and principal

ring, is also called Special Principal Ideal Ring, i.e. SPIR.

The second chapter of this work deals with the factorization in A[x],

where A is a SPIR. It starts with a brief description of A: there is only one

maximal ideal, (t), whose nilpotency is h, i.e. h is the smallest integer such

that (t)h = (0). Then, we have followed the same argument path as [10] and,

after a generalization of each proposition and each theorem, we have got the

same results that hold in Zpn [x], in particular we have found out that the

elasticity of A[x] is infinite, we have given an example that explain this fact

and we have proved the following important result:

Theorem 0.2 Each non-zero polynomial f in A[x] is representable as

f = tkuf1f2 · · · fr, (1)

where 0 ≤ k < h, u is a unit, and f1, f2, . . . , fr are monic polynomials,

such that µ(f1), µ(f2), . . . , µ(fr) are powers of irreducible, pairwise distinct

polynomials, g1, g2, . . . , gr ∈ K[x], respectively .

Moreover, k ∈ Nh is unique, u ∈ A[x] is unique modulo th−kA[x], and

also the polynomials f1, f2, . . . , fr are unique modulo th−kA[x].

Where K denotes the field A/(t), and µ : A[x]→ K[x] is the natural exten-

sion of the canonical projection. This theorem shows us that the ring A[x]

has the same factorization features as Zpn [x].
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The natural consequent step of this generalization work has been to study

the factorization of polynomials over an Artinian principal ring, A.

Before doing it, we have tried to do a survey, contained in the first chapter,

about the different definitions of unique factorization ring. We have studied

especially three among the several definitions of unique factorization ring:

each definition constitutes an attempt to generalize the concept of unique

factorization domain to the rings with zerodivisors.

The first definition of unique factorization ring that we present in this work

is the one created by Bouvier in [5]: the way in which he defines a unique

factorization ring is very intuitive and close to the classical definition of

UFD. In fact, a commutative ring with unity R is said to be a unique fac-

torization ring according to Bouvier, or briefly B-UFR, if each non-zero and

non-unit element can be written as a product of finitely many B-irreducible

elements, and if a non-zero and non-unit element has two factorizations into

B-irreducibles, then the numbers of the factors in the two factorizations are

equal, and, after a suitable renumbering, the factors are associate.

We notice that in this definition, Bouvier uses a different concept of irre-

ducible element, that is equivalent to the classical one in a class of rings,

that we call rings with only harmless zero-divisors, that includes both UFD’s

and local rings. While the definition of associate elements that Bouvier uses

is the classical one.

The other definition of UFR that we present is the one given by Galovich in

[12]. Also the definition of unique factorization ring according Galovich, or

briefly G-UFR, is very intuitive, in fact, it is equal to the one by Bouvier,

apart from the definitions of irreducible element and of associates elements.

Galovich uses the classical definition of irreducible element but he gives a

stonger definition for associate elements.

These two definitions of UFR are very similiar, so we have done a comparison

of them, finding out that a ring R is a B-UFR if and only if it is a G-UFR
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and if and only if it is a SPIR or a UFD or a local ring with maximal ideal

M , whose nilpotency is two.

The last definition of unique factorization ring, given in this work, is older

than the first two and it was created by Fletcher in [8]. It is less intuitive

than the other two, because it uses some new concepts, like the U -class and

the U -decomposition of an element. Though the definition is not so easy,

Fletcher gives a characterization of the unique factorization rings according

to Fletcher, briefly F-UFR, in [9]: in fact, a ring is a F-UFR if and only if it

is a direct product of SPIR’s and of UFD’s.

From these two characterization, it follows that the concept of F-UFR is in-

dependent of the concept of B-UFR, and it is also clear that an Artinian local

principal ring is both an F-UFR and a B-UFR, while an Artinian principal

ring is only an F-UFR.

The third chapter deals with the factorization of polynomials over an

Artinian principal ring, B. We have achieved some new results that are very

similiar to the ones contained in the second chapter, using especially two

important theorems: an isomorphism theorem about Artinian rings, that we

have used to write an Artinian principal ring as a direct product of finitely

many artinan local principal rings; a simple isomorphism theorem about

polynomial rings. So, we have proved that B[x] is isomorphic to a direct

product of finitely many polynomial rings over Artinian local PIR’s, and

that an element of B[x], whose components are non-zero, can be factored in

a unique way as the product of a unit, of finitely many primary elements,

and of an element whose components are powers of the nilpotent elements

that generate respectively the nilradicals of the rings, of which B[x] is direct

product.

So another theorem of the present work that we have achieved is the following:

Theorem 0.3 Let (f1, . . . , fn) be a element in B[x], such that fi 6= 0 for

each i = 1, . . . , n, then there exist k1, . . . , kn ∈ N, 0 ≤ ki < hi, i = 1, . . . n,

6



n units ui ∈ Bi[x], r1, . . . , rn ∈ N, n sets of pairwise coprime, primary,

monic polynomials {gi1, . . . , gir1} ⊂ Bi[x], where for each j = 1, 2, . . . , ri,

µi(gij) ∈ Ki[x] is a power of a monic irreducible polynomial, such that

(f1, . . . , fn) = (tk11 , . . . , t
kn
n )(u1, . . . , un)(g11, 1, . . . 1)(g1r1 , 1, . . . 1) · · ·

· · · (1, g21 . . . , 1) · · · (1, g2r2 . . . , 1) · · · (1, 1, . . . gn1) · · · (1, 1, . . . , gnrn).

The following step has been to study the factorization of polynomials

over a ring B that is a F-UFR, i.e. that is a direct product of SPIR’s and of

UFD’s. Let B = U1⊕· · ·⊕Un⊕S1⊕· · ·⊕Sm, where Ui is an UFD, for each

i = 1, . . . , n, and (Sj, (tj)) is a SPIR, for each j = 1, . . . ,m.

We have taken an element (f1, . . . , fn, g1, . . . , gm) ∈ B[x], whose components

are all non-zero and non-units, and we have proved that it can be written as

the product of (1U1 , . . . , 1Un , t
k1
1 , . . . , t

km
m ), of a unit (1U1 , . . . , 1Un , u1, . . . , um),

of some irreducible elements, and of some primary elements, and this factor-

ization fulfills some uniqueness features.

Moreover, in the first chapter, we have also listed two attempts to genera-

lize the concept of UFD to domains: the class of the Dedekind domains, that

have the property that every proper ideal can be factored as the product of

finitely many prime ideals in a unique way; the class of the Half-factorial Do-

mains, in which two factorizations into irreducibles of an element have always

the same lenght. We have also shown three characterizations of Dedekind do-

mains, finding out that every Dedekind domain is an integral domain that is

noetherian, integrally closed and one-dimensional. Moreover, we have given

the definition of class group of a Dedekind domain, R, and of class number of

R, in order to relate the concepts of Half-factorial domain and of Dedekind

domain: in fact, let R be a Dedekind domain, with a finite class group in

which every element contains a prime ideal, then R is an Half-factorial Do-

main if and only if the the class group has order 1 or 2.
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1 Different definitions of UFR

1.1 UFD

In this section, we want to make a little survey of the main results about the

structure of UFD, in such a way to present its generalization, the structure

of UFR, in the next section, to give three different definitions of this new

concept and to make clearer the differences between these definitions.

We start with some basic definitions: we now present the very important

concepts of prime and irreducible element and also the concept of primary

element, that will be central in the next chapters.

Definition 1.1 Let R be a commutative ring with unity, we say that r ∈ R
is a prime element if

r | ab ⇒ r | a or r | b.

We say that r ∈ R is an irreducible element if

r = ab ⇒ a is a unit or b is a unit.

We say that two elements, a, b ∈ R, are associates if (a) = (b).

We say that an ideal I is primary if, from the fact that xy ∈ I and that

x /∈ I, it follows that y ∈
√
I. And an element x is primary if and only if

(x) is such an ideal.

We notice that if r is a prime element, then the principal ideal (r) is prime.

Definition 1.2 Let R be an integral domain, R is said to be an UFD if:

• each non-zero and non-unit element of R is a product of irreducible

elements;
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• if 0 6= r1 · · · rm = s1 · · · sn are two factorizations into irreducibles, then

n = m and, after a suitable reordering, ri and si are associates for each

i = 1, . . . , n.

Definition 1.3 An integral domain R is said to be a PID if each ideal of R

is principal.

Here, we have five main results about the features of UFD’s and PID’s: the

first four are simple and standard results, so we only announce them.

Proposition 1.4 Let R be a PID, then R is a UFD.

Proposition 1.5 If A is a UFD, then A[x] is a UFD.

Proposition 1.6 In a UFD, if x is an irreducible element, then it is a prime

element.

Proposition 1.7 In an integral domain R a factorization in prime elements

is unique up to associate factorizations.

The following proposition is one of the most important characterizations of

UFD. There are many versions of this result, one is due to Krull and in the

proof many important results about Noetherian rings are used (see [17]).

The following version has a very general proof, in fact it holds in a arbitrary

domain.

Proposition 1.8 Let R be a domain, then R is a UFD if and only if all

primes of height 1 are principal.

Proof

⇒ Let R be a UFD, and let P be a prime ideal of height one. In P there is

an irreducible element, r 6= 0. So we have:

P ⊇ (r) ⊇ (0).
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We notice that (r), (0) are prime ideals, so, by hypothesis, we must have that

P = (r).

⇐ Let us define

S = {x ∈ R| x is a product of finitely many prime elements and units}

We note that S is a multiplicatively closed set, and it is also saturated, i.e.

if yz ∈ S, then y and z belong to S.

It is very easy to prove that it is a multiplicatively closed set. Let us prove

that it is a saturated set. If yz ∈ S, then, if yz is a unit, we are done,

otherwise, if we can write yz = up1p2 · · · pm, where pj is a prime element

∀ j = 1, . . . ,m and u is a unit, then we could of course have that y = ap1 · · · pt
and that z = bpt+1 · · · pm, after a suitable reordering of the prime factors; but

R is a domain, so ab = u, i.e. a, b are units, and then we have that y and z

are in S.

We now prove that R\{0} = S by contradiction. First we claim that

if S is a saturated multiplicatively closed set, then R\S is union of prime

ideals. Assuming that the claim is already proved, suppose that S ( R\{0},
in R\S there is a prime ideal, P , that contains a prime ideal of height 1,

which is principal, by hypothesis: here we have a contradiction, because we

have found a prime element outside S.

Now, we prove the claim: let x /∈ S, since S is saturated, (x)∩S = ∅. Let us

consider the image of (x) in S−1R. We want to prove that S−1(x) ( S−1R,

this is because, if ax/v = w/w, for some w, v ∈ S and a ∈ R, then there

would be u ∈ S such that axuw = uwv, a contradiction. Because we have

proved that S−1(x) still remains a proper ideal in S−1R, we can consider the

maximal prime ideal of S−1R that contains it. The inverse image in R of

this prime ideal is a prime ideal disjoint from S. Because we can repeat this

procedure for each element not in S, we have proved the claim.

By the Proposition 1.7, we get the uniqueness of factorization into prime
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elements, that are, in every domain, also irreducible elements.

2

There is a deep link between these algebraic concepts and Algebraic Ge-

ometry, and the two examples below show us it.

Example

An affine variety is the zero-set, V (p), where p is a prime ideal of the poly-

nomial ring k[x1, . . . , xn], with k field.

A subvariety, V (q), is the zero-set of a prime ideal q in R = k[x1, . . . , xn]/p.

By definition of codimension and of dimension of a variety, we have that

codim(V (q)) = 1 if and only if height(q) = 1. Then, using Proposition 1.8,

we get that if R is a UFD, the subvarieties of codimension one are defined

by one equation, because q is a principal ideal. 2

Example

Let k be a field, k[t2, t3] ∼= k[x, y]/(x3 − y2) is not a UFD. In this ring, the

ideal (x, y) is a prime of height one, but it is not principal, which corre-

sponds to the fact that the subvariety {(0, 0)} of codimension one is defined

by two equations. We notice that we easily have an example of non-unique

factorization of an element in this ring, since x3 = y2, and x, y are irreducible

elements. 2

1.2 Dedekind domains: a survey

The present section deals with Dedekind domains. While in UFD’s it is

possible to factor, in a unique way, an element into the product of irreducible
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elements, in Dedekind domains, as we are going to see, it is possible to factor

an ideal into prime ideals, and this factorization is also unique. So, in a

certain way, Dedekind domains constitute a generalization of the concept of

Unique Factorization Domain.

What we are presenting now is a summary of the treatment of Dedekind

domains contained in [19].

Definition 1.9 A ring R is a Dedekind domain if it is an integral domain

in which every ideal can be written as a product of finitely many prime ideals.

We want to prove that in a Dedekind domain the factorization of an

ideal in prime ideals is unique. To achieve this result, we have to give some

definitions and propositions about fractionary and invertible ideals.

Definition 1.10 Let R be a domain, K be its quotient field and b be an

R-module of K, we say that b is a fractionary ideal of R if the elements of

b admit a common denominator d 6= 0 in R, i.e. there exists d ∈ R, d 6= 0,

such that db ⊆ R. Hence, if b is a fractionary ideal of R, there is an ideal a

of R, such that b = (1
d
)a.

We notice that, in contrast, the ordinary ideals of R, that are factionary

ideals with d = 1, are called integral ideals.

An example of fractionary ideal is a principal fractionary ideal, which is

equal to xR, where x = a
b
, b 6= 0, is an element of K.

In the following observation, we describe the behaviour of the set of all the

fractionary ideals of R towards the ideal thoretic operations +, · and ∩.

Observation 1.11 The set of all fractionary ideals of R is closed under the

ideal operations ·,+, and ∩: in fact, these operations have already been de-

fined for submodules, furthermore, if b ⊆ (1/d)R and b′ ⊆ (1/d′)R, it is clear
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that b+ b′ ⊆ (1/dd′)R, that b · b′ ⊆ (1/dd′)R and that b ∩ b′ ⊆ (1/d)R.

The set (b : b′) is defined as the set of all the x ∈ K such that xb′ ⊆ b.

The set I of all the fractionary ideals of R is a partally ordered set by inclu-

sion: R is a fractionary ideal and it is the identity element of I; we also say

that a fractionary ideal a ∈ I is invertible, if there exists a′ ∈ I, such that

a · a′ = R; we notice that if Rx, with x 6= 0, x ∈ K is a principal fractionary

ideal, then it is an invertible fractionary ideal and its inverse is Rx−1.

We will still denote with I the set of all the fractionary ideals of an

integral domain R and with the small underlined letters the elements of I.

The lemmas below deal with fractionary and invertible ideals and describe

some important properties that are useful to prove that in a Dedekind domain

the factorization of an ideal into prime ideals is unique.

Lemma 1.12 If a is invertible, then it has a unique inverse that is equal to

R : a. Hence, a necessary and sufficient condition for a to be invertible is:

a · (R : a) = R.

Proof

If aa′ = R, then a′ ⊆ R : a. On the other hand, a · (R : a) ⊆ R, hence, if a′

is an inverse of a, we have that (R : a) = a′ · a · (R : a) ⊆ a′ ·R = a′. 2

Lemma 1.13 If every integral and non-zero ideal of R is invertible, then the

set I is a group under multiplication.

Proof

Every fractional ideal a may be written as (1/d)b, where b is an integral ideal

and d is a non-zero element of R. Since, there exists the inverse b−1 of b, the

inverse of a is db−1. Furthermore, the multiplication of ideals is associative

and there exists in I the identity element, then I is a group. 2
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Lemma 1.14 An invertible ideal a, considered as an R-module, has a finite

basis.

Proof

Let a′ be the inverse of the ideal a, i.e. a · a′ = R. Then there are two finite

families {xi}i∈I ⊂ a and {x′i}i∈I ⊂ a′, such that
∑

i∈I xix
′
i = 1. For every

x ∈ a, x =
∑

i∈I xx
′
ixi, i.e. {xi}i∈I is the finite basis for a, since, by the

assumption, xx′i ∈ R, for each i. 2

Lemma 1.15 If a finite family {ai}i∈I of integral ideals of R is such that

the product b =
∏

i∈I ai is invertible, then each ai is invertible. In particular,

if a product of integral ideals is principal, then each factor is invertible.

Proof

From b−1 ·
∏

i∈I ai = R, we deduce that ai · (b−1 ·
∏

j 6=i aj) = R, i.e. ai is

invertible. 2

Lemma 1.16 For a product of invertible prime integral ideals, the factor-

ization into prime ideals is unique.

Proof

Let a =
∏n

i=1 pi be a product of invertible prime ideals and suppose that

we also have a =
∏m

j=1 qj, where each q
j

is a prime ideal. Now, we take a

minimal element in the family of ideals {p
i
}i=1,...,n, say p

1
. Since

∏m
j=1 qj is

contained in p
1
, some q

j
, say q

1
, is contained in p

1
. Similarly, there is some

p
j
⊆ q1 ⊆ p

1
. Then, from the minimality of p

1
, we deduce that p

r
such

that p
j

= q
1

= p
1
. Multiplying the relation

∏n
i=1 pi =

∏m
j=1 qj by p−1

1
, we

get
∏

j 6=1 p =
∏

j 6=1 q. The Lemma follows by induction on n, since the case

n = 1 is trivial. 2
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Theorem 1.17 In a Dedekind domain R, every proper prime ideal is inver-

tible and maximal.

Proof

We first show that every invertible proper prime ideal, p, is maximal. Let us

consider a /∈ p and the ideals p+Ra and p+Ra2. As R is a Dedekind ring,

we have that

p+Ra =
n∏
i=1

p
i
;

p+Ra2 =
m∏
j=1

q
j
,

where each p
i

and each q
j

are prime ideals.

Let us consider the ring R = R/p and let a be the residue class of a in this

ring. We get that Ra =
∏n

i=1(pi/p) and that Ra2 =
∏m

j=1(qj/p), where the

ideals p
i
/p and q

i
/p are prime and, by Lemma 1.15, are also invertible. Thus,

since Ra2 = (Ra)2 =
∏n

i=1(pi/p)
2, Lemma 1.16 shows that the ideals q

j
/p

are the ideals p
i
/p, each repeated twice, i.e., we have that m = 2n and that

we can renumber the q
j

in such a way that q
2i
/p = q

2i−1/p = p
i
/p. Thus,

q
2i

= q
2i−1 = p

i
, and we have that p2 + Ra = (p + Ra)2, and this implies

that p ⊂ (p + Ra)2 ⊂ p2 + Ra. Then, we may write every element x ∈ p as

y + za, where y ∈ p2 and z ∈ R, and we have also that za ∈ p and, since

a /∈ p, z ∈ p: in other words, we get that p ⊆ p2 + pa, and, because the other

inclusion is trivial, the equality holds. Now, by multiplying the following

equality by p−1, p = p(p+Ra), we get the relation, R = p+Ra, which holds

for each element a /∈ p. This proves the maximality.

Now, to prove the theorem, we need only to prove that every proper prime

ideal p of R is invertible. Let b be a non-zero element of p, let us consider

the ideal Rb, since R is a Dedekind domain, there exist finitely many prime

ideals, p
1
, . . . , p

m
, such that Rb =

∏m
i=1 pi. Since p contains Rb, there is some
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p
j
, say p

1
such that p

1
⊆ p. But by Lemma 1.15, every p

i
is invertible. Thus

every p
i

is maximal, by the first part of the proof. Then, from p
1
⊆ p, we

deduce that p
1

= p and this prove the result. 2

Using the above results, we finally get the main result: if in a integral domain

we suppose that every ideal is a product of prime ideals, then we have also

the uniqueness of this factorization.

Corollary 1.18 In a Dedekind domain the factorization of any ideal into

prime ideals is unique.

Proof

This follows from Theorem 1.17, from Lemma 1.16, and also from the fact

that the ring is a Dedekind domain. 2

In order to achieve some useful and important characterizations of Dedekind

domains, we announce some technical results about fractionary ideals in

Dedekind domains without proofs.

Theorem 1.19 ([19]) Let R be a Dedekind domain, every non-zero frac-

tionary ideal of R, a, is invertible and can be written, in a unique way, in

the form

a =
∏

p,prime

pnp(a), (2)

where np(a) ∈ Z are non-zero, for given a, only for a finite number of p. In

order that a ⊆ b, it is necessary and sufficient that np(a) ≥ np(b) for every

p. We have also the relations:

np(a+ b) = min(np(a), np(b)), (3)

np(a ∩ b) = max(np(a), np(b)), (4)

np(a · b) = np(a) + np(b). (5)
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The ideals a : b and a · b−1 are equal, and we have that

np(a : b) = np(a · b−1) = np(a)− np(b). (6)

After this description, we want to study two important characterizations of

this kind of rings: the first has a theoretical nature, while the second one is

very useful as a method to recognize a Dedekind domain.

Theorem 1.20 (First characterization of Dedekind domains) Let R

be an integral domain. R is a Dedekind domain if and only if the set I of

fractionary ideals of R is a group under multiplication.

Proof

⇒ It is clear since every fractionary ideal of a Dedekind domain is invertible

by the above theorem, and the set I needs only this property to be a group.

⇐ By Lemma 1.14, every ideal in R has a finite basis, and so it is noetherian.

Now, our aim is to prove that every proper ideal of R is a product of max-

imal ideals, and this will complete the proof. Assuming, by contradiction,

that the set of the non-zero proper ideals that are not product of maximal

ideals is not empty, and let a be the maximal ideal of this set (there exists

one such ideal since R is noetherian). Since a is not a maximal ideal, it is

strictly contained in a maximal ideal m. Since I is a group, there is in I
the ideal m−1a, and this ideal is an integral ideal that strictly contains a: in

fact, from m−1a = a, we would deduce that m a = a, in contradiction with

Nakayama’s Lemma. Therefore, m−1a is product of maximal ideals, in virtue

of the maximality of a, and then also a = m m−1a is product of maximal

ideals. This is a contradiction. 2

Finally, we prove the other characterization of Dedekind domains that

constitutes a good method of checking whether a given domain is or is not a

Dedekind domain. To prove this theorem we need the following lemma, that

we only announce, about prime ideals of principal ideals.
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Lemma 1.21 ([19]) Let R be a noetherian integrally closed domain and p

be a non-zero maximal ideal of R. If p is a prime ideal of a principal ideal

(y), then p is invertible.

Theorem 1.22 (Second characterization of Dedekind domains) Let R

be an integral domain, R is a Dedekind domain if and only if it satisfies the

following conditions:

1. R is noetherian;

2. every proper prime ideal of R is maximal;

3. R is integrally closed.

Proof

⇒ The fact that R is noetherian follows from Theorem 1.17 and from Lemma

1.14.

From Theorem 1.17, it follows that every proper ideal is a maximal ideal.

Finally, we have to prove that R is integrally closed. Let us consider x ∈ K,

where K is the quotient field of R, which is integral over R. We can find a

common denominator d 6= 0 in R, such that dxn ∈ R for every n ≥ 0. Then,

for every prime ideal p ⊆ R, we have vp(dx
n) = vp(d) + nvp(x) for every n.

But vp(d) and vp(x) are integers and n is arbitrary, so vp(x) ≥ 0, and then

vp(Rx) ≥ 0 for each prime ideal p, i.e. x ∈ R. Thus R is integrally closed.

⇐ We notice that in the proof of Theorem 1.20 the assumption that every

ideal of R is invertible has been used only to establish that R is noetherian,

while the rest of the proof was based on the fact that R is noetherian and

on the assumption that every prime ideal is invertible. Since, now we are as-

suming that R is noetherian, in order to prove that R is a Dedekind domain,

we have only to show that every proper prime ideal p of R is invertible. We

note that if y is a non-zero element of p, then p must contain some prime
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ideal of the principal ideal (y), but, since all proper prime ideals in R are

maximal, p itself must be a prime ideal of (y). The theorem follows easily

from Lemma 1.21. 2

After the above theorem, we are very close to another characterization

of Dedekind domains: in fact, a noetherian 1-dimensional domain, R, is a

Dedekind domain if and only if the localization Rp is a discrete valuation

ring for each prime p.

To achieve this result, we first announce two propositions.

Proposition 1.23 Let B be a ring and A a subring of B, then the following

sentences are equivalent:

1. x ∈ B is integral over A;

2. A[x] is a finitely generated A-module;

3. A[x] is contained in a subring C of B, such that C is a finitely generated

A-module;

4. There exists a faithful A[x]-module M , i.e. AnnA[x](M) = (0) which is

finitely generated.

The other proposition that is very useful to prove the third characterization

of Dedekind domain is a local property.

Proposition 1.24 Let A be an integral domain, then the following sentences

are equivalent:

1. A is integrally closed;

2. Ap is integrally closed for each prime ideal p;

3. Am is integrally closed for each maximal ideal m.
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Theorem 1.25 (Third characterization of Dedekind domains) Let R

be a noetherian one-dimensional domain, then R is a Dedekind domain if and

only if, for each prime ideal p, the local ring Rp is a DVR.

Proof

⇒ Using Theorem 1.22, we know that R is also integrally closed. Then,

by Proposition 1.24, for each prime ideal p, the local ring Rp is integrally

closed too. In order to prove that Rp is a DVR, we need to prove that the

only maximal ideal, M = pRp, is principal, since we already know that Rp is

noetherian and local.

In order to simplify the notation, let A be the local, noetherian ring, Rp. We

first note that each non-zero ideal, I, of A is M -primary, i.e. it is a primary

ideal and
√
I = M ; in fact, since A is noetherian, I can be written as the

intersection of finitely many primary ideals, that have to be M -primary, be-

cause of the fact that R is one-dimensional and then the only prime non-zero

ideal of A is M .

Let a ∈M a non-zero element, because of the previous observation, we have

that there exists n ∈ N such that Mn ⊆ (a) but Mn−1 6⊆ (a). Let b be

an element in Mn−1\(a) and let us consider x = a/b ∈ K, where K is the

fraction field of A. Since b /∈ (a), x−1 /∈ A and then, since A is integrally

closed, x−1is not integral over A. Now we prove that x−1M 6⊆ M , in fact, if

we suppose the contrary, M would be a faithful A[x−1]-module that is also

finitely generated and then x−1 would be integral over A, because of Propo-

sition 1.23. But, on the other hand, x−1M ⊆ M , since a ∈ M , and it is an

ideal of A not contained in the only maximal ideal of A, then we must have

that A = x−1M , and so M = xA = (x).

⇐ The converse is very simple, in fact, in order to get that R is a Dedekind

domain, it is sufficient to prove that R is integrally closed. But this is true

by hypothesis and by Proposition 1.24. 2
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Here, we have an application of the last two characterizations of Dedekind

domains to Algebraic Geometry.

Observation 1.26 Let us consider V = V (f) be an irreducible plane curve

and let Γ[V ] = K[x, y]/(f), where K is a field, be its coordinate ring. A

well-known geometrical result tells us that: V is smooth if and only if the

local ring OP (V ) is a Discrete Valuation Ring, for each point P ∈ V (see

[11]).

We now apply the above characterization of Dedekind domains to our case:

Γ[V ] is a noetherian, one-dimensional domain, since V is an irreducible

curve; OP (V ), where P = (a, b) ∈ V , is the localization of the coordinate

ring in the maximal ideal (x− a, y − b). So, using Theorem 1.22 and Theo-

rem 1.25, we have that V is smooth if and only if Γ[V ] is integrally closed,

since it is already one-dimensional and noetherian.

Finally, we want to prove an important result about Dedekind domains

that shows how much they are close to PID’s: in fact we will show that

a basis of a non-zero ideal of a Dedekind domain R is constituted by two

elements.

Lemma 1.27 Let us consider a Dedekind domain R and a proper ideal a,

then R/a is a PIR.

Proof

Let a =
∏

i p
n(i)
i

be the factorization of a into prime ideals. Then, R/a is

isomorphic to the direct product of the rings R/pn(i)
i

. So, it is sufficient to

prove that R/pn(i)
i

is a PIR, to get that R/a is itself a PIR.

We can suppose that a is a power of a prime ideal, say pn.

The only proper ideals of R/pn are p/pn, p2/pn, . . . , pn−1/pn, since all ideals

in R are product of prime ideals, and the only prime ideal containing pn is p.

Since R is noetherian, because of the fact that it is a Dedekind domain,
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p2 ( p, so we can fix an element t which is in p but not in p2. Since

Rt+ pn 6= pk, for each k > 1, otherwise we would have that t ∈ p2, we must

have p = Rt + pn. This implies that, in R/pn, p/pn = (t)/pn, and then all

the powers of this ideal are principal ideals too, i.e. all the ideals of R/pn

are principal.

2

Here we have another way to prove the above lemma, using the following

result.

Proposition 1.28 Let (R,m) be a noetherian local ring, whose only ideals

are powers of the maximal ideal. Then R is a PIR.

Proof

Let x be a non-zero element in m but not in m2 (this is possible since R is a

local noetherian ring). Then, the following equality must hold, (x) = m. 2

The Lemma 1.27 is a corollary of the above proposition, since R/pn is a local

noetherian ring whose only ideals are powers of the maximal ideal.

Theorem 1.29 In a Dedekind domain R, very proper ideal a has a basis

consisting of two elements.

Proof

We take a non-zero element a in a. As R/Ra is a PIR, by Lemma 1.27, the

ideal a/Ra is principal, let b be an element of a, whose residue class generates

a/Ra. Then {a, b} is the basis of a.

2

We notice that in the proof of the previous theorem the first element a of

the basis of a is an arbitrary non-zero element of R.

1.3 Half-Factorial Domains

This section deals with a new kind of generalization of the concept of UFD,

the Half-factorial Domain, or briefly HFD. Here we explain the relation be-
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tween this new concept and the one of Dedekind domain, described in the

above section. But, first we have to define the concept of atomic ring and to

give some of its properties.

Definition 1.30 Let R an integral domain. R is called atomic if every non-

zero, non-unit is a product of irreducible elements.

Proposition 1.31 An integral domain R which is also noetherian is atomic.

Proof

The proof is very simple and it uses only the fact that the ACC (Ascending

Chain Condition) holds in R.

In fact, let us consider the set S of those non-units and non-zero that do not

factor into irreducible elements. By contradiction, let us suppose that there

is x ∈ S: x is not irreducible, then there are two non-zero and non-units a, b

such that x = ab; at least one of these two elements is in S, say a, otherwise

x would be product of irreducible elements, i.e. x /∈ S. Since, a | x, but

x - a, we have that (x) ( (a); by iteration, we get an infinite ascending

chain, against the assumption that R is noetherian. 2

We notice that, by Theorem 1.22, every Dedekind domain is atomic, since it

is a noetherian domain.

Now, we give two important notions: the Half-factorial Domain and the

Class Group of a Dedekind domain.

Definition 1.32 An atomic domain R is an Half-factorial Domain (HFD),

if the following equality

α1 · · ·αn = β1 · · · βm,

where, for each i, j, αi, βj are irreducible, implies that n = m.

23



Let us consider a Dedekind domain, R, by Theorem 1.20, we have that the

set of all the fractionary ideals of R, I, is a group under multiplication, in

particular it is an abelian group, generated by prime ideals, by Theorem

1.19. Let us denote with H the normal subgroup of I made of the principal

fractionary ideals.

Definition 1.33 The class group of R is the quotient group G = I/H. Its

elements are equivalence classes, and two fractional ideals, I, J , belong to the

same class if there is x ∈ K\{0}, where K is the quotient field of R, such

that I = xJ .

If the class group of R is finite, then its order, n, is the class number of K.

Here we have an example of Dedekind domain, whose class group is finite.

Example

Let K a finite extension of the rationals. The ring of integers, R, of K, is

the integral closure of Z in K. Then, R is a Dedekind domain (see [4], p.

144), and the class group of R is finite (see [14]). This group has also the

property that each class contains a prime ideal (see [13]). 2

Now, we have a theorem that relates the HFD’s and the subclass of those

Dedekind domains whose class group is finite and such that each class con-

tains a prime ideal.

Theorem 1.34 Let R be a Dedekind domain with finite class group, and K

its quotient field. Let us suppose that each class in G contains a prime ideal.

Then, R is an HFD if and only if K has class number 1 or 2.

Proof

⇒ Let us suppose, by contradiction, that |G| > 2. We have to distinguish

between two cases.

First, there is an element g ∈ G, such that o(g) = n > 2. In this case, we
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consider the two different classes g and g−1: by hypothesis, there is a prime

ideal P ∈ g and a prime ideal Q ∈ g−1. Then, since the order of g and of

g−1 is n, we have that P n = (a), Qn = (b) and PQ = (c), where a, b, c ∈ R
are non-zero and irreducible: in fact, if there are two non-unit elements,

a1, a2 ∈ R, such that a = a1a2, using the fact that R is a Dedekind domain,

we have that

(a) = P n = (a1)(a2) =
∏
i

Pi
∏
j

Qj,

where Pi and Qj are prime ideals, and, so, by the uniqueness of the factor-

izations into prime ideals, we must have that Pi = P and (a1) = P k and that

Qj = P and (aj) = P n−k, with k ≥ 1, but this is a contradiction, because,

since the order of g is n, P k and P n−k cannot be principal ideals; in similiar

ways, we can prove that also b and c are irreducible.

Now, (a)(b) = (PQ)n = (cn) implies that there is a unit u ∈ R such that

ab = ucn, this is a contradiction, because n > 2 and R is supposed to be an

HFD.

Second case, each element g ∈ G has order 2. We consider, since |G| > 2,

g1 and g2, different from unity, such that g1 6= g2, and we take g3 to be

(g1g2)
−1. By hypothesis, there are three prime ideals, P ∈ g1, Q ∈ g2 and

S ∈ g3, and we have that P 2 = (a), Q2 = (b), S2 = (c) and PQS = (d),

where a, b, c, d ∈ R are irreducible elements, let us prove, for instance, that a

is irreducible: if, by contradiction, a = a1a2, with a1, a2 non-units, then we

have that

(a) = P 2 = (a1)(a2) =
∏
i

Pi
∏
j

Qj,

where Pi and Qj are prime ideals, and, by the uniqueness of the factorizations

into prime ideals, this implies that (a1) = P = (a2), but this contradicts the

fact that g1 has order two.

Now, we have that (d2) = (PQS)2 = (a)(b)(c) and, so, there is an unit u

such that d2u = abc, and so we get a contradiction, since R is an HFD.
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⇐ Let us suppose that |G| ≤ 2.

If |G| = 1, then I = H, i.e. R is an UFD.

If |G| = 2, then G is made of two classes, the unity H and QH, where Q is

a fixed prime non-principal ideal, whose existence is guaranteed by the facts

that R is not a PID and that R is a Dedekind domain.

Now, in order to prove that R is an HFD, we consider two factorizations into

irreducibles of an element in R and we show that they have the same lenght.

In particular, let us consider the following equality

α1 · · ·αn = β1 · · · βm, (7)

where αi, βj are irreducible. Without loss of generality we can assume that all

these factors are not prime, otherwise we can factor out the prime elements.

First, we notice that the product of two non-principal ideals, Qh1 and Qh2,

with h1, h2 ∈ H, is a principal ideal: in fact, Qh1 ·Qh2 = Q2h1h2 ∈ H, since

QH has order two.

Now, we prove that (a), with a irreducible but not prime, is the product of

two non-principal prime ideals: it has to be the product of an even number

of non-principal prime ideals, otherwise it would not be principal; moreover,

if it is product of 2n, with n > 1, prime non-principal ideals, then, as we have

noticed, it is the product of n > 1 principal ideals, against the assumption

that a is irreducible.

Using this fact, we can consider the principal ideals (αi) and (βj) and write

them as products of two non-principal prime ideals. In this way, we get the

following equality:

(P11P12) · · · (Pn1Pn2) = (Q11Q12) · · · (Qm1Qm2);

finally, since R is a Dedekind domain, the factorization into prime ideals is

unique, so 2n = 2m. 2

26



1.4 BG-UFR

In this section, we want to present two different definitions of Unique Fac-

torization Rings, and to draw a comparison of them.

Bouvier defined his own concept of unique factorization ring, briefly B-

UFR, in the paper, Structure des anneaux à factorisation unique, written in

1974, [5], in a very intuitive way: in fact the Bouvier’s definition of unique

factorization ring is very close to the definition of unique factorization do-

main, although he used a different concept of irreducible element.

Galovich in 1978, in the paper, Unique factorization rings with zerodivi-

sors ([12]), tried to extend the concept of UFD to rings with zerodivisors, by

defining the unique factorization ring according to Galovich, briefly G-UFR.

Like Bouvier’s definition, the Galovich’s one is still intuitive and similiar to

the concept of UFD, even if he used a different definition for associate ele-

ments.

Throughout this section, R is a commutative ring with unity and with

zerodivisors.

1.4.1 Bouvier’s definition

At first we give the definitions of irreducible element and of associate elements

adopted by Bouvier in [5]. They make the difference, since, otherwise, the

concepts of B-UFR and of UFD would be equal.

Definition 1.35 Let r be a non-zero and non-unit element in R, we say

that it is B-irreducible if the ideal (r) is a maximal element in the set of the

principal proper ideals of R, ordered by the inclusion relation.

Definition 1.36 We say that a, b ∈ R are associates if (a) = (b), and we

write a ≈ b.
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Definition 1.37 We say that R is B-UFR (unique factorization ring, ac-

cording to Bouvier) if:

• each non-zero, non-unit element of R is a product of B-irreducible ele-

ments;

• if 0 6= a1 · · · an = b1 · · · bm, where ai, bj are B-irreducible, then n = m,

and, after renumbering, if necessary, ai ≈ bi, ∀ i = 1, . . . , n.

1.4.2 Galovich’s definition

As we have done defining Bouvier’s UFR, we now describe the concepts, re-

spectively, of irreducible element and of associate elements chosen by Galovich.

Definition 1.38 Let r ∈ R be a non-unit, and non-zero element. We say

that r is G-irreducible, or simply irreducible if

r = ab ⇒ a is a unit or b is a unit.

Definition 1.39 We say that a, b ∈ R are G-associates if there exists a unit

u in R such that a = ub, and we write a ≈G b.

Definition 1.40 We say that R is G-UFR (unique factorization ring, accor

ding to Galovich) if:

• each non-zero, non-unit element of R is a product of G-irreducible el-

ements;

• if 0 6= a1 · · · an = b1 · · · bm, where ai, bj are B-irreducible, then n = m,

and, after renumbering, if necessary, ai ≈G bi, ∀ i = 1, . . . , n.
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1.4.3 Comparing B-UFR with G-UFR

Since the two definitions of UFR given above are both similiar to the defini-

tion of UFD, we want to draw a comparison of them and also of the different

concepts of irreducible element and of associate elements adopted by the two

authors.

We start by comparing the concept of B-irreducible element with the

classical one.

Proposition 1.41 Let r ∈ R be a non-unit, non-zero element, and suppose

that it is G-irreducible, then r is B-irreducible.

The converse is not true.

Proof

By contradiction, let (s) be a proper, principal ideal of R, and let (r) ( (s).

So there is a ∈ R, such that r = as, but s is not a unit and r is G-irreducible,

hence a must be a unit. It follows that (r) = (s), against assumption.

For the second part of the proof, we give an example of a ring, in which

there is a B-irreducible element that is not G-irreducible. Let us consider

R = Z6, and r = 3: the ideal (3) is maximal among the principal proper

ideals of R, but 3 = 3 · 3, so we have that 3 is B-irreducible, but it is not

G-irreducible.

2

In the above proposition, we have found out that the concept of B-irreducible

element is stronger than the one of G-irreducible element, but there is a class

of rings, that we will call rings with only harmless zerodivisors, in which these

two concepts are the same. In particular, this holds also in local rings and

in UFD, as they are rings with only harmless zerodivisors.

Proposition 1.42 In a local ring (R,M), every B-irreducible element is G-

irreducible.
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Proof

In fact, let us consider a non zero non unit element r, that is G-reducible

and B- irreducible: by hypothesis, there are two non unit elements, a, b ∈ R,

such that ab = r, and (r) is a maximal element in the set of the principal

proper ideals of R. Hence, a, b ∈ M , because of the fact that R is local,

and (r) = (a) = (b). So, there exist some c, d ∈ R, such that a = rc and

b = rd. Then we have the relation r(rcd−1) = 0, but rcd ∈M and R is local,

so we get that rcd−1 is a unit and r = 0, and here there is a contradiction. 2

Let us denote with Z(R) the set of all the zerodivisors of R, and with U(R)

the group of units of R.

Definition 1.43 Let R be a commutative ring, we say that r ∈ R is an

harmless zero-divisors if r ∈ Z(R) and there exists a unit u such that a =

1− u.

Proposition 1.44 Let R be a ring with only harmless zerodivisors, then

every B-irreducible element is G-irreducible.

Proof

By contradiction, suppose that there is a non-zero, non-unit element x in R

that is B-irreducible, but not G-irreducible. Then, the principal ideal gener-

ated by it is a maximal element in the set of the principal and proper ideals

of R; in the other hand, there are two non-unit elements, a, b ∈ R, such that

x = ab Since x is B-irreducible, we have that (r) = (a) = (b), so we get

the relation x(xcd − 1) = 0, for some c, d. We now distinguish between two

cases: first, if x is not a zerodivisor, then xcd = 1, and so x is a unit, here

we have a contradiction; second, if x is a zerodivisor, then xcd is still a ze-

rodivisor, and, by hypothesis, 1−xcd is a unit, and x = 0, a contradiction. 2
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Now, we compare the two different definitions of associate elements used

by Bouvier and Galovich, respectively, in their papers. In the following

propositions we prove the these two concepts, that in a general case are not

the same, are equivalent in rings with only harmless zerodivisors.

Proposition 1.45 Let a, b ∈ R be G-associates, then they are also asso-

ciates. The converse is not true.

Proof

The first part of this Proposition is trivial, because, if a = bu, for such unit

u, then (a) = (b).

We give an example of a ring in which there are two elements that are

associates, but not G-associates. Let R be k[x, y, z]/(x− xyz), where k is a

field. Let us consider x and x y: these two elements are associates, because

we have that x = x y z, but they are not G-associated because x 6= x y u,

for any unit u ∈ R.

We notice that in the ring R there are zerodivisors that are not harmless: for

instance, 1− y z is a zerodivisor, but it cannot be harmless because y and z

are not unit, so we cannot write 1− y z as 1− u, where u is a unit. 2

Proposition 1.46 Let (R,M) be a local ring, then if a, b ∈ R are associates,

they are also G-associates.

Proof

Let us suppose that a, b are non-unit, non-zero elements, and that they are

associates, i.e. (a) = (b), i.e. there are c, d ∈ R such that a = cb and b = da.

We now distinguish between two cases: if one or both c and d are units, then

we get the result; otherwise, cd ∈ M and cd − 1 is a unit, hence we deduce

from the relation acd = a that a = 0, and here we get the contadiction. 2

As we have done with Proposition 1.42, we could generalize the last result.
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Proposition 1.47 Let R be a ring with only harmless zerodivisors, then if

two elements a, b are B-associates, they are also G-associates.

Proof

Let us suppose that a, b are non-unit and non-zero elements. Since they

are G-associates, there are c, d ∈ R such that a = cb and b = da, then

a(1 − cd) = 0, and, by hypothesis, 1 − cd = 1 − u for some unit u. Hence,

we have that cd = u, so both c and d are unit. 2

Finally, we prove that the two definitions of UFR, B-UFR and G-UFR,

given in this section, are equivalent.

Definition 1.48 A commutative ring with unity R is said to be a special PIR

(SPIR), if it is a principal ideal ring, with a single prime nilpotent ideal.

Theorem 1.49 The following sentences are equivalent:

(i) R is a G-UFR;

(ii) R is a B-UFR;

(iii) R is an UFD, or a SPIR, or a local ring (R,M) with M2 = (0).

To achieve this Theorem, we start with some results from Galovich (cf. [12]).

Lemma 1.50 Let R be a G-UFR with zerodivisors, then there exists an ir-

reducible zerodivisor.

Proof

Let x ∈ R be a zerodivisor. Let us consider a factorization of x into irre-

ducibles:

x = x1x2 · · · xn;
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we claim that at least one of the irreducible factors of x is a zerodivisor:

by hypothesis ∃ y 6= 0, such that xy = 0, so x1x2 · · · xny = 0; if x1 is a

zerodivisor, we have the result, otherwise, x2 · · ·xny = 0; if x2 is a zerodivisor,

we have the thesis, otherwise x3 · · ·xny = 0, and so on. Hence we must find

among x1, x2, . . . xn at least one element that is a zerodivisor.

2

Lemma 1.51 Let R be a G-UFR which contains zerodivisors, the following

statements hold:

1. every irreducible element is prime;

2. every irreducible in R is a zerodivisor;

3. every irreducible element in R is nilpotent.

Proof

1. Let r be an irreducible element in R. Suppose that r| ab, with ab 6= 0.

Then, ry = ab for some y ∈ R. Factoring y, a and b into irreducibles,

we get

ry1 · · · yd = a1 · · · aeb1 · · · bf .

Since R is G-UFR, r is a G-associate of one of the ai, or one of the bj,

so we have that either r|a, or r|b.

2. By contradiction, suppose that r is an irreducible element, which is

not a zerodivisor. By Lemma 1.50, there exists an element s, which

is irreducible and zerodivisor, i.e. there is x ∈ R non-zero such that

sx = 0.

Let t = r + s, since r does not divide s (otherwise it would be a
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zerodivisor), r does not divide t.

We have that

tx = rx+ sx = rx 6= 0.

Then, factoring into irreducibles both t and x, we get

t1 · · · tnx1 · · ·xm = rx1 · · · xm,

so by uniqueness of factorization, n = 1 and r divides t1 = t, here we

get a contradiction.

3. Let r be irreducible, by 2., we know that rx = 0, for some x 6= 0.

Putting r = r1, and factoring x into irreducibles, x = r2 · · · rm, we get

r1r2 · · · rm = 0;

We can rewrite this relation in the form

sa11 · · · sann = 0,

where r = s1, si and sj are non-G-associate irreducibles if i 6= j, and

ai are positive integers.

If n = 1, we get that r is nilpotent, otherwise, let t = sa11 + sa22 · · · sann .

Note that, since x 6= 0, sa22 · · · sann 6= 0. The irreducible element r

does not divide t, otherwise it must divide sa22 · · · sann , but, by 1., r

is prime, hence r must divide si for some i > 1. But, we have that

sa11 t = s2a11 + sa11 · · · sann = s2a11 , which violates unique factorization

unless s2a11 = r2a1 = 0.

2

The proposition below is very important not only because it is useful to

prove the equivalence between the two definitions of UFR, but also because

it assures us of the fact that every G-UFD is a local ring.
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Proposition 1.52 Let R be a G-UFR and let M be the set of non-units of

R. Then (R,M) is a local ring.

Proof

By Lemma 1.51, we have that every non-unit in R is nilpotent, in fact, sup-

pose that x is a non-unit and non-zero element, we can write it as a product

of irreducible elements, which are nilpotent, so x is a nilpotent element.

So we have that M is equal to the nilradical of R, i.e. it is an ideal. M is

the only maximal ideal of R: it is clear that it is maximal, since the elements

that are not in M are units; it is also the only one, because it is the nilradical

of R. 2

Theorem 1.53 Any G-UFR with zerodivisors is a local ring whose maximal

ideal M is the set of all non-units. In such a case, either M is principal, or

rs = 0 for all irreducibles r and s (not necessarily distinct).

Proof

If M is principal, we get the result. Otherwise, let us suppose that there

are two irreducible elements r, s ∈ R, which are not G-associates, we now

prove that rs = 0. By contradiction, suppose that rs 6= 0, and choose the

least integers n,m such that rn = sm = 0. Then rs = r(rn−1 + s), and by

Lemma 1.51(1.), we conclude that s divides rn−1 + s, so s divides r, which

is a contradiction.

2

Before proving the main theorem of this section, we want to prove some

simple lemmas that describe the structure of SPIR’s and that will be also

very useful in the generalization of the second chapter of this work.

Lemma 1.54 Let R be a SPIR, then it is a ring in which each non-zero

element can be written in a unique way as

s = urm where u is a unit and 0 ≤ m < n,
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where r is the element that generates the only prime ideal, P , of R, and n is

its nilpotency.

Proof

It is a principal ideal ring, in which there is a single prime ideal P such

that P n = (0), for some n. Because of these facts, there is r ∈ R such that

P = (r) and rn = 0. First, we prove that each non-zero, non-unit s ∈ R can

be written in the following way

s = urm where u is a unit and 0 ≤ m < n.

Since s is not a unit, we have that

∃ k1 such that s = brk1 ;

if b is a unit, we have the result, otherwise we have that

∃ k2 such that b = crk2 ;

so we obtain the following ascending sequence

(s) = (brk1) ⊆ (b) = (crk2) ⊆ (c) ⊆ · · ·

that must end because of the condition rn = 0, and of the fact that s is not

zero.

We have also that the factorization of s = urm is unique, because of the fact

that r is the greatest power of r that divides s. 2

Proposition 1.55 A SPIR is just that same of a local Artinian PIR.

Proof

We already know that an Artinian local PIR is a SPIR: in fact, it is a local

ring, it is a PIR, and its maximal ideal is nilpotent, because of the fact that
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the ring is Artinian and so the terminal condition about descending chains

holds.

Vive versa, let (R, (r)) be a SPIR, then by the reasoning done in Lemma

1.54, each non zero element a in R can be written as urn, where u is a unit

and 0 ≤ n < m, and m is the nilpotency of (r). So the ideals of R are

precisely (0), (r)n, with 0 ≤ n < m. Then, we have that our ring is also

Artinian and by hypothesy it is local and PIR. 2

Now we are ready to prove the following result.

Theorem 1.56 The following sentences are equivalent:

(i) R is a G-UFR;

(ii) R is an UFD, or a SPIR, or a local ring (R,M) with M2 = (0).

Proof

(i)⇒(ii) Let us suppose that R is a G-UFR.

We distinguish between two cases: first, R is an integral domain; second, R

is a G-UFR with zerodivisors.

In the first case, R is a UFD, because in a domain the concepts of G-UFR

and UFD are the same.

In the second case, we use Theorem 1.53: let M be the only maximal

ideal of R, we know that it is the set of all nilpotent of R; we know also from

the last theorem, that either M is principal, or rs = 0 for all irreducibles r

and s (not necessarily distinct).

If M is principal, there is an element s ∈ M such that M = (s), but s is a

nilpotent, so there exists an integer n such that (s)n = 0. From the fact that

M is principal, we deduce also that R is a PIR, because every proper ideal

of R is contained in M . Hence, R is a SPIR.

Otherwise, the fact that rs = 0 for all irreducibles r and s is equivalent to
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M2 = (0), so, in this case, we have that (R,M) is a local ring with M2 = (0).

(ii)⇒(i) If R is a UFD, it is also a G-UFR.

Let us suppose that R is a SPIR, then by Lemma 1.54 each non-zero

element s has a unique factorization into irreducibles, s = urm, for some

unit u and some m.

Let us suppose that (R,M) is a local ring with M2 = (0): if s is a non-

unit, non-zero, then s ∈ M and s is irreducible, otherwise s = ab with a, b

non-unit, but a, b ∈ M , so ab = 0, a contradiction; the second condition is

also guaranteed.

2

Now we want to obtain a similiar result using Bouvier’s definition of UFR.

Theorem 1.57 The following sentences are equivalent:

(i) R is a B-UFR;

(ii) R is an UFD, or a SPIR, or a local ring (R,M) with M2 = (0).

Proof

If R is a UFD, it is also a B-UFR, because in domains we have that B-

irreducible is equivalent to irreducible.

Let us suppose that R is a SPIR: it is a principal ideal ring, in which

there is a single prime ideal P such that P n = (0), for such n. Because of

these facts, there is r ∈ R such that P = (r) and rn = 0. We want to prove

the two conditions contained in the definition of B-UFR. First, as we have

done in Theorem 1.56, we have that each non-zero, non-unit s ∈ R can be

written in the following way

s = urm where u is a unit and 0 ≤ m < n,

so this is the factorization into irreducibles of s, so, by Proposition 1.41, it

is also the factorization into B-irreducibles of s.

38



The second condition is also satisfied, because the factorization of s = urm

is unique.

Let us suppose that (R,M) is a local ring with M2 = (0): if s is a non-

unit, non-zero, then s ∈ M and s is irreducible, otherwise s = ab with a, b

non-unit, but a, b ∈ M , so ab = 0, a contradiction, again because of Propo-

sition 1.41, s is B-irreducible; the second condition is also guaranteed.

To obtain the converse, we have to repeat the proofs of Lemma 1.51,

of Theorem 1.53, and finally of Theorem 1.56, in which we have to replace

G-UFD with B-UFD. So we get the same results also for B-UFD rings.

2

We will use the term BG-UFR (Bouvier-Galovich unique factorization

ring) for the equivalent unique factorization rings introduced by Bouvier and

Galovich.

1.5 Fletcher’s definition

There is another way to extend the notion of UFD to rings with zerodi-

visors. In fact, Fletcher, in the paper Unique Factorization Rings, ([8]),

defined the F-UFR’s (unique factorization rings according to Fletcher) using

a new concept of irreducible element, and also the concepts of U -class and

U -decomposition of an element. So this definiton is surely less intuitive than

the other two. Although, Fletcher gave also a characterization of F-UFR’s

in another paper, The structure of unique factorization rings, ([9]), that is

very useful to draw a comparison with the BG-UFR’s.

Let us consider a commutative ring with unity, R.

Definition 1.58 Let r = a1 · · · an be a factorization of r ∈ R. A refinement
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of this factorization is obtained by factoring one or more of the factors.

Definition 1.59 A non-unit element r ∈ R is said to be F-irreducible if each

factorization of r has a refinement containing r, as one of the new factors.

This definition can be formulated in another, more intuitive, way, because of

the following proposition.

Proposition 1.60 The following sentences are equivalent:

1. r ∈ R is an F-irreducible element;

2. if r = ab, then a ∈ (r) or b ∈ (r);

3. if r = ab, then (r) = (a) or (r) = (b).

Proof

1. ⇒ 2. If r = ab, since r is F-irreducible, there is a refinement of this

factorization that contains r as one of the new factors, so we must have that

either a = a′r or b = b′r.

2. ⇒ 3. It is trivial.

3. ⇒ 1. Let r = a1 · · · an be an arbitrary factorization of r, we want to

prove that this factorization has a refinement that contains r as one of the

new factors, i.e. we have to prove that there exist at least one i such that

ai ∈ (r). We proceed by induction. If n = 2, the result is ensured from

the hypothesis. Let us suppose that the thesis holds for n − 1 and let us

prove it when the number of factors is n: if r = a1 · · · an, then we have that

either a1 ∈ (r) or a2 · · · an ∈ (r), if the second case holds, we apply induction

hypothesis to get our result. 2

Definition 1.61 The U-class of an element r ∈ R is the following set

U(r) = {a ∈ R| abr = r for some b ∈ R}.
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Now, we want to underline the features of the U -class of an element in R

and to descover the relationship between the definition of irreducible element

given by Bouvier in Section 1.4.1 and the above definition given by Fletcher.

Proposition 1.62 The U-class of an element r ∈ R. U(r) is a multiplica-

tively closed and saturated set.

Proof

Let a, b be two elements of U(r), then there are c, d ∈ R such that acr = r

and bdr = r, so we have that

r = acr = ac(bdr) = (ab)(cd)r,

hence ab ∈ U(r).

If ab ∈ U(r), there exists c ∈ R such that abcr = r = a(bc)r = b(ac)r,

hence, because of the fact that ac ∈ R and bc ∈ R, both a and b are elements

of U(r). 2

Proposition 1.63 Let R be a commutative ring and r ∈ R, then the follow-

ing sentences are equivalent:

1. a ∈ U(r);

2. (a) + (0 : r) = (1);

3. a is a unit in the quotient R/(0 : r).

Proof

1. ⇒ 2. By definition, there is b ∈ R, such that (ab − 1)r = 0, then

c = ab− 1 ∈ (0 : r) and we have that 1 = ab− c ∈ (a) + (0 : r).

2. ⇒ 3. It is trivial.

3. ⇒ 1. If there is some b ∈ R such that ab = 1 + c, where c ∈ (0 : r), then
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0 = cr = (ab− 1)r, and so a ∈ U(r). 2

In the following we prove that Fletcher’s definition of irreducible element

is a more general concept of Bouvier’s one.

Proposition 1.64 If r ∈ R is B-irreducible element, then it is a F-irreducible

element.

Proof

Suppose that r = a1a2 · · · am and, for instance, let a1, a2, . . . , as be non-units,

hence (r) ⊆ (ai), for each i = 1, 2, . . . , s, and, by hypothesis, we must have

that (r) = (ai) for those i, i.e. there is a refinement of the given factorization

that contains r, then, because we have taken an arbitrary factorization, r is

F-irreducible. 2

But, this two concepts are equivalent in the case of a ring with only harmless

zerodivisors, and in particular, in the local case.

Proposition 1.65 Let R be a ring with only harmless zerodivisors, if r ∈ R
is a non-zero, F-irreducible element, then it is also a B-irreducible element.

Proof

By contradiction, let us suppose that r ∈ R is F-irreducible, but B-reducible,

then there exists a non unit a ∈ R such that (r) ( (a), i.e. there is a non

unit element b ∈ R such that r = ab. Since r is F-irreducible, we have that

a ∈ (r) or b ∈ (r): in the first case, we get a contradiction, because we obtain

that (r) = (a); in the second case, we have that b = cr and that r(1−ac) = 0,

but r 6= 0, then we get that 1− ac = 1− u, where u is a unit, and that a is

a unit, and here we have the contradiction. 2

Corollary 1.66 In UFD’s and in local rings, the F-irreducible elements are

also B-irreducible.
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Proof

This result is true, since UFD’s and local rings are rings with only harmless

zerodivisors. 2

Because of Proposition 1.65 and of Proposition 1.41, in a ring with only

harmless zerodivisors the three concepts of irreducible element, given respec-

tively, by Galovich, Bouvier and Fletcher, are just the same.

To be ready to define the Fletcher’s UFR, we have to talk about U -

decompositions.

Definition 1.67 A U -decomposition of an element r ∈ R is a factorization

of r

r = (p′1 · · · p′k)(p1 · · · pn),

where

1. p′i, pj are F-irreducible, i = 1, . . . , k and j = 1, . . . , n;

2. p′i ∈ U(p1 · · · pn), i = 1, . . . , k;

3. pj /∈ U(p1 · · · p̂j · · · pn), j = 1, . . . , n.

where ̂ denotes that the term is omitted.

In a U-decomposition p1, . . . pn are said to be the relevant part, p1 · · · pn is

said the relevant element, and p′1, . . . p
′
k are said to be the non-relevant part.

Proposition 1.68 If r has a factorization into F-irreducibles, then r has a

U-decomposition.

Definition 1.69 Two element a, b ∈ R are said F-associates (or simply

associates), if (a) = (b).

Proposition 1.70 The relevant element of a U-decomposition of r ∈ R is

an associate of r.
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Definition 1.71 Two U-decomposition of r ∈ R

r = (p′1 · · · p′k)(p1 · · · pn) = (q′1 · · · q′l)(q1 · · · qm)

are said to be associate if n = m and, after a suitable renumbering of the

factors, the elements pi and qi are associate for each i = 1, . . . , n.

Definition 1.72 A ring R is a F-UFR, i.e. a unique factorization ring,

according to Fletcher, if:

1. every non-unit element of R has a U-decomposition;

2. any two U-decompositions of a non-unit element of R are associate.

Here we have an important result: in domains, the two notions of F-UFR

and of UFD are just the same. We notice that this result is not so easy to be

proved: in fact the definition of F-UFR is not so intuitive and so close to the

one of UFD’s as the other two definitions of UFR are, so we need to spend

few words more.

Theorem 1.73 An integral domain R is a F-UFR if and only if it is a UFD.

Proof

Suppose first that R is a F-UFR, and consider only non-zero, non-unit ele-

ments of R. Each U -class is the class of units, since R is an integral domain.

So, if we consider the U -decomposition of a non-zero, non-unit element, the

non-relevant part has to be empty, because it is constituted by elements that

are at the same time F-irreducible and units. Hence, R is a UFD.

Conversely, if R is a UFD, then every non-zero, non-unit element r has a

unique factorization into irreducibles, and, in a integral domain, an element

is irreducible if and only if it is F-irreducible, but by Proposition 1.68 r has a

U -decomposition. And also 0 has a unique factorization, because U(0) = R
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and 0 ∈ U(r) for any r 6= 0, hence a U -decomposition of 0 is of the form

(p′1 · · · p′k)0. So R is a F-UFR.

2

In the following, we announce some important results that give a descrip-

tion of the structure of F-UFR. and finally, we will find out that each F-UFR

is a finite direct product of SPIR’s and UFD’s.

For instance, we will obtain that each Artinian, local, PIR is a F-UFR, and

that also a finite direct product of such rings is a F-UFR, hence every Artinian

PIR is a F-UFR, because it can be written as a finite product of Artinian

local PIR’s (see 3.4).

Theorem 1.74 If R and S are F-UFR’s, then R ⊕ S is a F-UFR. Hence,

the direct sum of finitely many F-UFR’s is a F-UFR.

Let us prove a kind of converse of the theorem above, in which we suppose

to have a ring that is a direct product of two rings.

Proposition 1.75 Let R be the direct product of two rings, A,B, and let us

suppose that R is a F-UFR, then both A and B are F-UFR’s.

Proof

For instance, we prove that A is a F-UFR, since the proof that B is a F-UFR

is just the same.

Let a ∈ A be a non-unit element of A and let us consider the element of R,

(a, 1B), which is not a unit since a is not a unit. We know, by hypothesis,

that R is a F-UFR, so we can consider the U -decomposition of (a, 1B):

(a, 1B) = [(p′1, q
′
1) · · · (p′n, q′n)][(p1, q1) · · · (pm, qm)].

Since every factor of this product is F-irreducible, we must have, by Propo-

sition 1.80, that one and only one of the two components is F-irreducible,
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while the other component is a unit. So, because of the fact that 1B =

(q′1 · · · q′m)(q1 · · · qm), each p′i and each pj must be F-irreducible. Moreover,

the other two conditions for (p′1 · · · p′m)(p1 · · · pm) are satisfied, since they hold

for the U -decomposition of (a, 1B). Then, we have found an U -decomposition

for a, where a is an arbitrary non-unit element of A.

The fact that two U -decomposition of a non-unit element of A are associate

follows from the fact that R is a F-UFR. 2

Theorem 1.76 If R is a SPIR, then R is a F-UFR.

Theorem 1.77 Every PIR is a finite direct sum of PID’s and of SPIR’s.

Corollary 1.78 A PIR is a F-UFR.

Theorem 1.79 (Characterization of F-UFR’s) Every F-UFR is a finite

direct sum of UFD’s and of SPIR’s.

The following examples show us that the concept of F-UFR is independent

of the notion of BG-UFR.

Example

An example of a ring that is a BG-UFR but not a F-UFR is the following:

R =
k[x, y]

(x2, y2, xy)
,

where k is a field. It is a local ring with maximal ideal, (x, y), which is nilpo-

tent with nilpotency 2. Then, by Theorem 1.56, it is a BG-UFR. It cannot be

a F-UFR, because it is not a SPIR or a UFD, and, since it is local, it cannot

be a direct product of finitely many (two or more) SPIR’s and UFD’s. 2

Example

Conversely, it is easy to prove that Zn, where nis not a power of a prime
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element, is a F-UFR but not a BG-UFR. Infact, it is a direct product of

SPIR’s. But, it is neither an UFD nor a local ring, so it can be a BG-UFR.

We also observe that this is an example of a ring that is a PIR, but not a

BG-UFR). 2

1.5.1 Cartesian Product and F-irreducible elements

In the following we want to list some useful properties about the beaviour of

F-irreducible elements in the cartesian product of two rings.

Proposition 1.80 Let A,B be two commutative rings with unity. If (a, b) ∈
A × B is an F-irreducible element (so, it is a non-zero, non-unit element),

then a is a unit and b is an F-irreducible element or vice versa.

Proof

Let us consider the following factorization

(a, b) = (a, 1B) · (1A, b),

since, by hypothesis, (a, b) is F-irreducible, we have that either (a, 1B) ∈
((a, b)), i.e. b is a unit in B, or (1A, b) ∈ ((a, b)), i.e. a is a unit in A. We

notice that we cannot have that both a and b are units, since (a, b) is not a

unit in A×B. 2

Proposition 1.81 Let us consider the direct product of n commutative rings

with unity, B = A1 × · · · × An, and let (a1, . . . , an) ∈ B be a non-unit, non-

zero element, if (a1, . . . , an) is an F-irreducible element, then ∃ i = 1, . . . , n

such that ai is F-irreducible and aj is a unit for each j 6= i.
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Proof

Let us consider the factorization

(a1, a2, . . . , an) = (a1, 1, . . . , 1) · · · (1, 1, · · · , an),

but (a1, . . . , an) is F-irreducible, so, by definition, this factorization has a

refiniment that contains (a1, . . . , an) as one of the new factors, i.e. there is

i ∈ {1, . . . , n}, such that (1, . . . , 1, ai, 1, . . . , 1) ∈ ((a1, . . . , an)). This means

that aj is a unit for each j 6= i, and that ai is an F-irreducible element,

since, if it had a factorization without refiniment that contains it, we could

easily find such a factorization for (a1, . . . , an), against the assumption of the

F-irreducibility. 2

Corollary 1.82 Let A,B be two commutative rings with unity. If the con-

cept of F-irreducible is equivalent to the concept of B-irreducible in A and in

B, then the same occurs in A×B.

Proof

We already know that in every commutative ring with unity the concept of

B-irreducible implies the concept of F-irreducible.

We now prove the converse: if (a, b) is an F-irreducible element in A×B,

we know from Proposition 1.80 that a is a unit and b an F- irreducible ele-

ment, or vice versa. Let us suppose, for instance, that the first case occurs,

then, by hypothesis, b is a B-irreducible element. From these facts, it is easy

to deduce that the ideal generated by (a, b) is a maximal element among the

principal ideals of A×B, i.e., (a, b) is, by definition, a B-irreducible element.

2

Corollary 1.83 Let A1, A2, . . . , Am be commutative rings with unity. If the

two concept of irreducible elements, given, respectively, by Bouvier and by
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Fletcher, are equivalent in each Ai, for i = 1, . . . ,m, then they are equivalent

also in the ring A1 × · · · × Am.

Proof

This result follows directly from the above corollary, by induction. 2

Corollary 1.84 If R is a F-UFR, then the concepts of F-irreducible element

and of B-irreducible element are the same.

Proof

We know, from Theorem 1.79, that every F-UFR is a direct product of finitely

many UFD’s and SPIR’s. Finally, using Corollary 1.66 and Corollary 1.83,

we get the result. 2

1.6 Some results about rings with only harmless zero-

divisors

At first, we want to remind the definition of harmless zerodivisor.

Definition 1.85 Let R be a commutative ring with unity, we say that r ∈ R
is a harmless zerodivisor, if it is a zerodivisor and it may be written as r =

1− u, where u is a unit.

In the following, we want to enounce some propositions about rings with only

harmless zerodivisors, that we have already proved in the previous sections.

Theorem 1.86 Let R be a ring with only harmless zerodivisors. Then, the

following different concepts of irriducible element are equivalent:

1. G-irreducible;
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2. B-irreducible;

3. F-irreducible.

Proof

The equivalences follow from Proposition 1.41, from Proposition 1.64 and

from Proposition 1.65. 2

Because of Theorem 1.86, in the next chapters, we will not distinguish

among the three different concepts of irreducibility.

Lemma 1.87 Let A and B be rings with only harmless zerodivisors, then

A×B is still a ring with only harmless zerodivisors.

Proof

We first notice that (a, b) ∈ A × B is a zerodivisor if and only if a, b are

zerodivisors; the same holds for units.

We know that, since A,B are, by hypothesis, rings with only harmless zero-

divisors, Z(A) ⊆ 1A − U(A) and that Z(B) ⊆ 1B − U(B), where U(A) and

U(B) denote the groups of units respectively of A and B. Then we have that

Z(A×B) ⊆ Z(A)×Z(B) ⊆ (1A−U(A))× (1B−U(B)) ⊆ 1A×B−U(A×B),

i.e. A×B is a ring with only harmless zerodivisors. 2

Proposition 1.88 If R is an integral domain, or a local ring with maximal

ideal M , then it is a ring with only harmless zerodivisors.

Proof

It is trivial to prove that an integral domain is a ring with only harmless

zerodivisors, because it has not zerodivisors.

Let us prove that if (R,M) is a local ring, it has only harmless zerodivisors:
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we know that Z(R) ⊆ J(R) = M ; therefore, in every commutative ring with

unity, we have that J(R) ⊆ 1R−U(R); then we have that Z(R) ⊆ 1R−U(R)

and this completes the proof.

2

Example

Now, we show an example of a ring with only harmless zerodivisors, that is

neither an integral domain nor a local ring.

Let A be a SPIR, then A[x] is such a ring.

If (t) is the only maximal ideal of A, then, as we will prove in Fact 2.9, we

have that

(t) = J(A[x]) = Z(A[x]),

and so, as we have done in the proof of the previous proposition, we have

that A[x] is a ring with only harmless zerodivisors.

A[x] is not an integral domain, for Z(A[x]) is not empty. Furthermore, A[x]

is not a local ring, as it is proved in Fact 2.9. 2

Theorem 1.89 If A1, A2, . . . , An are rings with only harmless zerodivisors,

then in A1 × A2 × · · · × An the concepts of B-irreducibility, F-irreducibility

and G-irreducibility are equivalent .

Proof

This result follows, by induction, from Theorem 1.86 and from Lemma 1.87.

2
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2 Non-unique Factorization in A[x], where A

is an Artinian, principal and local ring.

We want now to generalize the paper Non-unique factorization of polynomials

over residue class rings of the integers (cf. [10]), investigating the non-unique

factorization of polynomials in A[x] into irreducible, where (A,m) is an Ar-

tinian, principal and local ring.

At first we want to notice that the ring A is principal and local, so there is

a t ∈ A such that m = (t), moreover, because of the fact that A is Artinian,

there exists an h ∈ N, h > 0, such that th = 0.

From these facts and from Lemma 1.54 and Proposition 1.55, we deduce that

each element a ∈ A, a 6= 0, can be represented in the following way

a = utk, where u is a unit and k ∈ N, k < h. (8)

We denote by µ : A[x] → K[x], where K = A/m, the canonical projec-

tion. We will use the notation just introduced throughout the paper.

2.1 t-adic Valuation

We want to introduce the concept of t-adic valuation. First, we denote with

(Nh,+,≤) the ordered monoid with elements 0, 1, . . . , h− 1,∞ obtained fac-

toring (N0∪{∞},+,≤) by the congruence relation that identifies all numbers

greater and equal to h, including ∞.

Definition 2.1 Let v : A→ Nh be the map defined by putting

v(a) = max{n : tn | a} with a 6= 0

v(0) =∞

This map is called t-adic valuation, where v(a) is the natural number that

occurs in (8).
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Remark 2.2 The following statements hold:

1. v(a) =∞ ⇔ a = 0;

2. v(a+ b) ≥ min{v(a), v(b)};

3. v(ab) = v(a) + v(b).

Definition 2.3 The previous map can be naturally extended to a map, that

we will denote with v, by abuse of notation, v : A[x]→ Nh, where we put

v(f(x)) = v(
s∑
i=0

aix
i) = mini=0,...,sv(ai)

Remark 2.4 The following statements hold:

1. v(f) =∞ ⇔ f = 0;

2. v(f + g) ≥ min{v(f), v(g)};

3. v(fg) = v(f) + v(g).

Proof

1. Let f =
∑s

i=0 aix
i, v(f) = mini=0,...,s(v(ai)) = ∞ if and only if v(ai) =

∞, i = 0, . . . , s, for the properties of t-adic valuation of the ring A, we have

that this holds if and only if ai = 0, i = 0, . . . , s.

2. Let f =
∑s

i=0 aix
i and g =

∑r
j=0 bjx

j, for instance let s ≤ r, then v(f +

g) = min{v(ai+bi), v(bj)| i = 0, . . . , s; j = s+1, . . . , r} ≥ min{v(ai), v(bj)|i =

0, . . . s; j = 0, . . . , r} ≥ min{v(f), v(g)}, because of the fact v(ai + bi) ≥
min{v(ai), v(bi)}.
3. Let f =

∑s
i=0 aix

i and g =
∑r

j=0 bjx
j, v(fg) = v(

∑
i=0,...s; j=0,...r aibjx

i+j) =

min{v(aibj)| i = 0, . . . s; j = 0, . . . r} = {v(ai) + v(bj)| i = 0, . . . s; j =

0, . . . r} = v(f) + v(g). 2
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Fact 2.5 If f ∈ A[x], the following statements are equivalent:

1. v(f) > 0, i.e. all the coefficients of f are divisible by t in A;

2. f is nilpotent;

3. f is a zero-divisor.

Proof

1.⇒ 2. If f = tg, certainly fh = 0.

2.⇒ 3. It’s trivial.

3.⇒ 1. By contradiction, let v(f) be equal to 0, i.e. not-every coefficient of

f is divisible by t, by the hypothesis ∃ g 6= 0 such that fg = 0, then, using

Remark 2.4, we obtain that v(g) =∞, here we have a contradiction. 2

2.2 Nilpotent elements, regular elements, zerodivisors

Definition 2.6 Let R be a commutative ring, let Nil(R) be the intersection

of all primes in R, J(R) be the intersection of all maximal ideals in R, Z(R)

be the set of all zero-divisors in R, and U(R) be the group of all the units.

Definition 2.7 Let R be a commutative ring, let c ∈ R, it is a regular

element if it is not a zero-divisor.

Proposition 2.8 We have that

x ∈ J(R) ⇐⇒ 1− xy is a unit ∀ y ∈ R.

Proof

⇒ Let x ∈ R and suppose that ∃ y ∈ R such that 1− xy is not a unit, then

there exists a maximal ideal M such that 1 − xy ∈ M , but x ∈ M because

it is in J(R), so we must have 1 ∈M , and this is a contradiction.
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⇐ By contradiction, suppose that x /∈ J(R), hence there exists a maximal

ideal M of R such that x /∈ M . So we have that R = M + (x), then there

are m ∈ M and n ∈ R such that 1 = m + nx, i.e. 1 − nx = m, but, by

hypothesis, this element is a unit, and here we have the contradiction. 2

Fact 2.9 We have that:

Nil(A[x]) = Z(A[x]) = J(A[x]) = (t) = m[x].

Proof

From 2.5, we have that Nil(A[x]) = Z(A[x]) = (t). Now we prove that the

maximal ideals of A[x] are precisely the ideals (t, f), where µ(f) ∈ A
m

[x] is

irreducible, so we have that J(A[x]) = (t).

It is easy to prove that (t, f) is a maximal ideal of A[x]; conversely, suppose

that N is a maximal ideal of A[x], N ∩A = (t) because it is a prime ideal of

A, so t ∈ N , now we have that

A[x]

N
∼=

A[x]
m[x]

N
m[x]

∼=
A
m

[x]
N
m[x]

but the first ring is a field, so N
m[x]

is a maximal ideal in A
m

[x], so there is an

irreducible ideal f such that N
m[x]

= (f). 2

The following results are easy to prove.

Proposition 2.10 Let f = a0 + a1x+ · · ·+ anx
n ∈ A[x], then:

1. The following statements are equivalent:

(a) f is a unit;

(b) µ(f) is a unit;

(c) a0 is a unit and a1, a2, . . . , an are nilpotent.

55



2. The following statements are equivalent:

(a) f is nilpotent;

(b) µ(f) = 0 ;

(c) a0, a1, . . . , an are nilpotent.

3. The following statements are equivalent:

(a) f is regular;

(b) (a0, a1, . . . , an) = A ;

(c) ∃ i : ai is a unit ;

(d) µ(f) 6= 0.

Proof

1. (a)⇒(b) It is trivial.

(b)⇒(c) If µ(f) =
∑n

i=0 µ(ai)x
i is a unit inK[x], we have that µ(ai) = 0

for each i > 0, and µ(a0) 6= 0, so ai ∈ m ∀ i > 0, i.e. ai is nilpotent,

and a0 /∈ m, so it is a unit.

(c)⇒(a) If f = a0 + g with a0 a unit and all coefficients of g in the

intersection of all primes of A, then g is in every prime ideal of A[x]

and hence f = a0 + g is in no prime ideal of A[x], and therefore is a

unit of A[x]..

2. (a)⇒(b) ∃ m such that fm = 0, we have that (µ(f))m = 0 in K[x],

that is a domain, so µ(f) = 0.

(b)⇒(c) µ(f) =
∑n

i=0 µ(ai)x
i = 0 if and only if ai ∈ m for each i =

0, . . . , n, i.e. ai is nilpotent.

(c)⇒(a) We have that aix
i is nilpotent for each i = 0, . . . , n, but the

sum of nilpotent elements is nilpotent.
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3. (a)⇒(b) By contradiction, suppose that (a0, a1, . . . , an) is a proper ideal

of R, then it is contained in m, but this implies that a0, a1, . . . , an are

nilpotent, i.e. that f is nilpotent, against the assumption.

(b)⇒(c) and (c)⇒(d) are trivial.

(d)⇒(a) By contradiction, we suppose that f is a zero-divisor, so we

must have f ∈ (t), i.e. each ai is divisible by t, but this is a contradic-

tion because by hypothesis there exists such i such that ai /∈ (t).

2

2.3 Factorization of arbitrary polynomials into regular

elements

Lemma 2.11 Let f be in A[x], the following statements are equivalent

(i) f = tu, for some unit u ∈ A[x];

(ii) f is prime, i.e. if f |gh, then f |g or f |h;

(iii) f is irreducible and zerodivisor.

Proof

(i) ⇒ (ii) Let v : A[x] → Nh be the t-adic valutation, since v(t) = 1, and

v(ab) = v(a) + v(b), if t divides ab in A[x], then v(a) + v(b) ≥ 1, so t divides

a or b, i.e. t is prime in A[x], and so is every associated to t.

(ii) ⇒ (iii) Prime elements of A[x] are irreducible. Since (f) is prime, it

contains Nil(A[x]) = (t), so f |t. As t is a zerodivisor, so is f : in fact, t is

irreducible, i.e. the relation t = fz implies that z is a unit and not a zero

divisor, hence f is a zerodivisor.

(iii) ⇒ (i) Since f is a zerodivisor, f ∈ Z(A[x]) = (t), i.e. f = tv, for some

57



v. And from the irreducibility of f , we deduce that v is a unit. 2

Proposition 2.12 Let f be a non-zero polynomial in A[x].

1. There exist a regular element g ∈ A[x], and 0 ≤ k < h, such that

f = tkg. Furthermore, k is uniquely determined by k = v(f), and g is

unique modulo th−kA[x];

2. In every factorization of f into irreducibles, exactly v(f) of the irre-

ducible factors are associates of t.

Proof

1. follows from Fact 2.5 and from the definition of t-adic valutation: in fact,

if f is a zerodivisor, then let tk be the largest power of t that divides f , so

∃ g such that f = tkg, where t - g, i.e. g is a regular polynomial. Therefor,

we notice that k = v(f), so k is uniquely determined.

2. follows from 1. and from the fact that t is prime in A[x], in fact, if

f = a1a2 · · · am is a factorization of f into irreducibles, using part 1., we

have that f = tv(f)g, with g regular polynomial, and ai = tv(ai)a′i, for each

i = 1, . . . ,m, and with a′i regular element, so we get the following relation

f = tv(f)g = tv(a1)+···+v(am)a′1 · · · a′m,

hence, using the fact that t is prime and that g − a′1 · · · a′m is a regular poly-

nomial, we obtain that v(f) = v(a1) + · · ·+ v(am). 2

Fact 2.13 Let f1 and f2 be two polynomials ∈ A[x]. Then f1 and f2 are

coprime in A[x] if and only if µ(f1) and µ(f2) are coprime in K[x].
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Proof

Assume that µ(f1) and µ(f2) are coprime in K[x]. Then there are β1 and β2

in A[x] such that

µ(β1)µ(f1) + µ(β2)µ(f2) = 1.

Thus,

β1f1 + β2f2 = 1 + tk,where k ∈ A[x]. (9)

Let

l =
s−1∑
i=0

(−tk)i

Then multiplying (9), we obtain that 1 = lβ1f1 + lβ2f2, so f1 and f2 are

coprime in A[x].

The converse is trivial. 2

Lemma 2.14 (Hensel’s Lemma) Let f ∈ A[x] and µ(f) = g1g2 · · · gn,

where gi are pairwise coprime. Then there exist g1, g2, . . . , gn ∈ A[x] such

that:

1. g1, . . . , gn are pairwise coprime;

2. µ(gi) = gi, 1 ≤ i ≤ n;

3. f = g1 · · · gn.

Proof

We first study the case n = 2. From µ(f) = g1g2 and from the fact that µ

is surjective, we deduce that there exist h1, h2 ∈ A[x] such that µ(h1) = g1

and µ(h2) = g2, and there is v ∈ m[x], such that f = h1h2 + v. Since g1 and

g2 are coprime, there exist λ1, λ2 ∈ A[x] such that λ1h1 + λ2h2 = 1.

Now we put

h11 = h1 + λ2v, h21 = h2 + λ1v
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and we have

h11h21 = h1h2 + v(λ1h1 + λ2h2) + λ1λ2v
2 = h1h2 + v + λ1λ2v

2 = f + λ1λ2v
2,

so f = h11h21 mod(v2) where µ(hi1) = µ(hi) ∀ i = 1, 2.

We can repeat the procedure because of the fact that h11 and h21 are coprime,

so ∀ t ∈ N there are h1t and h2t in A[x] such that

f = h1th2t mod(v2t) and µ(hit) = µ(hi) for i = 1, 2,

but v ∈ m[x], so it is nilpotent, then there is t ∈ N such that f = h1th2t, and

this concludes the case n = 2.

The result follows by induction by observing that if h1 is coprime to hi,

2 ≤ i ≤ n, then h1 and h2 · · ·hn are coprime. 2

Lemma 2.15 Let f be a regular polynomial in A[x]. Then there exists a

sequence {fj} of monic polynomials in A[x] with

deg(fj) = deg(µ(f))

fj = fj+1 mod(mj)

and for some gj ∈ m[x] and unit bj ∈ A

bjf = fj + gjfj mod(mj).

Proof

Let f =
∑n

i=0 bix
i, where bn 6= 0; if deg(µ(f)) = u ≤ n, bu is a unit. Choose

g1 = 0 and f1 = b−1u (b0 + b1x+ · · ·+ bux
u).

We now proceed by induction. Assume that {fi}ji=1 satisfies the Lemma;

then bjf = fj + gjfj +h where h ∈ mj[x]. Since fj is monic, we may select q

and r in A[x], such that h = fjq + r, where deg(r) < deg(fj) = deg(µ(f))),

or r = 0.
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Set fj+1 = fj + r and gj+1 = gj + q. Now we prove that gj+1 ∈ m[x] and

r ∈ mj[x].

If r = 0, the proof is trivial; otherwise suppose fj = a0 + a1x + · · · +

au−1x
u−1+xu and q = c0+c1x+ · · ·+csx

s. In the product fjq, the coefficient

of xs+u is cs, of xs+u−1 is cs−1 + au−1cs, etc. Since h = 0 mod(mj) and

deg(r) < deg(fj) = u, cs ∈ mj, so also cs−1 ∈ mj, etc, and consequently

q ∈ mj[x].

Then gj+1 ∈ m[x] and r = h− qfj ∈ mj[x].

This ends the proof, because with this choice of fj+1 and gj+1 we have

bjf = fj + gjfj + h

= (fj + r) + (gj + q)(fj + r)− rgj − rq

= fj+1 + gj+1fj+1 − r(gj + q)

= fj+1 + gj+1fj+1 mod(mj).

2

Theorem 2.16 Every regular polynomial f ∈ A[x] is uniquely representable

as f = ug, with u unit and g monic in A[x]. Therefore, the degree of g is

deg(µ(f)).

Proof

Let β be the nilpotency of m, i.e. mβ = (0). Using the Lemma 2.15, we have

that f = b−1β (1 + gβ)fβ, where g = fβ is monic and its degree is the degree

of µ(f), and bβ is a unit, and because of the fact that gβ ∈ m[x], also 1 + gβ

is a unit.

The uniqueness follows from Proposition 2.10.

2
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Theorem 2.17 Let f ∈ A[x] be a non-zero regular polynomial, and u and g

the unique unit and monic polynomial, respectively, in A[x] such that f = ug.

For every factorization into irreducibles f = c1 · · · ck, there exist uniquely

determined monic irreducible d1, . . . , dk ∈ A[x] and units v1, . . . , vk ∈ A[x]

such that ci = vidi, u = v1 · · · vk and g = d1 · · · dk.

By the last Theorem we have reduced the question of factoring regular

elements of A[x] into irreducibles to the question of factoring monic polyno-

mials into monic irreducibles. In the next section we will go another step

forward.

2.4 Factorization of monic polynomials into primary

monic polynomials

In the following section, we start by giving a characterization for a primary

ideal that holds in A[x]. We remind that an element f ∈ A[x] is said to be

primary if the principal ideal (f) is a primary. In the lemma above, we say

that f is primary if and only if µ(f) is a power of an irreducible polynomial,

which will be a very useful result.

Lemma 2.18 Let f ∈ A[x] be a non-zerodivisor, then (f) is a primary ideal

if and only if µ(f) is a power of an irreducible polynomial.

Proof

In the PID K[x], where K = A/m, the non-trivial primary ideals are the

principal ideals generated by powers of irreducible elements. So the projec-

tion µ induces a bijective correspondence between the primary ideals of K[x]

and the primary ideals of A[x] containing (t).

An ideal in A[x] in which there are non-zerodivisors is primary if and only

if its radical is a maximal ideal (since the only non-maximal prime ideal of

A[x] is (t) = Z(A[x])). Let f ∈ A[x], since every prime ideal of A[x] contains
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(t) = Nil(A[x]), we have that the radical of (f) is equal to the radical of

µ−1(µ(f)) = (f) + (t). So (f) is primary if and only if (f) + (t) is primary,

because of the fact that if (f) is primary, since f is a non-zerodivisor,
√

(f)

is maximal, then
√

(f) + (t) is maximal too, and this implies that (f) + (t)

is primary, and conversely. The fact that (f) + (t) is primary is equivalent to

µ(f) being a primary element ofK[x], because of the bijective correspondence

described above.

2

Using the Lemma 2.14, we want to prove the following theorem.

Theorem 2.19 Let f ∈ A[x] be a monic polynomial, of degree ≥ 1. Then:

(i) f can be factorized in the product of r coprime primary monic polyno-

mials f1, f2, . . . , fr ∈ A[x], and for each i = 1, 2, . . . , r, µ(fi) is a power

of a monic irreducible polynomial over k;

(ii) Let

f = f1 · · · fr = h1 · · ·hs (10)

be two factorizations of f into products of pairwise coprime monic pri-

mary polynomials over A, then r = s and after renumbering, fi =

hi, i = 1, 2, . . . , r.

Proof

(i) We can assume that µ(f) = he11 · · ·herr , where h1, . . . , hr are monic

irreducible distinct polynomials, by the Lemma 2.14 , there exist g1, . . . , gr ∈
A[x], such that f = g1 · · · gr and µ(gi) = heii for each i. Moreover, because

of the fact that the polynomials heii are coprime, using Fact 2.13, even the
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polynomials gi are coprime.

(ii) From the equation (10), we deduce that f1 · · · fr ∈ (hi) for each

i = 1, . . . , s. Since (hi) is a primary ideal, there exist an integer ki, 1 ≤ ki ≤ r,

and a positive integer ni, such that fni
ki
∈ (hi). We now prove that ki is

uniquely determined. Assume that there is another k′i 6= ki and n′i such that

f
n′i
k′i
∈ (hi), since fki and fk′i are coprime in A[x], there are a, b ∈ A[x] such

that 1 = afki + bfk′i . Then

1 = 1ni+n
′
i−1 = (afki + bfk′i)

ni+n
′
i−1 ∈ (hi)

and this is a contradiction.

Similarly, for each j = 1, . . . , r, there is a uniquely determined integer lj,

1 ≤ lj ≤ s and a positive integer mj, such that h
mj

lj
∈ (fj). For every i, we

have that h
mki

ni

lki
∈ (hi), then µ(hlki )

mki
ni ∈ (µ(hi)). Since the polynomials hi

are coprime, using Fact 2.13, the polynomials µ(hi) are coprime and so we

must have lki = i, for every i = 1, . . . s. It follows that the map i 7→ ki is well

defined and injective, so we must have s ≤ r. Similarly, r ≤ s, i.e. r = s.

After renumbering, we may assume that i = ki for i = 1, . . . , r, then lj = j

for j = 1, . . . , r. Thus, fni
i ∈ (hi) and hmi

i ∈ (fi) for i = 1, . . . , r.

Using Fact 2.13, for j 6= 1, fj and f1 are coprime, so also µ(fj) and

µ(f1) are coprime, and this implies µ(fj) and µ(f1)
n1 are coprime. Hence,

µ(f2) · · ·µ(fr) and µ(f1)
n1 are coprime. Using Fact 2.13, f2 · · · fr and fn1

1 are

coprime. Since fn1
1 ∈ (h1), f2 · · · fr and h1 are coprime. Then, there exist

c, d ∈ A[x] such that

cf2 · · · fr + dh1 = 1.

Multiplying both sides of the above equality by f1, we obtain

f1 = cf1f2 · · · fr + df1h1 = ch1h2 · · ·hr + df1h1,

which implies h1|f1. Similarly, f1|h1. Since both f1 and h1 are monic, f1 = h1.

Similarly, fi = hi, i = 2, . . . , r.
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2

Now, we have the following results.

Proposition 2.20 Each non-zero polynomial f in A[x] can be written as

f = tkuf1f2 · · · fr, (11)

where 0 ≤ k < h, u is a unit, and f1, f2, . . . , fr are monic polynomials,

such that µ(f1), µ(f2), . . . , µ(fr) are powers of irreducible and pairwise dis-

tinct polynomials, g1, g2, . . . , gr ∈ K[x], respectively .

Moreover, k ∈ Nh is unique, u ∈ A[x] is unique modulo th−kA[x], and

also the polynomials f1, . . . , fr are uniquely determined modulo th−kA[x].

Proof

We use at first Proposition 2.12, from which we deduce that ∃ g ∈ A[x], and

0 ≤ k < h, such that f = tkg, where g is a non-zerodivisor and k = v(f),

with v t-adic valutation, so k is uniquely determined, and g is unique modulo

th−kA[x].

Then we apply Theorem 2.16 to g, and so we have that g is uniquely

representable as g = uh, with u unit and h monic in A[x].

Finally, we apply Theorem 2.19 to the equivalence class of the monic

polynomial h in the ring th−kA[x].

The fact that u is unique modulo th−kA[x] follows from Theorem 2.16

and also from the presence of the factor tk in the equation (11), for the same

reason the polynomials fi are unique modulo th−kA[x].

2
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2.5 Non-uniqueness of factorization in A[x]

Now, we want to give an example of non-unique factorization in A[x].

We already know that th = 0, let us suppose that h > 3: if h is even, then

we put k = h/2 in order to have that t2k = 0; if h is odd, then we put

k = (h + 1)/2, and we still have that t2k = 0. If k is odd, we do not change

it, otherwise we replace it with k+ 1. After the choice of k we want to prove

that x2 + tk is irreducible, otherwise, there exist a, b ∈ A such that

x2 + tk = (x+ a)(x+ b).

So we must have: a = −b, and −a2 = tk and here we get a contradiction,

since k is odd.

If h = 3 we take k = 1.

We also have that

(x2 + tk)m = x2m−1(x+mtk)

so this polynomial can be written as a product of m irreducible factors and

also as the product of almost 2m factors.

Let us define a new concept that can be considered as the measure of how

much the ring is not a unique factorization ring.

Definition 2.21 Let (M, ·) be a cancellative monoid. Let k be ≥ 2, we define

ρk(M) to be the supremum of those m ∈ N, for which there is a product of k

irreducible elements that can be also be written as a product of m irreducible

elements. We also define the elasticity of M to be supk≥2(ρk(M)/k).

We notice that the set, M , of the regular elements of A[x] is a cancellative

monoid, so we can talk about the elasticity of A[x].

We want to give another example in order to show that the elasticity of

the ring A[x] is infinity.
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Let us consider the polynomial

xm + t;

we want to prove that this polynomial is irreducible in A[x].

By contradiction, let us suppose that there are two non-unit polynomials,

f(x), g(x) ∈ A[x], such that xm + t = f(x)g(x). Then, we can write it in the

following way

xm + t = a0 + a1x+ · · · amxm =

= (b0 + b1x+ · · ·+ brx
r)(c0 + c1x+ · · ·+ csx

s),

where we can suppose that brcs 6= 0.

Because of the Lemma 2.11, we have that t is prime. So, from t = b0c0, it is

ensured that either t | b0 and t - c0 or t | c0 and t - b0. Suppose that the first

sentence occurs. We have that t - br and t - cs, because brcs = 1 and t - 1.

Let bn be the first coefficient of f(x) such that t - bn, and let us note that

an = c0bn + c1bn−1 + · · ·+ cnb0, if n ≤ s,

an = c0bn + c1bn−1 + · · ·+ csbn−s, if n > s,

and that in both cases t divides each term of this sum except the first, so

t - an, and then an = 1 and n = m. Here we get a contradiction, because we

have that the following relations hold

n = m ≤ r < m.

We have just proved that xm + t is an irreducible polynomial for each m.

Let us consider N > h and the following polynomial

(xm + t)N =
N∑
i=0

(
N

i

)
xm(N−i)ti =

(
N

0

)
xmN +

+

(
N

1

)
xm(N−1)t+ · · ·+

(
N

h− 1

)
xm(N−h+1)th−1 =

= xm(N−h+1)

(
xm(h−1) +Nxm(h−2)t+ · · ·+

(
N

h− 1

)
th−1

)
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So here we have given an example of a polynomial that has a factorization

in N irreducible factors, on the left, and in more than m(N − h + 1) irre-

ducible factors on the right, where N is arbitrary but greater than h and m

is arbitrary.
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3 Non-unique Factorization in B[x], where B

is an Artinian PIR

3.1 Structure Theorem of Artinian PIR

In the following, we will present a few of the main results about Artinian and

noetherian rings.

Proposition 3.1 Let B be a commutative ring with a unity, then:

• if I, J are ideals of B, we have that
√
I + J =

√√
I +
√
J ;

• if I is an ideal of B,
√
I = A if and only if I = A.

Proposition 3.2 If B is an Artinian ring, then there is an h ∈ N, such that

Nil(B)h = (0)

Theorem 3.3 (Chinese Remainder Theorem) Let B be a commutative

ring with unity. Let I1, I2, . . . , In be ideals of B. Let us consider the ring

homomorphism

ϕ : B −→ B

I1
× · · · × B

In
,

where b 7−→ (b+ I1, . . . , b+ In),

then:

1. Ker(ϕ) = ∩ni=0Ii;

2. if Ii, Ij are coprime ideals ∀ i 6= j, then ∩ni=0Ii =
∏n

i=0 Ii;

3. ϕ is surjective if and only if Ii and Ij are coprime ∀i 6= j.

Theorem 3.4 (Structure of Artinian rings) Let B be an Artinian ring,

then B is isomorphic to a direct product of finitely many Artinian local rings.
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Proof

Since B is an Artinian ring, it has finitely many prime (maximal) ideals,

M1,M2, . . . ,Mn. Let us consider Nil(B) = J(B) = ∩ni=1Mi. By Proposition

3.2, there is h ∈ N such that Nil(B)h = Mh
1 ∩ · · · ∩Mh

n = (0). Furthermore,

by Proposition 3.1, we have that Mh
i and Mh

j are coprime ideals for each

i 6= j. Hence, we have that ∩ni=1Mi =
∏n

i=1Mi = (0), where the first equality

is ensured from the Chinese Remainder Theorem. Using again the Chinese

Remainder Theorem, we obtain that the following ring homomorphism is an

isomorphism:

ϕ : B −→ B

Mh
1

× · · · × B

Mh
n

,

where b 7−→ (b+Mh
1 , . . . , b+Mh

n ).

Finally, we want to prove that Bi = B/Mh
i is an Artinian local ring for each

i = 1, . . . , n.

It is Artinian, for B is Artinian.

It is local, since Mi is the only maximal ideal containing Mh
i . 2

3.2 An Isomorphism Theorem

Theorem 3.5 Let A,B be two commutative rings with unity. Then

(A⊕B)[x] ' A[x]⊕B[x].

Proof

We want to find a ring isomorphism between these rings. So let us define the

following map

ψ : (A⊕B)[x] −→ A[x]⊕B[x],

where ψ ((a0, b0) + (a1, b1)x+ · · ·+ (am, bm)xm) =

= (a0 + a1x+ · · ·+ am, b0 + b1x+ · · ·+ bmx
m).
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Now we prove that this is a ring isomorphism.

Surely, it is a ring homomorphism, because the sum and product in the direct

product is defined component by component.

It is also injective and surjective: if ψ ((a0, b0) + (a1, b1)x+ · · ·+ (am, bm)xm) =

(0, 0), then we must have that a0 = · · · = am = 0A, and b0 = · · · = bm = 0B;

it is surjective, because the element (f(x), g(x)) ∈ A[x]⊕B[x], where

f(x) = a0 + a1x+ · · ·+ amx
m;

g(x) = b0 + b1x+ · · ·+ bnx
n,

and n ≤ m is the image of ψ of the following element

(a0, b0) + (a1, b1)x+ · · ·+ (an, bn)xn + (an+1, 0B)xn+1 + · · ·+ (am, 0B)xm

that belongs to (A⊕B)[x]. 2

Corollary 3.6 Let A1, A2, . . . Am be commutative rings with unity, then

(A1 ⊕ A2 ⊕ · · · ⊕ Am)[x] ' A1[x]⊕ A2[x]⊕ · · · ⊕ Am[x].

Proof

It follows, by induction, from the above theorem. 2

3.3 Factorization in B[x], where B is an Artinian PIR

In the last two sections, we have found some good results, we will use them

to get some information about factorization in B[x], with B Artinian, PIR.

Using Theorem 3.4, we know that B can be written as a finite direct

product of artinan local rings, B1, B2, . . . , Bm. Since B is a PIR, the rings,

B1, B2, . . . , Bm are PIR’s too. Then we have written B as finite direct prod-

uct of Artinian local PIR’s. So we want to use what we know about the
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factorization in the polynomial rings with coefficients in these rings to get

some new results.

Using Theorem 3.5, we know also that

B[x] ' B1[x]⊕ · · · ⊕Bm[x].

At first, we want to study the factorization in a polynomial ring, with

coefficients in an Artinian PIR which can be written as a product of only

two SPIR’s, then we will extend the results to the general case by induction.

3.3.1 Factorization of a non-zero element in B[x], where B is a

direct product of two SPIR’s.

Let us suppose that B = B1⊕B2, where B1 and B2 are Artinian local PIR’s.

Let (t1) be the only maximal ideal of B1, h1 ∈ N be its nilpotency; in the

same way, let (t2) be the only maximal ideal of B2 and h2 ∈ N be its nilpo-

tency. Let v1 and v2 be respectively the t1-adic valuation and the t2-adic

valuation; and let us consider the fields K1 = B1/(t1) and K2 = B2/(t2), and

also the canonical projections µ1 : B1[x]→ K1[x] and µ2 : B2[x]→ K2[x].

Now, we want to repeat the long path done in the Chapter 2. We begin by

studying the factorization of a non-zero element in B[x], and easily, applying

the known results, we get the following proposition.

Proposition 3.7 Let (f1, f2) ∈ B[x] be a non-zero element, where both f1

and f2 are non-zero elements, then there exist two regular elements, g1 ∈
B1[x] and g2 ∈ B2[x], and k1, k2 ∈ N, with 0 ≤ k1 < h1 and 0 ≤ k2 < h2,

such that

(f1, f2) = (th11 g1, t
h2
2 g2) = (th11 , t

k2
2 )(g1, g2).

Moreover, we have that k1, k2 are uniquely determined and that gi is unique

modulo (ti)
hi−kiBi[x], i = 1, 2.

72



Proof

As f1 and f2 are non-zero elements respectively in B1[x] and B2[x], we can

use Proposition 2.12, so we can say that there exist g1, g2 regular elements,

and k1, k2 ∈ N, with 0 ≤ k1 < h1 and 0 ≤ k2 < h2, such that

f1 = tk11 g1 and f2 = tk12 g2,

from these equalities easily follows the main result.

We notice that, as g1 and g2 are regular elements, (g1, g2) ∈ B[x] is a regular

element too. 2

We continue the path by studying the problem of factoring an element in

B[x] whose components are both regular.

Proposition 3.8 Let us consider (g1, g2) ∈ B[x], where g1, g2 are both regu-

lar. Then, it can be written uniquely in the following way

(g1, g2) = (u1, u2)(d1, d2),

where u1 ∈ B1[x] and u2 ∈ B2[x] are units, d1 ∈ B1[x] and d2 ∈ B2[x] are

monic polynomials, such that deg(di) = deg(µi(gi)), i = 1, 2.

Proof

We directly apply Theorem 2.16. We notice that (u1, u2) is a unit in B[x]. 2

From Theorem 2.17, easily we deduce the following result.

Theorem 3.9 Let f = (f1, f2) ∈ B[x] be a non-zero element, with f1, f2

regular polynomial respectively in B1[x] and in B2[x], and u = (u1, u2) and

g = (g1, g2) the unique unit and couple of monic polynomials, respectively, in

B[x] such that f = ug. For every factorization into irreducibles f = c1 · · · ck,
there exist uniquely determined monic irreducibles d1, . . . , dk ∈ B[x] and units

v1, . . . , vk ∈ B[x] such that ci = vidi, u = v1 · · · vk and g = d1 · · · dk.

73



Now, we want to apply Theorem 2.19 to our case in order to find out

some factorization results about couples in B[x], whose components are both

monic polynomials.

Theorem 3.10 Let f = (f1, f2) ∈ B[x] be a couple of monic polynomials,

whose degrees are both ≥ 1. Then f can be factorized in the following way

(f1, f2) = (g11, 1) · · · (g1s, 1)(1, g21) · · · (1, g2r),

where {g11, . . . , g1s} is a set of pairwise coprime, monic, primary polyno-

mials in B1[x], {g21, . . . , g2r} is a set of pairwise coprime, monic, primary

polynomials in B2[x], and for each i = 1, 2, . . . s, for each j = 1, 2, . . . r,

µ1(g1i) ∈ K1[x] and µ2(g2j) ∈ K2[x] are powers of monic irreducible poly-

nomials. Moreover, the elements, g11, . . . , g1s are uniquely determined, the

same holds for g21, . . . , g2r.

Proof

This is a direct corollary of Theorem 2.19. 2

Observation 3.11 Let us consider the ring A1⊕A2, if I1 is a primary ideal

of A1, then I1⊕A2 is a primary ideal of A1⊕A2: in fact, let us suppose that

(x1y1, x2y2) ∈ I1⊕A2, but (x1, x2) /∈ I1⊕A2, i.e. we must have that x1 /∈ I1,

using the fact that I1 is a primary ideal, by definition, we get that y1 ∈
√
I1,

on the other hand y2 ∈
√
A2 = A2, then we have the thesis.

Using Proposition 3.7, Proposition 3.8 and Theorem 3.10, we get the

following result.

Theorem 3.12 Let (f1, f2) be a non-zero element in B[x], with both com-

ponents non-zero, then there exist k1, k2 ∈ N, 0 ≤ ki < hi, i = 1, 2, two units

u1 ∈ B1[x] and u2 ∈ B2[x], two sets of pairwise coprime, primary, monic
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polynomials {g11, . . . , g1s} ⊂ B1[x] and {g21, . . . , g2r} ⊂ B2[x], where for each

i = 1, 2, . . . s, for each j = 1, 2, . . . r, µ1(g1i) ∈ K1[x] and µ2(g2j) ∈ K2[x] are

powers of monic irreducible polynomials, such that

(f1, f2) = (tk11 , t
k2
2 )(u1, u2)(g11, 1) · · · (g1s, 1)(1, g21) · · · (1, g2r).

Proof

As f1, f2 are non-zero elements, using Proposition 3.7, there are k1, k2 ∈ N,

two regular elements, g1, g2, such that (f1, f2) = (tk11 , t
k2
2 )(g1, g2), where

k1, k2 are uniquely determined, and g1, g2 are unique modulo, respectively,

(t1)
h1−k1B1[x] and (t2)

h2−k2B2[x]. Then, using Proposition 3.8, we have

that there are two units u1 ∈ B1[x], u2 ∈ B2[x] and two monic polyno-

mials d1 ∈ B1[x], d2 ∈ B2[x], such that (g1, g2) is uniquely representable

as (u1, u2)(d1, d2). Finally, we can use Theorem 3.10 to factor the ele-

ment (d1, d2) into the product of the elements (g11, 1), . . . (g1s, 1), (1, g21), . . .

(1, g2r). We notice that the couples of monic, primary polynomials that we

are considering are uniquely determinated when g1, g2 are given, because the

elements g11 . . . g1s,, and g21, . . . g1r are uniquely determined.

Moreover, we notice that, by Observation 3.11, the r + s factors, (g1s, 1),

(1, g21), . . . , (1, g2r) are primary. 2

3.3.2 Factorization of a non-zero element in B[x], where B is an

Artinian PIR.

We want to extend the results that we have found out in the above subsection

to the general case using an induction proof.

We have already proved that B[x] ∼= B1[x]⊕· · ·⊕Bn[x], where B1, . . . Bn

are SPIR’s. As we have done in the last subsection, for each i = 1, . . . n, let

(ti) be the only maximal ideal of B1 and hi ∈ N be its nilpotency. Then, let
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us consider the field Ki = Bi/(ti) and let µi : Bi[x] → Ki[x] be the natural

extension of the canonical projection; let vi : Bi[x]→ Nhi be the ti-valuation.

As we have done for the case of the product of only two SPIR’s, we can easily

prove the following results.

Proposition 3.13 Let (f1, . . . , fn) ∈ B[x] be an element, such that fi 6= 0

for each i = 1, . . . , n, then there exist n regular elements, gi ∈ Bi[x], i =

1, . . . n, and ki ∈ N, with 0 ≤ ki < hi, i = 1, . . . n, such that

(f1, . . . , fn) = (th11 g1, . . . , t
hn
n gn) = (th11 , . . . , t

kn
n )(g1, . . . , gn).

Moreover, we have that ki, i = 1, . . . n, is uniquely determined and that gi is

unique modulo (ti)
hi−kiBi[x], i = 1, . . . n.

Proof

The proof is just the same as the one of Proposition 3.7. 2

Proposition 3.14 Let us consider (g1, . . . , gn) ∈ B[x], where g1, . . . , gn are

regular. Then, it can be written uniquely in the following way

(g1, . . . , gn) = (u1, . . . un)(d1, . . . , dn),

where ui ∈ Bi[x] is a unit and di ∈ Bi[x] is a monic polynomial such that

deg(di) = deg(µi(gi)) for each i = 1, . . . , n.

Finally, we get the main result.

Observation 3.15 In a ring A that is direct product of n rings, A1, . . . An,

if I1 is a primary ideal of A1, then I1 ⊕ A2 ⊕ · · · ⊕ An is a primary ideal of

A. The proof is just the same as the proof given in Observation 3.11.
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Theorem 3.16 Let (f1, . . . , fn) be a element in B[x], such that fi 6= 0 for

each i = 1, . . . , n, then there exist k1, . . . kn ∈ N, 0 ≤ ki < hi, i = 1, . . . n, n

units ui ∈ Bi[x], r1, . . . rn ∈ N, n sets of pairwise coprime, primary, monic

polynomials {gi1, . . . , gir1} ⊂ Bi[x], where for each j = 1, 2, . . . ri, µi(gij) ∈
Ki[x] is a power of a monic irreducible polynomial, such that

(f1, . . . , fn) = (tk11 , . . . , t
kn
n )(u1, . . . , un)(g11, 1, . . . 1)(g1r1 , 1, . . . 1) · · ·

· · · (1, g21 . . . , 1) · · · (1, g2r2 . . . , 1) · · · (1, 1, . . . gn1) · · · (1, 1, . . . , gnrn).

Proof

For each component, fi, we use is sequence Proposition 3.7, Proposition 3.8

and Theorem 3.10, to obtain that there exist a unit ui ∈ Bi[x], an integer ki ∈
N, and a set of pairwise coprime, primary, monic polynomials {gi1, . . . , giri},
such that fi = tkii uigi1 · · · giri , where µi(gij) ∈ Ki[x] is a monic irreducible

polynomial, for each j = 1, . . . ri.

Then, we can factor (f1, f2 . . . , fn) in the following way:

(f1, f2 . . . , fn) = (tk11 , t
k2
2 , . . . , t

kn
n )(u1, u2 . . . , un) ·

·(g11 · · · g1r1 , g21 · · · g2r2 , . . . , gn1 · · · gnrn);

so we have factored the element (f1, . . . , fn) in the product of (tk11 , . . . t
kn
n ), of

a unit (u1, . . . , un), and, by Observation 3.15, of r1 + r2 + · · · + rn primary

elements; we also notice that the integers k1, . . . kn are uniquely determined,

the units ui is uniquely determined modulo (ti)
hi−kiBi[x], and also the ele-

ments gi1 . . . , giri are uniquely determined modulo (ti)
hi−kiBi[x]. 2
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4 Factorization in B[x], where B is a F-UFR

We are now considering the problem of factoring a non-zero element in the

polynomial ring, B[x], where B is a F-UFR. To do this, we need first to

remind some results about F-UFR’s and F-irreducible elements and to an-

nounce some classical theorems about UFD’s.

Theorem 4.1 (Characterization of F-UFR’s) Every F-UFR is a finite

direct sum of UFD’s and of SPIR’s.

Then, if B is a F-UFR, there exist a finite number, say n1, of UFD’s,

U1, U2, . . . , Un1 , and a finite number n2 of SPIR’s, S1, S2, . . . , Sn2 , such that

B = U1 ⊕ U2 ⊕ · · ·Un1 ⊕ S1 ⊕ S2 ⊕ · · ·Sn2 .

Moreover, using Theorem 3.5, we get the following useful information

B[x] = U1[x]⊕ U2[x]⊕ · · ·Un1 [x]⊕ S1[x]⊕ S2[x]⊕ · · ·Sn2 [x].

Now, we make use of the results gained in the second chapter of this work

and of one of the Gauss’results about UFD’s to get some information about

factorization in B[x].

Theorem 4.2 (Gauss’ Lemma) Let R be an UFD, then R[x] is a UFD.

At first let us study a simplier case, the factorization in a F-UFR, that

is a direct product of precisely an UFD, U , and of a SPIR, S. Then ,we

are going to examine the way in which an element in U [x] ⊕ S[x], whose

components are both non-zero, can be factored.

Let (z) be the maximal ideal of S, and let h be its nilpotency.

Let us consider (f, g) ∈ U [x]⊕S[x], with f, g non-zero and non-unit elements.
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Since U is an UFD and because of the Gauss’ Lemma, there are a finite

number, say n, of irreducible elements in U [x], r1, r2, . . . , rn, such that

f = r1r2 · · · rn, (12)

and this factorization is unique, up to associate ones.

Then, we apply the main theorem about the polynomial rings over a SPIR.

In order to make the argument clearer, we announce it again.

Theorem 4.3 (see Prop. 2.20) Each non-zero polynomial f in A[x], where

A is a SPIR and (t) is its maximal ideal, is representable as

f = tkuf1f2 · · · fr,

where 0 ≤ k < h, u is a unit, and f1, f2, . . . , fr are monic polynomials,

such that µ(f1), µ(f2), . . . , µ(fr) are powers of irreducible, pairwise distinct

polynomials, g1, g2, . . . , gr ∈ K[x], respectively.

Moreover, k ∈ Nh is unique, u ∈ A[x] is unique modulo th−kA[x], and

also the polynomials f1, f2, . . . , fr are unique modulo th−kA[x].

Where K denotes the field A/(t), and µ : A[x]→ K[x] is the natural exten-

sion of the canonical projection.

So, if we take the non-zero element g ∈ S[x], we can surely find a number

0 ≤ k < h, a unit u ∈ S[x], and m monic primary polynomials, g1, . . . , gm,

such that their projections in S/(z)[x] are powers of irreducible, pairwise

distinct polynomials, such that

g = zkug1g2 · · · gm (13)

Using the equalities (12) and (13), we get the following result,

(f, g) = (1U , z
k)(1U , u)(r1, 1S) · · · (rn, 1S) · (1U , g1) · · · (1U , gm) (14)

We, now, wonder which is the nature of the factors in the previous equation.
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• (1U , z
k) is a zero-divisors, if k > 0, since (1U , z

k)(0, zh−k) = (0, 0), but

not a unit, since zk is not a unit in S[x].

• The element (1U , u) is of course a unit, because both components are

units.

• The elements, (ri, 1S), for i = 1, . . . , n, are F-irreducible elements,

since, as we have seen in Proposition 1.80, in a direct product of two

rings, an element (a, b) is an F-irreducible element if and only if a is

F-irreducible and b is a unit, or vice versa, and, we notice, in a UFD,

the concept of irreducible element and of F-irreducible element are just

the same.

• The elements (1U , gj), j = 1, . . . ,m, are primary, because of Observa-

tion 3.11.

Naturally, a question arises:

what about the uniqueness features of the equation (14)?

We can certainly say that k ∈ N is unique and that u is unique modulo

zh−kS[x]. Since U [x] is an UFD, the factorization (r1, 1S) · · · (rn, 1S) is unique,

up to associate ones. More precisely, we mean that, if there are two such

factorizations,

(r1, 1S) · · · (rn, 1S) = (s1, 1S) · · · (sn′ , 1S),

we must have that n = n′ and, after a suitable reordering of the factors,

(ri, 1S) and (si, 1S) are associates.

Moreover, using Theorem 2.20, we have that the product g1 · · · gm is unique

modulo zh−kS[x], and, after the choise of a representant in the equivalence

class, the elements g1, . . . , gm, and, then, also, the elements (1U , g1), . . . , (1U , gm)

are uniquely determined.
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The above argument is the proof of the following theorem.

Theorem 4.4 Let U be an UFD and S be a SPIR, and let (f, g) ∈ U [x]⊕S[x]

be an element, whose components are non-zero and non-units. Then, there

exist a integer 0 ≤ k < h, a unit u ∈ S[x], n irreducible elements in U [x],

r1, . . . , rn, m primary monic polynomials in S[x], g1, . . . , gm, such that

(f, g) = (1U , z
k)(1U , u)(r1, 1S) · · · (rn, 1S) · (1U , g1) · · · (1U , gm),

where (1U , u) is a unit, (ri, 1S) is F-irreducible ∀ i, (1U , gj) is primary ∀ j,
in U [x]⊕ S[x].

Moreover, k is uniquely determined, while u is unique modulo (z)h−kS[x],

r1, . . . , rn are uniquely determined up to associates, the product g1 · · · gm is

unique modulo (z)h−kS[x], and the elements (1U , g1), . . . , (1U , gm) are uniquely

determined modulo U ⊕ (z)h−kS[x].

The next aim is to study the general case. Before starting it, we have to

make the following observation.

Observation 4.5 Let us suppose that U1, U2 are UFD’s, and let us consider

their product. If we take (a, b) ∈ U1 ⊕ U2, where a, b are both non-zero and

non-units, there are r1, . . . , rn ∈ U1 and s1, . . . sm ∈ U2, irreducible elements,

such that:

(a, b) = (r1, 1U2) · · · (rn, 1U2) · (1U1 , s1) · · · (1U1 , sm),

and this factorization is unique, up to associates.

By an induction argument, we can prove easily that this holds for the product

of more than two UFD’s.

Now, we prove the main result, but first we need some notations.

Let us consider the ring

B[x] ∼= U1[x]⊕ U2[x]⊕ · · ·Un1 [x]⊕ S1[x]⊕ S2[x]⊕ · · ·Sn2 [x],
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where Ui is an UFD, for each i, Sj is a SPIR, for each j. We already know that

every polynomial ring over an F-UFR can be written in this form. Moreover,

let us suppose that n1, n2 ≥ 1, since in the above observation and in the

previous chapters, we have studied the factorizations in rings that are direct

products of only UFD’s or of only SPIR’s. Let (ti) be the only maximal ideal

of Si, for i = 1, . . . , n2, and let hi ∈ N be its nilpotency.

Theorem 4.6 Let γ = (f1, . . . , fn1 , g1, . . . , gn2) be an element of this ring,

whose components are all non-zero and non-units. Then, there is a zerodi-

visor, z, a unit u, a finite set of primary distinct elements, {p1, . . . , pβ}, a

finite set of irreducible elements, {q1, . . . , qα}, such that

γ = z · u · (p1 · · · pβ) · (q1 · · · qα).

Moreover, this factorization fulfills some uniqueness features that we will

explain in the proof.

Proof

If we consider fi ∈ Ui[x], for each i = 1, . . . , n1, there is a finite set of

irreducible elements, {ri1, . . . , riai}, such that fi =
∏ai

j=1 rij, and this fac-

torization is unique up to associates. In the same way, if we consider gl,

for each l = 1, . . . , n2, then there is a unique integer kl, a unit ul, that is

unique modulo (tl)
hl−klSl[x], a finite set of primary distinct monic polyno-

mials, {sl1, . . . , slbl} that are uniquely determined modulo (tl)
hl−klSl[x], such

that gl = tkll ulsl1 · · · slbl .
Now, let us put:

• β =
∑n2

l=1 bl, α =
∑n1

i=1 ai;

• p1 = (1U1 , . . . , 1Un1
, s11, 1S2 , . . . , 1Sn2

), p2 = (1U1 , . . . , 1Un1
, s12, 1S2 , . . . , 1Sn2

),

and, so on, untill pβ = (1U1 , . . . , 1Un1
, 1S1 , . . . , 1Sn2−1 , sn2bn2

);

• q1 = (r11, 1U2 , . . . , 1Un1
, 1S1 , . . . , 1Sn2

), q2 = (r12, 1U2 , . . . , 1Un1
, 1S1 , . . . , 1Sn2

),

untill qα = (1U1 , . . . , 1Un1−1 , rn1an1
, 1S1 , . . . , 1Sn2

);
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• z = (1U1 , . . . , 1Un1
, tk11 , . . . , t

kn2
n2 ) and u = (1U1 , . . . , 1Un1

, u1, . . . , un2).

We notice that pi is a primary element, ∀ i = 1, . . . , β, because of the Obser-

vation 3.15, and that pi 6= pj for each j 6= i.

As in UFD’s an irreducible element is F-irreducible, using Proposition 1.81,

we have that qi, ∀ i = 1, . . . , α, is an F-irreducible element. Actually, it is

an irreducible element, since the three concepts of irreducibility, given in the

first chapter, are the same in rings with only harmless zerodivisors, like the

ours.

Moreover, u is clearly a unit, and z is a zerodivisor, since zy = 0B[x], with

y = (0U1 , . . . , 0Un1
, th1−k11 , . . . , t

hn2−kn2
n2 ).

Furthermore, we have already noticed that the integer ki is uniquely deter-

mined, and that the unit ui and the primary monic polynomials, si1, . . . , sibi ,

are uniquely determined modulo (thi−kii )Si[x]. We have also that, for each

j = 1, . . . , n1, the irreducible elements, rj1, . . . , rjaj ∈ Uj[x], are uniquely

determined, up to associates.

This completes the proof. 2
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[13] E. Hecke, Über die L-Funktionen und den Dirichletschen Primzahlsatz

für einen Zahlkörper, Nachr. Akad. Wiss. Göttingen, 1917.

[14] K. Ireland, M. Rosen, A Classical Introduction to Modern Number The-

ory, Springer-Verlag New York, pp. 171-179, 1990.

[15] H. Matsumura, Commutative Ring Theory, Cambridge University Press,

pp. 71-91, 1986.

[16] B. R. McDonald, Finite rings with identity, Marcel Dekker, 1974.

[17] P. Samuel, Unique factorization, Amer. Math. Monthly 75, pp. 945-952,

1968.

[18] Z. X. Wan, Lectures on finite fields and Galois rings, World Scientific,

2003.

[19] O. Zariski, P. Samuel, Commutative Algebra, D. Van Norstrand Com-

pany, 1967.

85


