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o Decision space M C {0, 1}¢
e Each decision M € M is a binary d-dimensional vector.
o Combinatorial structure, e.g., matchings, spanning trees, fixed-size
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o Weights § € R?

@ Generic combinatorial (linear) optimization

d
maximize M0 = Z M,;0;
i=1
over M € M

@ Sequential decision making over T rounds



Combinatorial Optimization under Uncertainty

Sequential decision making over 7' rounds

e Known # = always select M* := argmaxpsepq M ' 6.



Combinatorial Optimization under Uncertainty

Sequential decision making over 7' rounds
e Known # = always select M* := argmaxpsepq M ' 6.

@ Weights 6 could be initially unknown or unpredictably varying.



Combinatorial Optimization under Uncertainty

Sequential decision making over 7' rounds
e Known # = always select M* := argmaxpsepq M ' 6.

@ Weights 6 could be initially unknown or unpredictably varying.

o At time n, environment chooses a reward vector X (n) € R?
e Stochastic: X (n) i.i.d., E[X(n)] = 0.
e Adversarial: X (n) chosen beforehand by an adversary.



Combinatorial Optimization under Uncertainty

Sequential decision making over 7' rounds
e Known # = always select M* := argmaxpsepq M ' 6.

@ Weights 6 could be initially unknown or unpredictably varying.

o At time n, environment chooses a reward vector X (n) € R?
e Stochastic: X (n) i.i.d., E[X(n)] = 0.
e Adversarial: X (n) chosen beforehand by an adversary.

o Selecting M gives reward M ' X (n) = Z?Zl M; X;(n).



Combinatorial Optimization under Uncertainty

Sequential decision making over 7' rounds
e Known # = always select M* := argmaxpsepq M ' 6.

@ Weights 6 could be initially unknown or unpredictably varying.

o At time n, environment chooses a reward vector X (n) € R?
e Stochastic: X (n) i.i.d., E[X(n)] = 0.
e Adversarial: X (n) chosen beforehand by an adversary.

o Selecting M gives reward M ' X (n) = Z?Zl M; X;(n).

Sequential Learning: at each step n, select M(n) € M
based on the previous decisions and observed rewards
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@ Goal: Maximize collected rewards in expectation

T
> M(n)TX(n)] .

n=1

E

@ Or equivalently, minimize regret over T rounds:

T
Z MTX(n)|-E|> M(n)TX(n)] .
n=1

oracle your algorithm

R(T) = max E
 MeM

e Quantifies cumulative loss of not choosing the best decision (in
hindsight).
e Algorithm is learning iff R(T") = o(T).
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Feedback

Choose M (n) based on previous decisions and observed feedback
e Full information: X (n) is revealed.
e Semi-bandit feedback: Xj;(n) is revealed iff M;(n) = 1.
o Bandit feedback: only the reward M (n)" X (n) is revealed.

Sequential learning is modeled as a
Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

Decision M ¢ M <= Arm
Element {1,...,d} <= Basic action

Each arm is composed of several basic actions.



Application 1: Spectrum Sharing

ch.1 ch.2 ch.3 |ch.4| ch.5

Xi,j(n) = 1 (success)
= 0 (failure)

d B B oo

link 1 link 2 link 3 link 4 link 5

@ K channels, L links
@ M = the set of matchings from [L] to [K]
@ 0;; = data rate on the connection (link-i, channel-j)

@ X;;(n) = success/failure indicator for transmission of link ¢ on
channel j



Application 2: Shortest-path Routing

Source

Destination

@ M = the set of paths
@ 0; = average transmission delay on link ¢

@ X;(n) = transmission delay of link i for n-th packet
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Source
Delay = 20

Destination

e Semi-bandit feedback: (2,4,7,1,6) are revealed for chosen links (red).
@ Bandit feedback: 20 is revealed for the chosen path.
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e Arms are correlated; they share basic actions.
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R(T) ~ vCT where C < | M|
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Map of Thesis

How much can we reduce the regret by exploiting
the combinatorial structure of M?
How to optimally do so?

Chapter | Combinatorial Structure M | Reward X

Ch. 3 Generic Bernoulli
Ch. 4 Matroid Bernoulli
Ch. 5 Generic Geometric

Ch. 6 | Generic (with fixed cardinality) | Adversarial

11/49



@ Combinatorial MABs: Bernoulli Rewards
© Stochastic Matroid Bandits
© Adversarial Combinatorial MABs

@ Conclusion and Future Directions
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@ Combinatorial MABs: Bernoulli Rewards
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X (n) i.id. , Bernoulli distributed with E[X (n)] = 0 € [0, 1]¢
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Stochastic CMABs

Rewards:

e X(n) iid., Bernoulli distributed with E[X (n)] = 6 € [0, 1]¢
e X;(n), i € [d] are independent across i
® s := M0 average reward of arm M
@ Average reward gap Ay = 1~ — ppr
e Optimality gap Apin = miny2p+ Ay
Algorithm Regret
LLR (Gai et al,, 2012) | O (Md log(T))
CUCB (Chen et al., 2013) | O (Amd log(T))
CUCB (Kveton et al., 2015) | © (A”,Z‘fn log(T))
ESCB o ( yfmd log(T))

m = maximal cardinality of arms

14 /49
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@ Construct a confidence bound [b~,b™] for (unknown) y s.t.

e [b-,bT] with high probability

@ Maximization problem = we replace (unknown) p by b, its
Upper Confidence Bound (UCB) index.

“Optimism in the face of uncertainty” principle:
Choose arm M with the highest UCB index

Algorithm based on optimistic principle:
@ For arm M and time n, find confidence interval for py:

P [uar € [by(n), b, (n)]] 21 -0 (nloig(n))

o Choose M (n) € argmaxpre by (n)
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Optimistic Principle

A

+ i (n)

+ M1 .

Fam T

: + 13 (n)
+ 13
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Optimistic Principle

7
AT + ba(n)
bl (Tl) T /22 (TL)
K1
N T K2

I fis (n)
= M3
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Optimistic Principle

A 123% _ b2 (n)
bl (n) + ﬂz (TL)
K1
fir (n) :t Ha bz (n)
I fis (n)
M3
. M
>

How to construct the index for arms? ‘
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Index Construction

@ Naive approach: construct index for basic actions
= index of arm M = sum of indexes of basic action in arm M

o Empirical mean 6;(n), number of observations: ;(n).
o Hoeffding's inequality:

P |:07, S <éz (TL) —

@ Choose § = %

Index:

pnr € {uM Z

3 log

fog(1/6)
2t:i(n) 0i(n)

d
:ZM
i=1

f108(1/0)
W\ 20m) >] 21

+Z 3log

A (n)

confidence radius

+ZM 3log } w.p. 217%
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Index Construction

@ Our approach: constructing confidence interval directly for each arm
M
@ Motivated by concentration for sum of empirical KL-divergences.
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@ Motivated by concentration for sum of empirical KL-divergences.

@ For a given ¢, consider a set

d
B= {)\ € [0,1]%: > " ti(n) KI(6i(n), A;) < 1og(1/5)}
=1
with

1—
kl(u,v) := ulogE + (1 —u)log . “
v

_U'
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Index Construction

@ Our approach: constructing confidence interval directly for each arm
M

@ Motivated by concentration for sum of empirical KL-divergences.

@ For a given ¢, consider a set

d
B= {)\ € [0,1]%: > " ti(n) KI(6i(n), A;) < 1og(1/5)}
i=1
with 1
kl(u,v) := ulog% + (1 —u)log . Z

Find an upper confidence bound for s such that
Wy € [x, MT)\] w.p. at least 1 — 4, V) € B.
Equivalently,

pv < max M A w.p. at least 1 — .
A eB

19 /49



Proposed Indexes

Two new indexes:

@ (1) Index by as the optimal value of the following problem:

b = M;\;
M) = me, Z

subject to : ZMztz(n) Kl(6;(n),\) < f(n),

i=1

log(1/9)
with f(n) = log(n) + 4mlog(log(n)).
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Proposed Indexes

Two new indexes:

@ (1) Index by as the optimal value of the following problem:

b = M;\;
M) = me, Z

subject to : Z Miti(n) K1(6;(n),\) < f(n) ,
= log(1/5)

with f(n) = log(n) + 4mlog(log(n)).
@ by is computed by a line search (derived based on KKT conditions)
o Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case
of combinatorial MABs
o (2) Index ¢p:

d
M;
exrln) = finr( J@”Zt(n
i=1" 20/49



Proposed Indexes

b = M; X\
uln) = mox, ;

subject to : ZMth(n) Kl(6;(n), \) < f(n),
i=1

d
em(n) = fi \ITZ%;

i=1
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Proposed Indexes

b = M;\;
uln) = max, Z

subject to : ZMth(n) Kl(6;(n), \) < f(n),
i=1

d
em(n) = fi J%thj\({;

i=1

For all M € M andn > 1: ¢pr(n) > bar(n).

@ Proof idea: Pinsker's inequality + Cauchy-Schwarz inequality

21/49



ESCB Algorithm

ESCB = Efficient Sampling for Combinatorial Bandits

Algorithm 1 ESCB
forn >1do
Select arm M (n) € argmaxpse pm Car(n).

Observe the rewards, and update ¢;(n) and 6;(n), Vi € M(n).
end for

ESCB-1 if Cas = by, ESCB-2 if Car = eur.

22 /49



Regret Analysis

The regret under ESCB satisfies

R(T) < LV

AT 10g(T) + O(loglog(T))).
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Regret Analysis

The regret under ESCB satisfies

R(T) < LV

AT 10g(T) + O(loglog(T))).

@ Proof idea
e cpr(n) > bar(n) > puar with high probability
e Crucial concentration inequality (Magureanu et al., COLT 2014):

d
. ). . m_—9
P glg&xggEMztz(n)kl(Oz(n),ﬁz)25 < Cpp(log(T)5)™e™?.
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Regret Lower Bound

‘ How far are we from the optimal algorithm? ’

e Uniformly good algorithm 7: R™(T") = O(log(T")) for all 6.

@ Notion of bad parameter: X is bad if:

o (i) it is statistically indistinguishable from true parameter 6 (in the
sense of KL-divergence) = reward distribution of optimal arm M™* is
the same under 6 or ),

e (ii) M* is not optimal under A.

@ Set of all bad parameters B(6):

B(6) = {A €[0,1: (\ =0y, ¥i € M*) and max M'A> pu* }

condition (i)

condition (ii)

24 /49



Regret Lower Bound

For any uniformly good algorithm m, liminfp_, 1ogg§ > ¢(0), with

6(0) = inf Z AM{L‘M
:L‘ERI MEM

subject to : Zkl(@i,)\i) Z Mz > 1, VA € B(0).
i=1 MeM
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Regret Lower Bound

For any uniformly good algorithm m, liminfp_, 1ogg§ > ¢(0), with

6(0) = inf Z AM{L‘M

M
:L‘ER MEM

subject to : Zkl(@i,)\i) Z Mz > 1, VA € B(0).
i=1 MeM

@ The first problem dependent tight LB

o Interpretation: each arm M must be sampled at least 2%, log(T")
times.

@ Proof idea: adaptive control of Markov chains with unknown
transition probabilities (Graves & Lai, 1997)
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Towards An Explicit LB

‘ How does ¢(0) scale with d, m?

Proposition

For most problems c(6) = Q(d —m).

@ Intuitive since d — m basic actions are not sampled when playing M*.
@ Proof idea

o Construct a covering set #H for suboptimal basic actions

o Keeping constraints for M € ‘H

Definition

‘H is a covering set for basic actions if it is a (inclusion-wise) maximal
subset of M\ M* such that for all distinct M, M’ € H, we have

(M\ M*) N (M \ M*) = 0.

26 /49



Numerical Experiments
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© Stochastic Matroid Bandits
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Combinatorial optimization over a matroid
@ Of particular interest in combinatorial optimization

@ Power of greedy solution
@ Matroid constraints arise in many applications

o Cardinality constraints, partitioning constraints, coverage constraints
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Combinatorial optimization over a matroid
@ Of particular interest in combinatorial optimization
@ Power of greedy solution

@ Matroid constraints arise in many applications

o Cardinality constraints, partitioning constraints, coverage constraints

Definition

Given a finite set E and T C 2%, the pair (E,T) is called a matroid if:
(i) f Xe€eZandY C X, thenY € I (closed under subset).

(i) If X,Y € T with | X| > |Y|, then there is some element { € X \'Y
such that Y U {¢} € T (augmentation property).

29 /49



e FE is ground set, T is set of independent sets.
@ Basis: any inclusion-wise maximal element of 7

@ Rank: common cardinality of bases
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e FE is ground set, T is set of independent sets.
@ Basis: any inclusion-wise maximal element of 7

@ Rank: common cardinality of bases
Example: Graphic Matroid (for graph G = (V, H)):
(H,Z) with Z={F CH:(V,F)is a forest}.

A basis is an spanning forest of the G

30/49



Matroid Optimization

e Weighted matroid: is triple (E,Z,w) where w is a positive weight
vector (wy is the weight of £ € E).

@ Maximum-weight basis:

@ Can be solved greedily: At each step of the algorithm, add a new

element of E with the largest weight so that the resulting set remains
in Z.
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Matroid Bandits

o Weighted matroid G = (E,Z,0)
@ Set of basic actions = ground set of matroid F
e For each i, (X;(n))p>1 is i.i.d. with Bernoulli of mean 6;

@ Each arm is a basis of GG; M = set of bases of GG
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Matroid Bandits

o Weighted matroid G = (E,Z,0)
@ Set of basic actions = ground set of matroid F
e For each i, (X;(n))p>1 is i.i.d. with Bernoulli of mean 6;

@ Each arm is a basis of GG; M = set of bases of GG

Prior work:
e Uniform matroids (Anantharam et al. 1985): Regret LB
o Generic matroids (Kveton et al., 2014): OMM with regret

O(ﬁ log(T))
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Regret LB

For all 6 and every weighted matroid G
uniformly good algorithm 7 satisfies

= (FE,Z,0), the regret of

R’T(T 0o (
li f
oint 3T = Z K( 91,90(1))
where for any i
o(i) = arg min 0.

L(M*\OU{i}eT ¢
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Regret LB

For all 6 and every weighted matroid G
uniformly good algorithm 7 satisfies

= (FE,Z,0), the regret of

R’T(T
li f
oint 3T = Z K( 91,90(1))
where for any i
o(i) = arg min 0.

L(M*\OU{i}eT ¢

o Tight LB, first explicit regret LB for matroid bandits
@ Generalizes LB of (Anantharam et al., 1985) to matroids.
@ Proof idea

e Specialization of Graves-Lai result

o Choosing d — m box constraints in view of o

o Lower bounding Ap;, M € M in terms of o

33/49



KL-OSM Algorithm

KL-OSM (KL-based Optimal Sampling for Matroids)
@ Uses KL-UCB index attached to each basic action i € E:

wiln) = max{q > 0i(n) : ti(n)KI(Gi(n), q) < f(n)}

with f(n) = log(n) 4+ 3log(log(n)).
@ Relies on GREEDY
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KL-OSM Algorithm

KL-OSM (KL-based Optimal Sampling for Matroids)
@ Uses KL-UCB index attached to each basic action i € E:

wiln) = max{q > 0i(n) : ti(n)KI(Gi(n), q) < f(n)}

with f(n) = log(n) 4+ 3log(log(n)).
@ Relies on GREEDY

Algorithm 3 KL-OSM

forn > 1 do
Select

M(n) € arg max Z w;(n)
i€ M
using the GREEDY algorithm.
Play M (n), observe the rewards, and update #;(n) and 6;(n),Vi € M(n).
end for

34 /49



KL-OSM Regret

For any € > 0, the regret under KL-OSM satisfies

R(T) < (14 ¢€)e(0)log(T) + O(log(log(T)))
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KL-OSM Regret

For any € > 0, the regret under KL-OSM satisfies

R(T) < (14 ¢€)e(0)log(T) + O(log(log(T)))

@ KL-OSM is asymptotically optimal:

lim su R(T)
T—>oop IOg(T)

< c(0)

@ The first optimal algorithm for matroid bandits
@ Runs in O(dlog(d)T) (in the independence oracle model)

35/49



Numerical Experiments: Spanning Trees
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—Lower Bound|
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e Adversarial Combinatorial MABs
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Adversarial Combinatorial MABs

@ Arms have the same cardinality m (but otherwise arbitrary)
o Rewards X (n) € [0,1]? are arbitrary (oblivious adversary)
e Bandit feedback: only M (n)" X (n) is observed at round n.
@ Regret

R(T) = max E
MeM

Z MTX(n

E[-] is w.r.t. random seed of the algorithm.

T
ZM(n)TX(n)] .

n=1
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CoMBEXP Algorithm

@ Inspired by OSMD algorithm (Audibert et al., 2013)

39/49



CoMBEXP Algorithm

@ Inspired by OSMD algorithm (Audibert et al., 2013)

39/49



CoMBEXP Algorithm

@ Inspired by OSMD algorithm (Audibert et al., 2013)

max M'X = max o' X.
Mem acconv(M)

39/49



CoMBEXP Algorithm

@ Inspired by OSMD algorithm (Audibert et al., 2013)

max M X = max o' X.
MeMm acconv(M)
e Maintain a distribution ¢ = «/m over basic actions {1,...,d}.

39/49



CoMBEXP Algorithm

@ Inspired by OSMD algorithm (Audibert et al., 2013)

max M X = max o' X.
MeMm acconv(M)
e Maintain a distribution ¢ = «/m over basic actions {1,...,d}.

@ ¢ induces a distribution p over arms M.

39/49



CoMBEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max M X = max o' X.
MeMm acconv(M)
e Maintain a distribution ¢ = «/m over basic actions {1,...,d}.

q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

39/49



CoMBEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max M X = max o' X.
MeMm acconv(M)
Maintain a distribution ¢ = a/m over basic actions {1,...,d}.

q induces a distribution p over arms M.
Sample M from p, play it, and receive bandit feedback.

Update ¢ (create ¢) based on feedback.

39/49



CoMBEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max M X = max o' X.
MeMm acconv(M)
Maintain a distribution ¢ = a/m over basic actions {1,...,d}.

q induces a distribution p over arms M.
Sample M from p, play it, and receive bandit feedback.
Update ¢ (create ¢) based on feedback.

Project & = mq onto conv(M).

39/49



CoMBEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max M X = max o' X.
MeMm acconv(M)
Maintain a distribution ¢ = a/m over basic actions {1,...,d}.

q induces a distribution p over arms M.
Sample M from p, play it, and receive bandit feedback.
Update ¢ (create ¢) based on feedback.

Project & = mq onto conv(M).

Introduce exploration
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CoMBEXP Algorithm

Algorithm 4 ComMBEXP
Initialization: Set go = p.° (uniform distribution over [d]), 7,7 oc =
forn > 1 do
Mixing: Let ¢h_1 = (1 — ¥)gn-1 +vu°.
Decomposition: Select a distribution p,_1 over arms M such that

> a1 (M)M =mg;,_;.
M

Sampling: Select M(n) ~ p,_1 and receive reward Y,, = M(n)" X (n).
Estimation: Let ¥,_1 = Epep, , [MM']. Set X(n) =Y, S _  M(n).
Update: Set §n (%) qnfl(i)e”)_(i("), Vi € [d].
Projection: Set
1
n = in KL (—p,dn).
I = A8 o) (mp 4 )

end for
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CoMBEXP: Regret

1/2

RCOMBEXP(T) < 2\/m3T (d 4 m

min

) log u;ﬁln + O(1),

where \pin is the smallest nonzero eigenvalue of E[M M "] when M is
uniformly distributed and

i — m1n Z M;.
W‘ AieM
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CoMBEXP: Regret

ml/2
REOMBEXP () < 9 [m3T (d 5 ) log p i + O(1),

min

where Anin is the smallest nonzero eigenvalue of E[M M T] when M is
uniformly distributed and

I m1n Z M;.
W‘ AieM

For most problems A, = Q(%) and i = O(poly(d/m)):

R(T) ~ y/m3dT log i
m
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CoMBEXP with Approximate Projection

Exact projection with finitely many operations may be impossible
—> COMBEXP with approximate projection.
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CoMBEXP with Approximate Projection

Exact projection with finitely many operations may be impossible
—> COMBEXP with approximate projection.

Proposition

Assume that the projection step of COMBEXP s solved up to accuracy

1
O(—=—1|, Vn>1.
(n2 1og3<n>) "=

Then

1/2

R(T) < 2\/2m3T (d+ T .

min

)logugiln +0(1)
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CoMBEXP with Approximate Projection

Exact projection with finitely many operations may be impossible
—> COMBEXP with approximate projection.

Proposition

Assume that the projection step of COMBEXP s solved up to accuracy

1
O(—=—1|, Vn>1.
(n2 1og3<n>) "=

Then

1/2

R(T) < 2\/2m3T (d + T : ) log fiin + O(1)

min

@ The same regret scaling as for exact projection.
@ Proof idea: Strong convexity of KL w.r.t. || - ||; + Properties of
projection with KL
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CoMBEXP: Complexity

Theorem

Let

¢ = # eq. conv(M), s = # ineq. conv(M).

Then, if the projection step of COMBEXP is solved up to accuracy
O(n~2log—3(n)), ¥n > 1, COMBEXP after T rounds has time
complexity

O(T[V/s(c + d)*log(T) + d*)).
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CoMBEXP: Complexity

Theorem

Let

¢ = # eq. conv(M), s = # ineq. conv(M).

Then, if the projection step of COMBEXP is solved up to accuracy
O(n~2log—3(n)), ¥n > 1, COMBEXP after T rounds has time
complexity

O(T[V/s(c + d)*log(T) + d*)).

@ Box inequality constraints: O(T[c?\/s(c + d)log(T) + d*)).
@ Proof idea

o Constructive proof of Carathéodory Theorem for decomposition
e Barrier method for projection
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Algorithm Regret (Symmetric Problems)

Lower Bound (Audibert et al., 2013) Q (m dT), if d > 2m

CoMBAND (Cesa-Bianchi & Lugosi, 2012) o <,/m3dTlog i)
d

CoMBEXP O (\ [m3dT log )
m
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Algorithm Regret (Symmetric Problems)

Lower Bound (Audibert et al., 2013) Q (m dT), if d > 2m

CoMBAND (Cesa-Bianchi & Lugosi, 2012) o <,/m3dTlog i)
d

CoMBEXP O (\/m3dTlog )
m

@ Both CoMBAND and COMBEXP are off the LB by a factor
vmlog(d/m).

e COMBAND relies on (approximate) sampling from M whereas
CoMBEXP does convex optimization over conv(M).

44 /49



Complexity Example: Matchings

Matchings in ;) ,,:

e conv(M) is the set of all doubly stochastic m x m matrices (Birkhoff
polytope):

conv(M) = {Z e RPP™ ! ZZ““ =1, Vi, szj =1, Vj} )

k=1 k=1

e c=2m and s = m? (box constraints).

‘ Complexity of COMEXP: O(m®T log(T)) ’
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Complexity Example: Matchings

Matchings in ;) ,,:

e conv(M) is the set of all doubly stochastic m x m matrices (Birkhoff
polytope):

conv(M) = {Z e RPP™ ! ZZ““ =1, Vi, szj =1, Vj} )

k=1 k=1

e c=2m and s = m? (box constraints).

‘ Complexity of COMEXP: O(m®T log(T)) ’

o Complexity of CoMBBAND: O(m!°F(T)) for some super-linear
function F(T) (need for approximating a permanent at each round).
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@ Conclusion and Future Directions
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Conclusion

Stochastic combinatorial MABs

o The first regret LB
o ESCB: best performance in terms of regret

Stochastic matroid bandits

o The first explicit regret LB
o KL-OSM: the first optimal algorithm

@ Adversarial combinatorial MABs

o COMBEXP: the same regret as state-of-the-art but with lower
computational complexity

More in the thesis!
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Future Directions: Stochastic

@ Improvement to the proposed algorithms

o Tighter regret analysis of ESCB-1 (order-optimality conjecture)
e Can we amortize index computation?
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Future Directions: Stochastic

Improvement to the proposed algorithms

o Tighter regret analysis of ESCB-1 (order-optimality conjecture)
e Can we amortize index computation?

@ Analysis of THOMPSON SAMPLING for stochastic combinatorial
MABs

Stochastic combinatorial MABs under bandit feedback

Projection-free optimal algorithm for bandit and semi-bandit
feedbacks
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Publications

e Combinatorial bandits revisited
with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)

@ An optimal algorithm for stochastic matroid bandit optimization
with A. Proutiere (AAMAS 2016)

@ Spectrum bandit optimization
with M. Lelarge and A. Proutiere (ITW 2013)

@ Stochastic online shortest path routing: The value of feedback
with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE
TAC)
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e Combinatorial bandits revisited
with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)

@ An optimal algorithm for stochastic matroid bandit optimization
with A. Proutiere (AAMAS 2016)

@ Spectrum bandit optimization
with M. Lelarge and A. Proutiere (ITW 2013)

@ Stochastic online shortest path routing: The value of feedback
with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE
TAC)

Thanks for your attention!
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