
Online Combinatorial Optimization
under Bandit Feedback

M. Sadegh Talebi ∗

∗Department of Automatic Control
KTH The Royal Institute of Technology

February 2016

1 / 49

Combinatorial Optimization

Decision space M⊂ {0, 1}d
Each decision M ∈M is a binary d-dimensional vector.
Combinatorial structure, e.g., matchings, spanning trees, fixed-size
subsets, graph cuts, paths

Weights θ ∈ Rd

Generic combinatorial (linear) optimization

maximize M>θ =

d∑
i=1

Miθi

over M ∈M

Sequential decision making over T rounds

2 / 49

Combinatorial Optimization

Decision space M⊂ {0, 1}d
Each decision M ∈M is a binary d-dimensional vector.
Combinatorial structure, e.g., matchings, spanning trees, fixed-size
subsets, graph cuts, paths

Weights θ ∈ Rd

Generic combinatorial (linear) optimization

maximize M>θ =

d∑
i=1

Miθi

over M ∈M

Sequential decision making over T rounds

2 / 49

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

Known θ =⇒ always select M? := argmaxM∈MM>θ.

Weights θ could be initially unknown or unpredictably varying.

At time n, environment chooses a reward vector X(n) ∈ Rd
Stochastic: X(n) i.i.d., E[X(n)] = θ.
Adversarial: X(n) chosen beforehand by an adversary.

Selecting M gives reward M>X(n) =
∑d

i=1MiXi(n).

Sequential Learning: at each step n, select M(n) ∈M
based on the previous decisions and observed rewards

3 / 49

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

Known θ =⇒ always select M? := argmaxM∈MM>θ.

Weights θ could be initially unknown or unpredictably varying.

At time n, environment chooses a reward vector X(n) ∈ Rd
Stochastic: X(n) i.i.d., E[X(n)] = θ.
Adversarial: X(n) chosen beforehand by an adversary.

Selecting M gives reward M>X(n) =
∑d

i=1MiXi(n).

Sequential Learning: at each step n, select M(n) ∈M
based on the previous decisions and observed rewards

3 / 49

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

Known θ =⇒ always select M? := argmaxM∈MM>θ.

Weights θ could be initially unknown or unpredictably varying.

At time n, environment chooses a reward vector X(n) ∈ Rd
Stochastic: X(n) i.i.d., E[X(n)] = θ.
Adversarial: X(n) chosen beforehand by an adversary.

Selecting M gives reward M>X(n) =
∑d

i=1MiXi(n).

Sequential Learning: at each step n, select M(n) ∈M
based on the previous decisions and observed rewards

3 / 49

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

Known θ =⇒ always select M? := argmaxM∈MM>θ.

Weights θ could be initially unknown or unpredictably varying.

At time n, environment chooses a reward vector X(n) ∈ Rd
Stochastic: X(n) i.i.d., E[X(n)] = θ.
Adversarial: X(n) chosen beforehand by an adversary.

Selecting M gives reward M>X(n) =
∑d

i=1MiXi(n).

Sequential Learning: at each step n, select M(n) ∈M
based on the previous decisions and observed rewards

3 / 49

Combinatorial Optimization under Uncertainty

Sequential decision making over T rounds

Known θ =⇒ always select M? := argmaxM∈MM>θ.

Weights θ could be initially unknown or unpredictably varying.

At time n, environment chooses a reward vector X(n) ∈ Rd
Stochastic: X(n) i.i.d., E[X(n)] = θ.
Adversarial: X(n) chosen beforehand by an adversary.

Selecting M gives reward M>X(n) =
∑d

i=1MiXi(n).

Sequential Learning: at each step n, select M(n) ∈M
based on the previous decisions and observed rewards

3 / 49

Regret

Goal: Maximize collected rewards in expectation

E

[
T∑
n=1

M(n)>X(n)

]
.

Or equivalently, minimize regret over T rounds:

R(T) = max
M∈M

E

[
T∑
n=1

M>X(n)

]
︸ ︷︷ ︸

oracle

−E

[
T∑
n=1

M(n)>X(n)

]
︸ ︷︷ ︸

your algorithm

.

Quantifies cumulative loss of not choosing the best decision (in
hindsight).

Algorithm is learning iff R(T) = o(T).

4 / 49

Regret

Goal: Maximize collected rewards in expectation

E

[
T∑
n=1

M(n)>X(n)

]
.

Or equivalently, minimize regret over T rounds:

R(T) = max
M∈M

E

[
T∑
n=1

M>X(n)

]
︸ ︷︷ ︸

oracle

−E

[
T∑
n=1

M(n)>X(n)

]
︸ ︷︷ ︸

your algorithm

.

Quantifies cumulative loss of not choosing the best decision (in
hindsight).

Algorithm is learning iff R(T) = o(T).

4 / 49

Regret

Goal: Maximize collected rewards in expectation

E

[
T∑
n=1

M(n)>X(n)

]
.

Or equivalently, minimize regret over T rounds:

R(T) = max
M∈M

E

[
T∑
n=1

M>X(n)

]
︸ ︷︷ ︸

oracle

−E

[
T∑
n=1

M(n)>X(n)

]
︸ ︷︷ ︸

your algorithm

.

Quantifies cumulative loss of not choosing the best decision (in
hindsight).

Algorithm is learning iff R(T) = o(T).

4 / 49

Feedback

Choose M(n) based on previous decisions and observed feedback

Full information: X(n) is revealed.

Semi-bandit feedback: Xi(n) is revealed iff Mi(n) = 1.

Bandit feedback: only the reward M(n)>X(n) is revealed.

Sequential learning is modeled as a
Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

Decision M ∈M ⇐⇒ Arm

Element {1, . . . , d} ⇐⇒ Basic action

Each arm is composed of several basic actions.

5 / 49

Feedback

Choose M(n) based on previous decisions and observed feedback

Full information: X(n) is revealed.

Semi-bandit feedback: Xi(n) is revealed iff Mi(n) = 1.

Bandit feedback: only the reward M(n)>X(n) is revealed.

Sequential learning is modeled as a
Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

Decision M ∈M ⇐⇒ Arm

Element {1, . . . , d} ⇐⇒ Basic action

Each arm is composed of several basic actions.

5 / 49

Feedback

Choose M(n) based on previous decisions and observed feedback

Full information: X(n) is revealed.

Semi-bandit feedback: Xi(n) is revealed iff Mi(n) = 1.

Bandit feedback: only the reward M(n)>X(n) is revealed.

Sequential learning is modeled as a
Multi-Armed Bandit (MAB) problem.

Combinatorial MAB:

Decision M ∈M ⇐⇒ Arm

Element {1, . . . , d} ⇐⇒ Basic action

Each arm is composed of several basic actions.

5 / 49

Application 1: Spectrum Sharing

ch. 1 ch. 2 ch. 3

link 1 link 2 link 3 link 4 link 5

ch. 4 ch. 5

K channels, L links

M≡ the set of matchings from [L] to [K]

θij ≡ data rate on the connection (link-i, channel-j)

Xij(n) ≡ success/failure indicator for transmission of link i on
channel j

6 / 49

Application 2: Shortest-path Routing

Source

Destination

M≡ the set of paths

θi ≡ average transmission delay on link i

Xi(n) ≡ transmission delay of link i for n-th packet

7 / 49

Application 2: Shortest-path Routing

Source

Destination 2

4
7

1
6

Source

Destination 2

4
7

1
6

Delay = 20

Semi-bandit feedback: (2, 4, 7, 1, 6) are revealed for chosen links (red).

Bandit feedback: 20 is revealed for the chosen path.

8 / 49

Application 2: Shortest-path Routing

Source

Destination 2

4
7

1
6

Source

Destination 2

4
7

1
6

Delay = 20

Semi-bandit feedback: (2, 4, 7, 1, 6) are revealed for chosen links (red).

Bandit feedback: 20 is revealed for the chosen path.

8 / 49

Application 2: Shortest-path Routing

Source

Destination 2

4
7

1
6

Source

Destination 2

4
7

1
6

Delay = 20

Semi-bandit feedback: (2, 4, 7, 1, 6) are revealed for chosen links (red).

Bandit feedback: 20 is revealed for the chosen path.

9 / 49

Exploiting Combinatorial Structure

Classical MAB (M set of singletons; |M| = d):

Stochastic R(T) ∼ |M| log(T)

Adversarial R(T) ∼
√
|M|T

Generic combinatorial M
|M| could grow exponentially in d =⇒ prohibitive regret

Arms are correlated; they share basic actions.

=⇒ exploit combinatorial structure in M to get R(T) ∼ C log(T) or
R(T) ∼

√
CT where C � |M|

How much can we reduce the regret by exploiting
the combinatorial structure of M?

How to optimally do so?

10 / 49

Exploiting Combinatorial Structure

Classical MAB (M set of singletons; |M| = d):

Stochastic R(T) ∼ |M| log(T)

Adversarial R(T) ∼
√
|M|T

Generic combinatorial M
|M| could grow exponentially in d =⇒ prohibitive regret

Arms are correlated; they share basic actions.

=⇒ exploit combinatorial structure in M to get R(T) ∼ C log(T) or
R(T) ∼

√
CT where C � |M|

How much can we reduce the regret by exploiting
the combinatorial structure of M?

How to optimally do so?

10 / 49

Exploiting Combinatorial Structure

Classical MAB (M set of singletons; |M| = d):

Stochastic R(T) ∼ |M| log(T)

Adversarial R(T) ∼
√
|M|T

Generic combinatorial M
|M| could grow exponentially in d =⇒ prohibitive regret

Arms are correlated; they share basic actions.

=⇒ exploit combinatorial structure in M to get R(T) ∼ C log(T) or
R(T) ∼

√
CT where C � |M|

How much can we reduce the regret by exploiting
the combinatorial structure of M?

How to optimally do so?

10 / 49

Exploiting Combinatorial Structure

Classical MAB (M set of singletons; |M| = d):

Stochastic R(T) ∼ |M| log(T)

Adversarial R(T) ∼
√
|M|T

Generic combinatorial M
|M| could grow exponentially in d =⇒ prohibitive regret

Arms are correlated; they share basic actions.

=⇒ exploit combinatorial structure in M to get R(T) ∼ C log(T) or
R(T) ∼

√
CT where C � |M|

How much can we reduce the regret by exploiting
the combinatorial structure of M?

How to optimally do so?

10 / 49

Map of Thesis

How much can we reduce the regret by exploiting
the combinatorial structure of M?

How to optimally do so?

Chapter Combinatorial Structure M Reward X
Ch. 3 Generic Bernoulli
Ch. 4 Matroid Bernoulli
Ch. 5 Generic Geometric
Ch. 6 Generic (with fixed cardinality) Adversarial

11 / 49

Outline

1 Combinatorial MABs: Bernoulli Rewards

2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs

4 Conclusion and Future Directions

12 / 49

Outline

1 Combinatorial MABs: Bernoulli Rewards

2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs

4 Conclusion and Future Directions

13 / 49

Stochastic CMABs

Rewards:

X(n) i.i.d. , Bernoulli distributed with E[X(n)] = θ ∈ [0, 1]d

Xi(n), i ∈ [d] are independent across i

µM := M>θ average reward of arm M

Average reward gap ∆M = µ? − µM
Optimality gap ∆min = minM 6=M? ∆M

Algorithm Regret

LLR (Gai et al., 2012) O
(
m4d
∆2

min
log(T)

)
CUCB (Chen et al., 2013) O

(
m2d
∆min

log(T)
)

CUCB (Kveton et al., 2015) O
(

md
∆min

log(T)
)

ESCB O
(√

md
∆min

log(T)
)

m = maximal cardinality of arms

14 / 49

Stochastic CMABs

Rewards:

X(n) i.i.d. , Bernoulli distributed with E[X(n)] = θ ∈ [0, 1]d

Xi(n), i ∈ [d] are independent across i

µM := M>θ average reward of arm M

Average reward gap ∆M = µ? − µM
Optimality gap ∆min = minM 6=M? ∆M

Algorithm Regret

LLR (Gai et al., 2012) O
(
m4d
∆2

min
log(T)

)
CUCB (Chen et al., 2013) O

(
m2d
∆min

log(T)
)

CUCB (Kveton et al., 2015) O
(

md
∆min

log(T)
)

ESCB O
(√

md
∆min

log(T)
)

m = maximal cardinality of arms

14 / 49

Stochastic CMABs

Rewards:

X(n) i.i.d. , Bernoulli distributed with E[X(n)] = θ ∈ [0, 1]d

Xi(n), i ∈ [d] are independent across i

µM := M>θ average reward of arm M

Average reward gap ∆M = µ? − µM
Optimality gap ∆min = minM 6=M? ∆M

Algorithm Regret

LLR (Gai et al., 2012) O
(
m4d
∆2

min
log(T)

)
CUCB (Chen et al., 2013) O

(
m2d
∆min

log(T)
)

CUCB (Kveton et al., 2015) O
(

md
∆min

log(T)
)

ESCB O
(√

md
∆min

log(T)
)

m = maximal cardinality of arms

14 / 49

Stochastic CMABs

Rewards:

X(n) i.i.d. , Bernoulli distributed with E[X(n)] = θ ∈ [0, 1]d

Xi(n), i ∈ [d] are independent across i

µM := M>θ average reward of arm M

Average reward gap ∆M = µ? − µM
Optimality gap ∆min = minM 6=M? ∆M

Algorithm Regret

LLR (Gai et al., 2012) O
(
m4d
∆2

min
log(T)

)
CUCB (Chen et al., 2013) O

(
m2d
∆min

log(T)
)

CUCB (Kveton et al., 2015) O
(

md
∆min

log(T)
)

ESCB O
(√

md
∆min

log(T)
)

m = maximal cardinality of arms

14 / 49

Optimism in the face of uncertainty

Construct a confidence bound [b−, b+] for (unknown) µ s.t.

µ ∈ [b−, b+] with high probability

Maximization problem =⇒ we replace (unknown) µ by b+, its
Upper Confidence Bound (UCB) index.

“Optimism in the face of uncertainty” principle:
Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

For arm M and time n, find confidence interval for µM :

P
[
µM ∈ [b−M (n), b+M (n)]

]
≥ 1−O

(
1

n log(n)

)
Choose M(n) ∈ argmaxM∈M b+M (n)

15 / 49

Optimism in the face of uncertainty

Construct a confidence bound [b−, b+] for (unknown) µ s.t.

µ ∈ [b−, b+] with high probability

Maximization problem =⇒ we replace (unknown) µ by b+, its
Upper Confidence Bound (UCB) index.

“Optimism in the face of uncertainty” principle:
Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

For arm M and time n, find confidence interval for µM :

P
[
µM ∈ [b−M (n), b+M (n)]

]
≥ 1−O

(
1

n log(n)

)
Choose M(n) ∈ argmaxM∈M b+M (n)

15 / 49

Optimism in the face of uncertainty

Construct a confidence bound [b−, b+] for (unknown) µ s.t.

µ ∈ [b−, b+] with high probability

Maximization problem =⇒ we replace (unknown) µ by b+, its
Upper Confidence Bound (UCB) index.

“Optimism in the face of uncertainty” principle:
Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

For arm M and time n, find confidence interval for µM :

P
[
µM ∈ [b−M (n), b+M (n)]

]
≥ 1−O

(
1

n log(n)

)
Choose M(n) ∈ argmaxM∈M b+M (n)

15 / 49

Optimism in the face of uncertainty

Construct a confidence bound [b−, b+] for (unknown) µ s.t.

µ ∈ [b−, b+] with high probability

Maximization problem =⇒ we replace (unknown) µ by b+, its
Upper Confidence Bound (UCB) index.

“Optimism in the face of uncertainty” principle:
Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

For arm M and time n, find confidence interval for µM :

P
[
µM ∈ [b−M (n), b+M (n)]

]
≥ 1−O

(
1

n log(n)

)
Choose M(n) ∈ argmaxM∈M b+M (n)

15 / 49

Optimism in the face of uncertainty

Construct a confidence bound [b−, b+] for (unknown) µ s.t.

µ ∈ [b−, b+] with high probability

Maximization problem =⇒ we replace (unknown) µ by b+, its
Upper Confidence Bound (UCB) index.

“Optimism in the face of uncertainty” principle:
Choose arm M with the highest UCB index

Algorithm based on optimistic principle:

For arm M and time n, find confidence interval for µM :

P
[
µM ∈ [b−M (n), b+M (n)]

]
≥ 1−O

(
1

n log(n)

)
Choose M(n) ∈ argmaxM∈M b+M (n)

15 / 49

Optimistic Principle

M

µM

+

+ µ̂2 (n)

µ2+
+

+
+

µ̂1 (n)

µ1

µ3

µ̂3 (n)

16 / 49

Optimistic Principle

M

µM

+

+ µ̂2 (n)

b2 (n)

µ2+
+

+
+

Choose M(n) ∈ argmax bM (n)

b3 (n)

b1 (n)

µ̂1 (n)

µ1

µ3

µ̂3 (n)

How to construct the index for arms?

17 / 49

Optimistic Principle

M

µM

+

+ µ̂2 (n)

b2 (n)

µ2+
+

+
+

Choose M(n) ∈ argmax bM (n)

b3 (n)

b1 (n)

µ̂1 (n)

µ1

µ3

µ̂3 (n)

How to construct the index for arms?

17 / 49

Index Construction

Naive approach: construct index for basic actions
=⇒ index of arm M = sum of indexes of basic action in arm M

Empirical mean θ̂i(n), number of observations: ti(n).
Hoeffding’s inequality:

P

[
θi ∈

(
θ̂i(n)−

√
log(1/δ)

2ti(n)
, θ̂i(n) +

√
log(1/δ)

2ti(n)

)]
≥ 1− 2δ

Choose δ = 1
n3

Index: bM (n) =

d∑
i=1

Miθ̂i(n)︸ ︷︷ ︸
µ̂M (n)

+

d∑
i=1

Mi

√
3 log(n)

2ti(n)︸ ︷︷ ︸
confidence radius

.

µM ∈

[
µ̂M (n)−

d∑
i=1

Mi

√
3 log(n)

2ti(n)
, µ̂M (n) +

d∑
i=1

Mi

√
3 log(n)

2ti(n)

]
w.p. ≥ 1− 1

n3

18 / 49

Index Construction

Naive approach: construct index for basic actions
=⇒ index of arm M = sum of indexes of basic action in arm M

Empirical mean θ̂i(n), number of observations: ti(n).
Hoeffding’s inequality:

P

[
θi ∈

(
θ̂i(n)−

√
log(1/δ)

2ti(n)
, θ̂i(n) +

√
log(1/δ)

2ti(n)

)]
≥ 1− 2δ

Choose δ = 1
n3

Index: bM (n) =

d∑
i=1

Miθ̂i(n)︸ ︷︷ ︸
µ̂M (n)

+

d∑
i=1

Mi

√
3 log(n)

2ti(n)︸ ︷︷ ︸
confidence radius

.

µM ∈

[
µ̂M (n)−

d∑
i=1

Mi

√
3 log(n)

2ti(n)
, µ̂M (n) +

d∑
i=1

Mi

√
3 log(n)

2ti(n)

]
w.p. ≥ 1− 1

n3

18 / 49

Index Construction

Naive approach: construct index for basic actions
=⇒ index of arm M = sum of indexes of basic action in arm M

Empirical mean θ̂i(n), number of observations: ti(n).
Hoeffding’s inequality:

P

[
θi ∈

(
θ̂i(n)−

√
log(1/δ)

2ti(n)
, θ̂i(n) +

√
log(1/δ)

2ti(n)

)]
≥ 1− 2δ

Choose δ = 1
n3

Index: bM (n) =

d∑
i=1

Miθ̂i(n)︸ ︷︷ ︸
µ̂M (n)

+

d∑
i=1

Mi

√
3 log(n)

2ti(n)︸ ︷︷ ︸
confidence radius

.

µM ∈

[
µ̂M (n)−

d∑
i=1

Mi

√
3 log(n)

2ti(n)
, µ̂M (n) +

d∑
i=1

Mi

√
3 log(n)

2ti(n)

]
w.p. ≥ 1− 1

n3

18 / 49

Index Construction

Naive approach: construct index for basic actions
=⇒ index of arm M = sum of indexes of basic action in arm M

Empirical mean θ̂i(n), number of observations: ti(n).
Hoeffding’s inequality:

P

[
θi ∈

(
θ̂i(n)−

√
log(1/δ)

2ti(n)
, θ̂i(n) +

√
log(1/δ)

2ti(n)

)]
≥ 1− 2δ

Choose δ = 1
n3

Index: bM (n) =

d∑
i=1

Miθ̂i(n)︸ ︷︷ ︸
µ̂M (n)

+

d∑
i=1

Mi

√
3 log(n)

2ti(n)︸ ︷︷ ︸
confidence radius

.

µM ∈

[
µ̂M (n)−

d∑
i=1

Mi

√
3 log(n)

2ti(n)
, µ̂M (n) +

d∑
i=1

Mi

√
3 log(n)

2ti(n)

]
w.p. ≥ 1− 1

n3

18 / 49

Index Construction

Our approach: constructing confidence interval directly for each arm
M

Motivated by concentration for sum of empirical KL-divergences.

For a given δ, consider a set

B =

{
λ ∈ [0, 1]d :

d∑
i=1

ti(n) kl(θ̂i(n), λi) ≤ log(1/δ)

}
with

kl(u, v) := u log
u

v
+ (1− u) log

1− u
1− v

.

Find an upper confidence bound for µM such that

µM ∈
[
×, M>λ

]
w.p. at least 1− δ, ∀λ ∈ B.

Equivalently,

µM ≤ max
λ∈B

M>λ w.p. at least 1− δ.

19 / 49

Index Construction

Our approach: constructing confidence interval directly for each arm
M

Motivated by concentration for sum of empirical KL-divergences.

For a given δ, consider a set

B =

{
λ ∈ [0, 1]d :

d∑
i=1

ti(n) kl(θ̂i(n), λi) ≤ log(1/δ)

}
with

kl(u, v) := u log
u

v
+ (1− u) log

1− u
1− v

.

Find an upper confidence bound for µM such that

µM ∈
[
×, M>λ

]
w.p. at least 1− δ, ∀λ ∈ B.

Equivalently,

µM ≤ max
λ∈B

M>λ w.p. at least 1− δ.

19 / 49

Index Construction

Our approach: constructing confidence interval directly for each arm
M

Motivated by concentration for sum of empirical KL-divergences.

For a given δ, consider a set

B =

{
λ ∈ [0, 1]d :

d∑
i=1

ti(n) kl(θ̂i(n), λi) ≤ log(1/δ)

}
with

kl(u, v) := u log
u

v
+ (1− u) log

1− u
1− v

.

Find an upper confidence bound for µM such that

µM ∈
[
×, M>λ

]
w.p. at least 1− δ, ∀λ ∈ B.

Equivalently,

µM ≤ max
λ∈B

M>λ w.p. at least 1− δ.

19 / 49

Index Construction

Our approach: constructing confidence interval directly for each arm
M

Motivated by concentration for sum of empirical KL-divergences.

For a given δ, consider a set

B =

{
λ ∈ [0, 1]d :

d∑
i=1

ti(n) kl(θ̂i(n), λi) ≤ log(1/δ)

}
with

kl(u, v) := u log
u

v
+ (1− u) log

1− u
1− v

.

Find an upper confidence bound for µM such that

µM ∈
[
×, M>λ

]
w.p. at least 1− δ, ∀λ ∈ B.

Equivalently,

µM ≤ max
λ∈B

M>λ w.p. at least 1− δ.

19 / 49

Proposed Indexes

Two new indexes:

(1) Index bM as the optimal value of the following problem:

bM (n) = max
λ∈[0,1]d

d∑
i=1

Miλi

subject to :

d∑
i=1

Miti(n) kl(θ̂i(n), λi) ≤ f(n)︸︷︷︸
log(1/δ)

,

with f(n) = log(n) + 4m log(log(n)).

bM is computed by a line search (derived based on KKT conditions)
Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case
of combinatorial MABs
(2) Index cM :

cM (n) = µ̂M (n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
.

20 / 49

Proposed Indexes

Two new indexes:

(1) Index bM as the optimal value of the following problem:

bM (n) = max
λ∈[0,1]d

d∑
i=1

Miλi

subject to :

d∑
i=1

Miti(n) kl(θ̂i(n), λi) ≤ f(n)︸︷︷︸
log(1/δ)

,

with f(n) = log(n) + 4m log(log(n)).

bM is computed by a line search (derived based on KKT conditions)
Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case
of combinatorial MABs
(2) Index cM :

cM (n) = µ̂M (n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
.

20 / 49

Proposed Indexes

Two new indexes:

(1) Index bM as the optimal value of the following problem:

bM (n) = max
λ∈[0,1]d

d∑
i=1

Miλi

subject to :

d∑
i=1

Miti(n) kl(θ̂i(n), λi) ≤ f(n)︸︷︷︸
log(1/δ)

,

with f(n) = log(n) + 4m log(log(n)).

bM is computed by a line search (derived based on KKT conditions)
Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case
of combinatorial MABs
(2) Index cM :

cM (n) = µ̂M (n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
.

20 / 49

Proposed Indexes

Two new indexes:

(1) Index bM as the optimal value of the following problem:

bM (n) = max
λ∈[0,1]d

d∑
i=1

Miλi

subject to :

d∑
i=1

Miti(n) kl(θ̂i(n), λi) ≤ f(n)︸︷︷︸
log(1/δ)

,

with f(n) = log(n) + 4m log(log(n)).

bM is computed by a line search (derived based on KKT conditions)
Generalizes the KL-UCB index (Garivier & Cappé, 2011) to the case
of combinatorial MABs
(2) Index cM :

cM (n) = µ̂M (n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
.

20 / 49

Proposed Indexes

bM (n) = max
λ∈[0,1]d

d∑
i=1

Miλi

subject to :

d∑
i=1

Miti(n) kl(θ̂i(n), λi) ≤ f(n),

cM (n) = µ̂M (n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
.

Theorem

For all M ∈M and n ≥ 1: cM (n) ≥ bM (n).

Proof idea: Pinsker’s inequality + Cauchy-Schwarz inequality

21 / 49

Proposed Indexes

bM (n) = max
λ∈[0,1]d

d∑
i=1

Miλi

subject to :

d∑
i=1

Miti(n) kl(θ̂i(n), λi) ≤ f(n),

cM (n) = µ̂M (n) +

√√√√f(n)

2

d∑
i=1

Mi

ti(n)
.

Theorem

For all M ∈M and n ≥ 1: cM (n) ≥ bM (n).

Proof idea: Pinsker’s inequality + Cauchy-Schwarz inequality

21 / 49

ESCB Algorithm

ESCB ≡ Efficient Sampling for Combinatorial Bandits

Algorithm 1 ESCB

for n ≥ 1 do
Select arm M(n) ∈ argmaxM∈M ζM (n).

Observe the rewards, and update ti(n) and θ̂i(n),∀i ∈M(n).

end for

ESCB-1 if ζM = bM , ESCB-2 if ζM = cM .

22 / 49

Regret Analysis

Theorem

The regret under ESCB satisfies

R(T) ≤ 16d
√
m

∆min
log(T) +O(log(log(T))).

Proof idea

cM (n) ≥ bM (n) ≥ µM with high probability
Crucial concentration inequality (Magureanu et al., COLT 2014):

P

[
max
n≤T

d∑
i=1

Miti(n)kl(θ̂i(n), θi) ≥ δ

]
≤ Cm(log(T)δ)me−δ.

23 / 49

Regret Analysis

Theorem

The regret under ESCB satisfies

R(T) ≤ 16d
√
m

∆min
log(T) +O(log(log(T))).

Proof idea

cM (n) ≥ bM (n) ≥ µM with high probability
Crucial concentration inequality (Magureanu et al., COLT 2014):

P

[
max
n≤T

d∑
i=1

Miti(n)kl(θ̂i(n), θi) ≥ δ

]
≤ Cm(log(T)δ)me−δ.

23 / 49

Regret Lower Bound

How far are we from the optimal algorithm?

Uniformly good algorithm π: Rπ(T) = O(log(T)) for all θ.

Notion of bad parameter: λ is bad if:

(i) it is statistically indistinguishable from true parameter θ (in the
sense of KL-divergence) ≡ reward distribution of optimal arm M? is
the same under θ or λ,
(ii) M? is not optimal under λ.

Set of all bad parameters B(θ):

B(θ) =
{
λ ∈ [0, 1]d : (λi = θi, ∀i ∈M?)︸ ︷︷ ︸

condition (i)

and max
M∈M

M>λ > µ?︸ ︷︷ ︸
condition (ii)

}
.

24 / 49

Regret Lower Bound

How far are we from the optimal algorithm?

Uniformly good algorithm π: Rπ(T) = O(log(T)) for all θ.

Notion of bad parameter: λ is bad if:

(i) it is statistically indistinguishable from true parameter θ (in the
sense of KL-divergence) ≡ reward distribution of optimal arm M? is
the same under θ or λ,
(ii) M? is not optimal under λ.

Set of all bad parameters B(θ):

B(θ) =
{
λ ∈ [0, 1]d : (λi = θi, ∀i ∈M?)︸ ︷︷ ︸

condition (i)

and max
M∈M

M>λ > µ?︸ ︷︷ ︸
condition (ii)

}
.

24 / 49

Regret Lower Bound

How far are we from the optimal algorithm?

Uniformly good algorithm π: Rπ(T) = O(log(T)) for all θ.

Notion of bad parameter: λ is bad if:

(i) it is statistically indistinguishable from true parameter θ (in the
sense of KL-divergence) ≡ reward distribution of optimal arm M? is
the same under θ or λ,
(ii) M? is not optimal under λ.

Set of all bad parameters B(θ):

B(θ) =
{
λ ∈ [0, 1]d : (λi = θi, ∀i ∈M?)︸ ︷︷ ︸

condition (i)

and max
M∈M

M>λ > µ?︸ ︷︷ ︸
condition (ii)

}
.

24 / 49

Regret Lower Bound

Theorem

For any uniformly good algorithm π, lim infT→∞
Rπ(T)
log(T) ≥ c(θ), with

c(θ) = inf
x∈R|M|+

∑
M∈M

∆MxM

subject to :

d∑
i=1

kl(θi, λi)
∑
M∈M

MixM ≥ 1, ∀λ ∈ B(θ).

The first problem dependent tight LB

Interpretation: each arm M must be sampled at least x?M log(T)
times.

Proof idea: adaptive control of Markov chains with unknown
transition probabilities (Graves & Lai, 1997)

25 / 49

Regret Lower Bound

Theorem

For any uniformly good algorithm π, lim infT→∞
Rπ(T)
log(T) ≥ c(θ), with

c(θ) = inf
x∈R|M|+

∑
M∈M

∆MxM

subject to :

d∑
i=1

kl(θi, λi)
∑
M∈M

MixM ≥ 1, ∀λ ∈ B(θ).

The first problem dependent tight LB

Interpretation: each arm M must be sampled at least x?M log(T)
times.

Proof idea: adaptive control of Markov chains with unknown
transition probabilities (Graves & Lai, 1997)

25 / 49

Regret Lower Bound

Theorem

For any uniformly good algorithm π, lim infT→∞
Rπ(T)
log(T) ≥ c(θ), with

c(θ) = inf
x∈R|M|+

∑
M∈M

∆MxM

subject to :

d∑
i=1

kl(θi, λi)
∑
M∈M

MixM ≥ 1, ∀λ ∈ B(θ).

The first problem dependent tight LB

Interpretation: each arm M must be sampled at least x?M log(T)
times.

Proof idea: adaptive control of Markov chains with unknown
transition probabilities (Graves & Lai, 1997)

25 / 49

Towards An Explicit LB

How does c(θ) scale with d, m?

Proposition

For most problems c(θ) = Ω(d−m).

Intuitive since d−m basic actions are not sampled when playing M?.
Proof idea

Construct a covering set H for suboptimal basic actions
Keeping constraints for M ∈ H

Definition

H is a covering set for basic actions if it is a (inclusion-wise) maximal
subset of M\M? such that for all distinct M,M ′ ∈ H, we have

(M \M?) ∩ (M ′ \M?) = ∅.
26 / 49

Towards An Explicit LB

How does c(θ) scale with d, m?

Proposition

For most problems c(θ) = Ω(d−m).

Intuitive since d−m basic actions are not sampled when playing M?.
Proof idea

Construct a covering set H for suboptimal basic actions
Keeping constraints for M ∈ H

Definition

H is a covering set for basic actions if it is a (inclusion-wise) maximal
subset of M\M? such that for all distinct M,M ′ ∈ H, we have

(M \M?) ∩ (M ′ \M?) = ∅.
26 / 49

Towards An Explicit LB

How does c(θ) scale with d, m?

Proposition

For most problems c(θ) = Ω(d−m).

Intuitive since d−m basic actions are not sampled when playing M?.
Proof idea

Construct a covering set H for suboptimal basic actions
Keeping constraints for M ∈ H

Definition

H is a covering set for basic actions if it is a (inclusion-wise) maximal
subset of M\M? such that for all distinct M,M ′ ∈ H, we have

(M \M?) ∩ (M ′ \M?) = ∅.
26 / 49

Towards An Explicit LB

How does c(θ) scale with d, m?

Proposition

For most problems c(θ) = Ω(d−m).

Intuitive since d−m basic actions are not sampled when playing M?.
Proof idea

Construct a covering set H for suboptimal basic actions
Keeping constraints for M ∈ H

Definition

H is a covering set for basic actions if it is a (inclusion-wise) maximal
subset of M\M? such that for all distinct M,M ′ ∈ H, we have

(M \M?) ∩ (M ′ \M?) = ∅.
26 / 49

Numerical Experiments

Matchings in Km,m

Parameter θ:

θi =


a i ∈M?

b otherwise.

c(θ) = m(m−1)(a−b)
2kl(b,a)

matchings K5,5

a = 0.7, b = 0.5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

100

200

300

400

500

Time
R

eg
re

t

LLR
CUCB
ESCB−1
ESCB−2
Epoch−ESCB

10
1

10
2

10
3

10
40

100

200

300

400

Time

R
eg

re
t

LLR
CUCB
ESCB−1
ESCB−2
Epoch−ESCB
Lower Bound

27 / 49

Outline

1 Combinatorial MABs: Bernoulli Rewards

2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs

4 Conclusion and Future Directions

28 / 49

Matroid

Combinatorial optimization over a matroid

Of particular interest in combinatorial optimization

Power of greedy solution

Matroid constraints arise in many applications

Cardinality constraints, partitioning constraints, coverage constraints

Definition

Given a finite set E and I ⊂ 2E , the pair (E, I) is called a matroid if:

(i) If X ∈ I and Y ⊆ X, then Y ∈ I (closed under subset).

(ii) If X,Y ∈ I with |X| > |Y |, then there is some element ` ∈ X \ Y
such that Y ∪ {`} ∈ I (augmentation property).

29 / 49

Matroid

Combinatorial optimization over a matroid

Of particular interest in combinatorial optimization

Power of greedy solution

Matroid constraints arise in many applications

Cardinality constraints, partitioning constraints, coverage constraints

Definition

Given a finite set E and I ⊂ 2E , the pair (E, I) is called a matroid if:

(i) If X ∈ I and Y ⊆ X, then Y ∈ I (closed under subset).

(ii) If X,Y ∈ I with |X| > |Y |, then there is some element ` ∈ X \ Y
such that Y ∪ {`} ∈ I (augmentation property).

29 / 49

Matroid

E is ground set, I is set of independent sets.

Basis: any inclusion-wise maximal element of I
Rank: common cardinality of bases

Example: Graphic Matroid (for graph G = (V,H)):

(H, I) with I = {F ⊆ H : (V, F) is a forest}.

A basis is an spanning forest of the G

30 / 49

Matroid

E is ground set, I is set of independent sets.

Basis: any inclusion-wise maximal element of I
Rank: common cardinality of bases

Example: Graphic Matroid (for graph G = (V,H)):

(H, I) with I = {F ⊆ H : (V, F) is a forest}.

A basis is an spanning forest of the G

30 / 49

Matroid Optimization

Weighted matroid: is triple (E, I, w) where w is a positive weight
vector (w` is the weight of ` ∈ E).

Maximum-weight basis:

max
X∈I

∑
`∈X

w`

Can be solved greedily: At each step of the algorithm, add a new
element of E with the largest weight so that the resulting set remains
in I.

31 / 49

Matroid Bandits

Weighted matroid G = (E, I, θ)
Set of basic actions ≡ ground set of matroid E

For each i, (Xi(n))n≥1 is i.i.d. with Bernoulli of mean θi

Each arm is a basis of G; M≡ set of bases of G

Prior work:

Uniform matroids (Anantharam et al. 1985): Regret LB

Generic matroids (Kveton et al., 2014): OMM with regret

O
(

d
∆min

log(T)
)

32 / 49

Matroid Bandits

Weighted matroid G = (E, I, θ)
Set of basic actions ≡ ground set of matroid E

For each i, (Xi(n))n≥1 is i.i.d. with Bernoulli of mean θi

Each arm is a basis of G; M≡ set of bases of G

Prior work:

Uniform matroids (Anantharam et al. 1985): Regret LB

Generic matroids (Kveton et al., 2014): OMM with regret

O
(

d
∆min

log(T)
)

32 / 49

Regret LB

Theorem

For all θ and every weighted matroid G = (E, I, θ), the regret of
uniformly good algorithm π satisfies

lim inf
T→∞

Rπ(T)

log(T)
≥ c(θ) =

∑
i/∈M?

θσ(i) − θi
kl(θi, θσ(i))

,

where for any i
σ(i) = arg min

`:(M?\`)∪{i}∈I
θ`.

Tight LB, first explicit regret LB for matroid bandits

Generalizes LB of (Anantharam et al., 1985) to matroids.
Proof idea

Specialization of Graves-Lai result
Choosing d−m box constraints in view of σ
Lower bounding ∆M ,M ∈M in terms of σ

33 / 49

Regret LB

Theorem

For all θ and every weighted matroid G = (E, I, θ), the regret of
uniformly good algorithm π satisfies

lim inf
T→∞

Rπ(T)

log(T)
≥ c(θ) =

∑
i/∈M?

θσ(i) − θi
kl(θi, θσ(i))

,

where for any i
σ(i) = arg min

`:(M?\`)∪{i}∈I
θ`.

Tight LB, first explicit regret LB for matroid bandits

Generalizes LB of (Anantharam et al., 1985) to matroids.
Proof idea

Specialization of Graves-Lai result
Choosing d−m box constraints in view of σ
Lower bounding ∆M ,M ∈M in terms of σ

33 / 49

Regret LB

Theorem

For all θ and every weighted matroid G = (E, I, θ), the regret of
uniformly good algorithm π satisfies

lim inf
T→∞

Rπ(T)

log(T)
≥ c(θ) =

∑
i/∈M?

θσ(i) − θi
kl(θi, θσ(i))

,

where for any i
σ(i) = arg min

`:(M?\`)∪{i}∈I
θ`.

Tight LB, first explicit regret LB for matroid bandits

Generalizes LB of (Anantharam et al., 1985) to matroids.
Proof idea

Specialization of Graves-Lai result
Choosing d−m box constraints in view of σ
Lower bounding ∆M ,M ∈M in terms of σ

33 / 49

KL-OSM Algorithm

KL-OSM (KL-based Optimal Sampling for Matroids)

Uses KL-UCB index attached to each basic action i ∈ E:

ωi(n) = max
{
q > θ̂i(n) : ti(n)kl(θ̂i(n), q) ≤ f(n)

}
with f(n) = log(n) + 3 log(log(n)).

Relies on Greedy

Algorithm 2 KL-OSM
for n ≥ 1 do

Select
M(n) ∈ arg max

M∈M

∑
i∈M

ωi(n)

using the Greedy algorithm.

Play M(n), observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).
end for

34 / 49

KL-OSM Algorithm

KL-OSM (KL-based Optimal Sampling for Matroids)

Uses KL-UCB index attached to each basic action i ∈ E:

ωi(n) = max
{
q > θ̂i(n) : ti(n)kl(θ̂i(n), q) ≤ f(n)

}
with f(n) = log(n) + 3 log(log(n)).

Relies on Greedy

Algorithm 3 KL-OSM
for n ≥ 1 do

Select
M(n) ∈ arg max

M∈M

∑
i∈M

ωi(n)

using the Greedy algorithm.

Play M(n), observe the rewards, and update ti(n) and θ̂i(n), ∀i ∈M(n).
end for

34 / 49

KL-OSM Regret

Theorem

For any ε > 0, the regret under KL-OSM satisfies

R(T) ≤ (1 + ε)c(θ) log(T) +O(log(log(T)))

KL-OSM is asymptotically optimal:

lim sup
T→∞

R(T)

log(T)
≤ c(θ)

The first optimal algorithm for matroid bandits

Runs in O(d log(d)T) (in the independence oracle model)

35 / 49

KL-OSM Regret

Theorem

For any ε > 0, the regret under KL-OSM satisfies

R(T) ≤ (1 + ε)c(θ) log(T) +O(log(log(T)))

KL-OSM is asymptotically optimal:

lim sup
T→∞

R(T)

log(T)
≤ c(θ)

The first optimal algorithm for matroid bandits

Runs in O(d log(d)T) (in the independence oracle model)

35 / 49

Numerical Experiments: Spanning Trees

1 2 3 4 5 6 7 8 9 10
x 10

4

0

20

40

60

80

100

120

140

160

Time

R
eg

re
t

OMM
KL−OSM
Lower Bound

10
2

10
3

10
4

10
55

10

15

20

25

30

35

40

45

Time

R
eg

re
t

OMM
KL−OSM
Lower Bound

36 / 49

Outline

1 Combinatorial MABs: Bernoulli Rewards

2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs

4 Conclusion and Future Directions

37 / 49

Adversarial Combinatorial MABs

Arms have the same cardinality m (but otherwise arbitrary)

Rewards X(n) ∈ [0, 1]d are arbitrary (oblivious adversary)

Bandit feedback: only M(n)>X(n) is observed at round n.

Regret

R(T) = max
M∈M

E

[
T∑
n=1

M>X(n)

]
− E

[
T∑
n=1

M(n)>X(n)

]
.

E[·] is w.r.t. random seed of the algorithm.

38 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Inspired by OSMD algorithm (Audibert et al., 2013)

max
M∈M

M>X = max
α∈conv(M)

α>X.

Maintain a distribution q = α/m over basic actions {1, . . . , d}.
q induces a distribution p over arms M.

Sample M from p, play it, and receive bandit feedback.

Update q (create q̃) based on feedback.

Project α̃ = mq̃ onto conv(M).

Introduce exploration

39 / 49

CombEXP Algorithm

Algorithm 4 CombEXP

Initialization: Set q0 = µ0 (uniform distribution over [d]), γ, η ∝ 1√
T

for n ≥ 1 do

Mixing: Let q′n−1 = (1− γ)qn−1 + γµ0.

Decomposition: Select a distribution pn−1 over arms M such that∑
M

pn−1(M)M = mq′n−1.

Sampling: Select M(n) ∼ pn−1 and receive reward Yn = M(n)>X(n).

Estimation: Let Σn−1 = EM∼pn−1

[
MM>

]
. Set X̃(n) = YnΣ+

n−1M(n).

Update: Set q̃n(i) ∝ qn−1(i)eηX̃i(n), ∀i ∈ [d].

Projection: Set

qn = arg min
p∈conv(M)

KL

(
1

m
p, q̃n

)
.

end for

40 / 49

CombEXP: Regret

Theorem

RCombEXP(T) ≤ 2

√
m3T

(
d+

m1/2

λmin

)
logµ−1

min +O(1),

where λmin is the smallest nonzero eigenvalue of E[MM>] when M is
uniformly distributed and

µmin = min
i

1

|M|
∑
M∈M

Mi.

For most problems λmin = Ω(md) and µ−1
min = O(poly(d/m)):

R(T) ∼
√
m3dT log

d

m
.

41 / 49

CombEXP: Regret

Theorem

RCombEXP(T) ≤ 2

√
m3T

(
d+

m1/2

λmin

)
logµ−1

min +O(1),

where λmin is the smallest nonzero eigenvalue of E[MM>] when M is
uniformly distributed and

µmin = min
i

1

|M|
∑
M∈M

Mi.

For most problems λmin = Ω(md) and µ−1
min = O(poly(d/m)):

R(T) ∼
√
m3dT log

d

m
.

41 / 49

CombEXP: Regret

Theorem

RCombEXP(T) ≤ 2

√
m3T

(
d+

m1/2

λmin

)
logµ−1

min +O(1),

where λmin is the smallest nonzero eigenvalue of E[MM>] when M is
uniformly distributed and

µmin = min
i

1

|M|
∑
M∈M

Mi.

For most problems λmin = Ω(md) and µ−1
min = O(poly(d/m)):

R(T) ∼
√
m3dT log

d

m
.

41 / 49

CombEXP with Approximate Projection

Exact projection with finitely many operations may be impossible
=⇒ CombEXP with approximate projection.

Proposition

Assume that the projection step of CombEXP is solved up to accuracy

O
(

1

n2 log3(n)

)
, ∀n ≥ 1.

Then

R(T) ≤ 2

√
2m3T

(
d+

m1/2

λmin

)
logµ−1

min +O(1)

The same regret scaling as for exact projection.
Proof idea: Strong convexity of KL w.r.t. ‖ · ‖1 + Properties of
projection with KL

42 / 49

CombEXP with Approximate Projection

Exact projection with finitely many operations may be impossible
=⇒ CombEXP with approximate projection.

Proposition

Assume that the projection step of CombEXP is solved up to accuracy

O
(

1

n2 log3(n)

)
, ∀n ≥ 1.

Then

R(T) ≤ 2

√
2m3T

(
d+

m1/2

λmin

)
logµ−1

min +O(1)

The same regret scaling as for exact projection.
Proof idea: Strong convexity of KL w.r.t. ‖ · ‖1 + Properties of
projection with KL

42 / 49

CombEXP with Approximate Projection

Exact projection with finitely many operations may be impossible
=⇒ CombEXP with approximate projection.

Proposition

Assume that the projection step of CombEXP is solved up to accuracy

O
(

1

n2 log3(n)

)
, ∀n ≥ 1.

Then

R(T) ≤ 2

√
2m3T

(
d+

m1/2

λmin

)
logµ−1

min +O(1)

The same regret scaling as for exact projection.
Proof idea: Strong convexity of KL w.r.t. ‖ · ‖1 + Properties of
projection with KL

42 / 49

CombEXP: Complexity

Theorem

Let

c = # eq. conv(M), s = # ineq. conv(M).

Then, if the projection step of CombEXP is solved up to accuracy
O(n−2 log−3(n)), ∀n ≥ 1, CombEXP after T rounds has time
complexity

O(T [
√
s(c+ d)3 log(T) + d4]).

Box inequality constraints: O(T [c2√s(c+ d) log(T) + d4]).

Proof idea

Constructive proof of Carathéodory Theorem for decomposition
Barrier method for projection

43 / 49

CombEXP: Complexity

Theorem

Let

c = # eq. conv(M), s = # ineq. conv(M).

Then, if the projection step of CombEXP is solved up to accuracy
O(n−2 log−3(n)), ∀n ≥ 1, CombEXP after T rounds has time
complexity

O(T [
√
s(c+ d)3 log(T) + d4]).

Box inequality constraints: O(T [c2√s(c+ d) log(T) + d4]).

Proof idea

Constructive proof of Carathéodory Theorem for decomposition
Barrier method for projection

43 / 49

CombEXP: Complexity

Theorem

Let

c = # eq. conv(M), s = # ineq. conv(M).

Then, if the projection step of CombEXP is solved up to accuracy
O(n−2 log−3(n)), ∀n ≥ 1, CombEXP after T rounds has time
complexity

O(T [
√
s(c+ d)3 log(T) + d4]).

Box inequality constraints: O(T [c2√s(c+ d) log(T) + d4]).

Proof idea

Constructive proof of Carathéodory Theorem for decomposition
Barrier method for projection

43 / 49

Prior Work

Algorithm
A

B
Regret (Symmetric Problems)

Lower Bound (Audibert et al., 2013)

√
A2

A2
Ω
(
m
√
dT
)

, if d ≥ 2m

ComBand (Cesa-Bianchi & Lugosi, 2012)

d

m
d

m

O

(√
m3dT log

d

m

) d

m
d

m

CombEXP

d

m
d

m

O

(√
m3dT log

d

m

) d

m
d

m

Both ComBand and CombEXP are off the LB by a factor√
m log(d/m).

ComBand relies on (approximate) sampling from M whereas
CombEXP does convex optimization over conv(M).

44 / 49

Prior Work

Algorithm
A

B
Regret (Symmetric Problems)

Lower Bound (Audibert et al., 2013)

√
A2

A2
Ω
(
m
√
dT
)

, if d ≥ 2m

ComBand (Cesa-Bianchi & Lugosi, 2012)

d

m
d

m

O

(√
m3dT log

d

m

) d

m
d

m

CombEXP

d

m
d

m

O

(√
m3dT log

d

m

) d

m
d

m

Both ComBand and CombEXP are off the LB by a factor√
m log(d/m).

ComBand relies on (approximate) sampling from M whereas
CombEXP does convex optimization over conv(M).

44 / 49

Complexity Example: Matchings

Matchings in Km,m:

conv(M) is the set of all doubly stochastic m×m matrices (Birkhoff
polytope):

conv(M) =

{
Z ∈ Rm×m+ :

m∑
k=1

zik = 1, ∀i,
m∑
k=1

zkj = 1, ∀j

}
.

c = 2m and s = m2 (box constraints).

Complexity of ComEXP: O(m5T log(T))

Complexity of CombBand: O(m10F (T)) for some super-linear
function F (T) (need for approximating a permanent at each round).

45 / 49

Complexity Example: Matchings

Matchings in Km,m:

conv(M) is the set of all doubly stochastic m×m matrices (Birkhoff
polytope):

conv(M) =

{
Z ∈ Rm×m+ :

m∑
k=1

zik = 1, ∀i,
m∑
k=1

zkj = 1, ∀j

}
.

c = 2m and s = m2 (box constraints).

Complexity of ComEXP: O(m5T log(T))

Complexity of CombBand: O(m10F (T)) for some super-linear
function F (T) (need for approximating a permanent at each round).

45 / 49

Outline

1 Combinatorial MABs: Bernoulli Rewards

2 Stochastic Matroid Bandits

3 Adversarial Combinatorial MABs

4 Conclusion and Future Directions

46 / 49

Conclusion

Stochastic combinatorial MABs

The first regret LB
ESCB: best performance in terms of regret

Stochastic matroid bandits

The first explicit regret LB
KL-OSM: the first optimal algorithm

Adversarial combinatorial MABs

CombEXP: the same regret as state-of-the-art but with lower
computational complexity

More in the thesis!

47 / 49

Conclusion

Stochastic combinatorial MABs

The first regret LB
ESCB: best performance in terms of regret

Stochastic matroid bandits

The first explicit regret LB
KL-OSM: the first optimal algorithm

Adversarial combinatorial MABs

CombEXP: the same regret as state-of-the-art but with lower
computational complexity

More in the thesis!

47 / 49

Conclusion

Stochastic combinatorial MABs

The first regret LB
ESCB: best performance in terms of regret

Stochastic matroid bandits

The first explicit regret LB
KL-OSM: the first optimal algorithm

Adversarial combinatorial MABs

CombEXP: the same regret as state-of-the-art but with lower
computational complexity

More in the thesis!

47 / 49

Future Directions: Stochastic

Improvement to the proposed algorithms

Tighter regret analysis of ESCB-1 (order-optimality conjecture)
Can we amortize index computation?

Analysis of Thompson Sampling for stochastic combinatorial
MABs

Stochastic combinatorial MABs under bandit feedback

Projection-free optimal algorithm for bandit and semi-bandit
feedbacks

48 / 49

Future Directions: Stochastic

Improvement to the proposed algorithms

Tighter regret analysis of ESCB-1 (order-optimality conjecture)
Can we amortize index computation?

Analysis of Thompson Sampling for stochastic combinatorial
MABs

Stochastic combinatorial MABs under bandit feedback

Projection-free optimal algorithm for bandit and semi-bandit
feedbacks

48 / 49

Future Directions: Stochastic

Improvement to the proposed algorithms

Tighter regret analysis of ESCB-1 (order-optimality conjecture)
Can we amortize index computation?

Analysis of Thompson Sampling for stochastic combinatorial
MABs

Stochastic combinatorial MABs under bandit feedback

Projection-free optimal algorithm for bandit and semi-bandit
feedbacks

48 / 49

Publications

Combinatorial bandits revisited
with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)

An optimal algorithm for stochastic matroid bandit optimization
with A. Proutiere (AAMAS 2016)

Spectrum bandit optimization
with M. Lelarge and A. Proutiere (ITW 2013)

Stochastic online shortest path routing: The value of feedback
with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE

TAC)

Thanks for your attention!

49 / 49

Publications

Combinatorial bandits revisited
with R. Combes, A. Proutiere, and M. Lelarge (NIPS 2015)

An optimal algorithm for stochastic matroid bandit optimization
with A. Proutiere (AAMAS 2016)

Spectrum bandit optimization
with M. Lelarge and A. Proutiere (ITW 2013)

Stochastic online shortest path routing: The value of feedback
with Z. Zou, R. Combes, A. Proutiere, and M. Johansson (Submitted to IEEE

TAC)

Thanks for your attention!

49 / 49

	Combinatorial MABs: Bernoulli Rewards
	Stochastic Matroid Bandits
	Adversarial Combinatorial MABs
	Conclusion and Future Directions

