@article{Boeck_2019, doi = {10.1088/2057-1976/ab1bfc}, url = {https://doi.org/10.1088%2F2057-1976%2Fab1bfc}, year = 2019, month = {may}, publisher = {{IOP} Publishing}, volume = {5}, number = {4}, pages = {045004}, author = {Michelle B\"{o}ck and Kjell Eriksson and Anders Forsgren}, title = {On the interplay between robustness and dynamic planning for adaptive radiation therapy}, journal = {Biomedical Physics {\&} Engineering Express}, abstract = {Interfractional geometric uncertainties can lead to deviations of the actual delivered dose from the prescribed dose distribution. To better handle these uncertainties during the course of treatment, the authors propose a framework for robust adaptive radiation therapy in which a variety of robust adaptive treatment strategies are introduced and evaluated. This variety is a result of optimization variables with various degrees of freedom within robust optimization models that vary in their grade of conservativeness. The different degrees of freedom in the optimization variables are expressed through either time-and-uncertainty-scenario-independence, time-dependence or time-and-uncertainty-scenario-dependence, while the robust models are either based on expected-value-, worst-case- or conditional value-at-risk-optimization. The goal of this study is to understand which mathematical properties of the proposed robust adaptive strategies are relevant such that the accumulated dose can be steered as close as possible to the prescribed dose as the treatment progresses. We apply a result from convex analysis to show that the robust non-adaptive approach under conditions of convexity and permutation-invariance is at least as good as the time-dependent robust adaptive approach, which implies that the time-dependent problem can be solved by dynamically solving the corresponding time-independent problem. According to the computational study, non-adaptive robust strategies may provide sufficient target coverage comparable to robust adaptive strategies if the occurring uncertainties follow the same distribution as those included in the robust model. Moreover, the results indicate that time-and-uncertainty-scenario-dependent optimization variables are most compatible with worst-case-optimization, while time-and-uncertainty-scenario-independent variables find their best match with expected value optimization. In conclusion, the authors introduced a novel framework for robust adaptive radiation therapy and identified mathematical requirements to further develop robust adaptive strategies in order to improve treatment outcome in the presence of interfractional uncertainties.} }