
GEOMETRY-BASED RANKING FOR MOBILE 3D VISUAL SEARCH USING
HIERARCHICALLY STRUCTURED MULTI-VIEW FEATURES

David Ebri Mars, Hanwei Wu, Haopeng Li and Markus Flierl

School of Electrical Engineering
KTH Royal Institute of Technology, Stockholm

{dem, hanwei, haopeng, mflierl}@kth.se

ABSTRACT
This paper proposes geometry-based ranking for mobile 3D visual
search. It utilizes the underlying geometry of the 3D objects as well
as the appearance to improve the ranking results. A double hierarchy
has been embedded in the data structure, namely the hierarchically
structured multi-view features for each object and a tree hierarchy
from multi-view vocabulary trees. As the 3D geometry informa-
tion is incorporated in the multi-view vocabulary tree, it allows us
to evaluate the consistency of the 3D geometry at low computational
complexity. Thus, a cost function is proposed for object ranking
using geometric consistency. With that, we devise an iterative al-
gorithm that accomplishes 3D geometry-based ranking. The exper-
imental results show that our 3D geometry-based ranking improves
the recall-datarate performance as well as the subjective ranking re-
sults for mobile 3D visual search.

1. INTRODUCTION

In recent years, the development of wireless mobile devices and vir-
tual reality has raised the interest in mobile visual search [1] [2] [3].
It aims to provide an augmented reality in a real-world environment
by utilizing the methods of image based information retrieval. Cur-
rent mobile visual search solutions achieve search results based on
the appearance of objects in images captured by mobile devices.
These solutions fail if different real objects appear similar in the
captured images. To solve this problem, mobile 3D visual search
captures not only the visual appearance of query objects, but uses
also the underlying 3D geometry [3].

To obtain the 3D geometric information of an object, multi-
view imagery may be used. A hierarchical structure of multi-view
features allows the selection of image features which is based on
feature correspondences across multiple views [4]. Features with
well-established correspondences are more robust for matching with
query features. Further, by utilizing relevant multi-view feature cor-
respondences, it is possible to achieve an improved ranking perfor-
mance while using a smaller number of image features.

For robust image retrieval, multi-view scalable vocabulary trees
have been used in [5]. Multiple vocabulary trees may be generated
with respect to different view perspectives. This method measures
the distortion of the descriptors when there is a change of perspec-
tive. It is suitable for planar objects such as CD cover images where
all feature points are located on the same plane. It has been shown
that using multi-view scalable vocabulary trees can significantly in-
crease the image retrieval performance when compared to using a
single view approach. This motivates us to utilize multi-view scal-
able vocabulary trees to handle the 3D geometry of objects.

On the other hand, geometric consistency verification is usually
used to evaluate the matches of the query in the database vocabulary

tree. RANSAC [6] based methods may be used to distinguish the
outliers from the inliers by exploiting statistical consensus. How-
ever, the speed of the algorithm depends heavily on the computa-
tional complexity of RANSAC. A fast geometric ranking method
has been proposed in [7]. It evaluates the geometric consistency by
exploiting the geometric similarity between matched features. With
3D geometric information of the object, we can efficiently extend
this method to features in 3D space, which are more robust to per-
spective transformation of objects.

2. MULTI-VIEW VOCABULARY TREES

Large-scale objects such as buildings are usually hard to match due
to significant change of viewpoint and lighting conditions between
query and server. Thus, an image database at the server with a con-
siderable perspective diversity will improve the performance of mo-
bile 3D visual search. To match a query with the corresponding ob-
ject at the server, well-known vocabulary tree (VT) methods [8] [9]
have been widely used. It can efficiently index image features from
a large number of different objects. However, the flexible adaptation
of vocabulary tree to handle different perspectives of the same object
becomes a crucial problem.

2.1. Hierarchically Structured Multi-View Features

To manage image features from different perspectives, we aim at
aligning multi-view feature correspondences. Each of our multi-
view feature correspondences is associated with images from dif-
ferent perspectives. To efficiently implement that, we utilize our ear-
lier work [4] to generate a set of hierarchically structured multi-view
features for each object.

As promoted multi-view features, which are associated with
more images, are more reliable and representative for robust match-
ing, we structure sets of feature correspondences in a hierarchical
manner. In particular, sets of feature correspondences with l images
are placed on level l. Usually, the number of such sets on higher lev-
els is smaller than that on lower levels. An example for hierarchical
sets of features with four levels from four views is shown in Fig. 1.
For each set of corresponding features among view images, we take
the median of their descriptors as the representative descriptor. More
details of our hierarchical multi-view features are discussed in [4].

We see three advantages of using our multi-view features. First,
it has been shown in [4] that increasing the number of view images
can improve the recall-datarate performance of mobile visual search.
Second, the geometric information of the features can be exploited
for geometric consistency verification. Third, the use of the repre-
sentative descriptors reduces the redundancy and improves memory
efficiency.

C1
1

C2
1,2

C3
1,2,3

C4
1,2,3,4

C3
1,2,4

C3
2,3,4

C3
1,3,4

C2
1,3

C2
2,3

C2
1,4

C2
2,4

C2
3,4

C1
2

C1
3

C1
4

Level

level 2

level 1

level 3

level 4

Fig. 1. Hierarchical sets of features with four levels from four views.
Cl

i,j,...,k defines a set of feature correspondences using l images with
image indices i, j, . . . , k.

2.2. Construction of Vocabulary Trees

With hierarchically structured multi-view features, we are able to
generate vocabulary trees [8] which are based on multi-view feature
descriptors. Both hierarchical and tree structures provide us an ad-
vantage when constructing a memory-efficient representation.

To construct the tree, we apply recursively the k-means cluster-
ing method [10] on the representative descriptors. Note that we use
the Euclidean distance for representative descriptors. We generate a
D level tree with K branches at each level. Each node of the tree is
known as a visual word and the nodes at bottom level are called leaf
nodes. The visual vocabulary is composed of the visual words in
the leaf nodes. It has been shown in [8] that the memory occupation
of the vocabulary tree is linear in the number of leaf nodes KD . If
the N -dimensional visual word is represented by single precision in
MATLAB, the size of the tree is approximately 4NKD bytes.

The combination of D and K is given and determined by the
requirement of memory usage. Let the total number of descriptors
which are used to generate the tree be denoted as M . Generally
speaking, the more descriptors are involved in constructing the tree,
the higher is the chance that the query features can be matched cor-
rectly. However, the number of descriptors which are associated with
the leaf nodes is monotonically increasing with respect to the num-
ber M . Thus, the risk of outliers becomes relatively high due to the
characteristic of the tree matching algorithm, as explained in Sec. 3.
In this situation, it is desirable to choose more discriminative de-
scriptors to generate the tree with a limited number of M .

To achieve this, we efficiently utilize the hierarchical structure
of the multi-view features. We structure the features from top to
down and use the most reliable descriptors to construct the vocabu-
lary trees. On one hand, the descriptors on the top levels are more
robust for matching against the query features. On the other hand,
this limits the number of descriptors associated with each leaf node
and reduces the risk of outliers.

2.3. Object-Based TF-IDF Weighting

We use the concept of term frequency-inverse document frequency
(tf-idf) to assign the weighting to each leaf node [11]. Different
from conventional tf-idf weighting based on images, our weighting
is based on the objects associated with the multi-view images.

For the i-th leaf node, let the number of objects associated with
leaf node i be denoted as Ni. For the features of the k-th object

associated with this node, the tf-idf weighting factor is given by

wi,k =
ni,k

nk
log

N

Ni
, (1)

where ni,k is the number of multi-view features of the k-th object
associated with the leaf node i, nk the total number of multi-view
feature of the k-th object and N the number of objects in the whole
database. The part ni,k/nk describes the term frequency which indi-
cates the importance of the associated feature in the k-th object. The
part log N

Ni
describes the inverse document frequency which penal-

izes features that appear often among leaf nodes in the database.

3. 3D GEOMETRY-BASED OBJECT RANKING
3.1. Cost Function

Vocabulary tree matching and geometric consistency verification are
two important steps for a successful query. For vocabulary tree
matching, a short list of candidate objects is generated by ranking
the tf-idf score of each object. For geometric consistency verifica-
tion, we evaluate the geometric consistency of the candidate objects
which we have obtained from the vocabulary tree matching.

Conventional methods usually apply these two steps sequen-
tially on the input query features. This means that the procedure
of geometric verification is applied after vocabulary tree matching.
Therefore, we develop a new method which combines both steps and
outputs an object ranking that considers geometric information.

We consider a constrained problem. If candidate objects have
very similar tf-idf scores, then the ranking of these candidate ob-
jects is determined by geometric consistency verification. The con-
strained optimization problem reads

min
k

Jk

s.t. |sk − sj | ≤ δ, k ̸= j, (2)

where Jk is the cost of geometric inconsistency, sk the tf-idf scoring
function of the k-th object, and Ω = {k| |sk − sj | ≤ δ, k ̸= j}
is a set of object indexes associated with objects on a similar score
level as defined by the small threshold δ. By solving this problem,
the ranking of a set of objects is determined by sorting according to
the geometric inconsistency.

3.1.1. Scoring Function

We use our multi-view vocabulary tree to serve each incoming query
feature. The best-bin-first strategy is used recursively, it compares
the query only to the children nodes of the best parent node [12].
With this approach, each incoming query feature can reach the ex-
pected leaf node efficiently.

For each candidate object in the database, we can obtain a set
of leaf nodes which the query features have reached. Let this set for
the k-th object be denoted as Ik. Conventional methods define the
score of the k-th object as the sum of the weighting factors of the
leaf nodes in Ik

sk =
∑
i∈Ik

wi,k, (3)

where wi,k is the tf-idf weighting as shown in (1).
However, it ignores the distance between query and matched leaf

node which reflects the confidence of the query matching. There-
fore, we introduce a credibility value to each correspondence be-
tween query and leaf node. It measures the distance ratio between

first and second closest leaf node for each incoming query feature

ci,k = 1− dl(1)/dl(2), i ∈ Ik, (4)

where dl(1) is the Euclidean distance between query descriptor and
centroid of the closet leaf node and dl(2) that of the second closest
leaf node. The credibility value reflects the confidence of the query
matching. It is close to 1 when the query feature can be clearly
distinguished between first and second closest leaf nodes. It is close
to 0 when the query feature lies close to the border of two leaf nodes.

Moreover, the performance of classification depends on the size
of the tree as well as the selection of the scoring function. Using the
sum of the weighting factors as a scoring function is suitable for sce-
narios with small vocabulary trees. In such scenarios, the number of
descriptors associated with each leaf node is usually large. Then, the
td-idf weighting in (1) can discriminate the importance of different
features. However, for large vocabulary trees, the number of descrip-
tors associated with each leaf node is usually small. This leads to td-
idf weighting that is less discriminative. Thus, a counter |Ik| which
indicates the number of query descriptors that are matched with the
k-th object in the database will be helpful for a scoring function.

Considering above scenarios, we define the score for the k-th
object candidate as a product of the counter with the weighted sum
of the td-idf values

sk = |Ik|
∑
i∈Ik

wi,kc
2
i,k. (5)

Empirical results suggest to use the square of the credibility values
for weighting. Due to above counter, the scoring function grows
incrementally for all candidate objects with the incoming query fea-
tures. Thus, an iterative algorithm can be implemented by monitor-
ing the constrains on the scoring function.

3.1.2. 3D Geometric Consistency

Vocabulary tree matching provides us a set of feature correspon-
dences Qk between the query and database features of the k-th can-
didate object. However, purely vocabulary tree matching contains
outliers in Qk, which influence geometric consistency verification
significantly. The first step is to choose a subset of reliable corre-
spondences from Qk, i.e., Q̃k ⊂ Qk. With this step, we can avoid
using the outliers in Qk as well as limit the computational complex-
ity. To do this, we borrow the idea from [7]. We sort the correspon-
dences by counting the number of descriptors under the associated
leaf-nodes. Usually, the leaf node which contains less descriptors
is more unique and reliable than that with more descriptors. There-
fore, we can generate a set of reliable correspondences Q̃k where
|Q̃k| ≤ |Qk|. Note, the computational complexity of geometric ver-
ification depends only on |Q̃k|.

Each feature correspondence in Q̃k contains a query feature q
and a database feature p. Combining the location data of the query
features and the intrinsic camera information, we obtain the set of
3D world coordinates W c by using the method of two-view self-
calibration. Similar, we are able to obtain the set of 3D world coor-
dinates W s for the database features.

For correct feature matching in Q̃k, we use the seven-parameter
Helmert transformation [13] to describe the relationship between the
3D world coordinates of query and database object points

w⃗c = κΦ w⃗s + t⃗, (6)

with w⃗c ∈ W c and w⃗s ∈ W s, where κ is the scale parameter in R+,
Φ the rotation matrix in R3 and t⃗ the translation parameter in R3. In

our earlier work [3], we use the Helmert-constrained RANSAC to
estimate the parameters. However, it results in high computational
complexity due to the RANSAC iterations.

Hence, we are not going to estimate the parameters in (6). It is
sufficient that we only calculate the 3D misalignment between 3D
world coordinates of each query and database correspondence

g(q, p) = log2
[
1 + ∥w⃗c(q)− w⃗s(p)∥

]
, (7)

where g is the function of calculating the 3D misalignment. The log2
operation allows us to limit the dynamic range of the misalignment.
Note that the 3D misalignment only depends on the transformation
between two coordinate systems (i.e., query and database) and is
invariant to the absolute position of individual 3D points. It remains
a constant value for all correct matches.

Thus, we define the cost of 3D geometric inconsistency in (2) by
the variance of the 3D misalignment

Jk = var {g(q, p)}, q, p ∈ Q̃k. (8)

For a set of correspondences which contains consistent matches, the
variance J is usually small. Therefore, the object candidates can be
ranked by sorting the variances of the 3D misalignment.

3.2. Iterative Ranking Algorithm

We exploit the incremental properties of the scoring function and
develop an iterative algorithm for 3D geometry-based ranking. For
each incoming query feature, the scoring function of the candidate
objects is updated according to (5). Thus, the scores of the candidate
objects are growing incrementally with the incoming query features.

Once two or more candidates reach a similar score level, we are
able to define a set of object indexes Ω which contains indexes of
objects with similar scores. Then, we evaluate the geometric consis-
tency by using the method as proposed in Sec. 3.1.2. The objects in
set Ω are re-ranked by the geometric consistency. A description of
the algorithm is shown in Fig. 2.

—————————————————————————————————-
1. Initialize: Set the score sk = 0, k = 1 . . . N for all objects and the set of object
indexes Ω = ∅;
do Update the scores by matching the incoming query features against the vocabulary
tree;
a) Update Ω for which |sk − sj | ≤ δ, k ̸= j;
b) Calculate the cost of 3D misalignment in (8) for all objects in Ω;
c) Update the ranking of objects in Ω by using above costs;
until All incoming query features have been used.
2. Output the results of object ranking.
—————————————————————————————————-

Fig. 2. Algorithm for 3D geometry-based ranking.

With this algorithm, we are able to re-rank groups of objects
when they satisfy the constraint of similar score level. Due to the
vocabulary tree, we can update the scores easily. This approach al-
lows us 3D geometry-based ranking. The top-ranked object is on the
highest score level and has the best 3D geometric consistency.

4. EXPERIMENTAL RESULTS

We evaluate our 3D geometry-based ranking for the multi-view im-
age dataset Stockholm Buildings1 which comprises 50 buildings of
that city. The server holds 254 images of the 50 buildings. At least
2 views have been recorded for each building. The client may use
up to 100 additional test images of the 50 buildings. We acquired

1http://people.kth.se/˜haopeng/sthlmbuildings/

10
0

10
1

10
2

60

70

80

90

100

Hierarchically structured MV features

Unstructured MV features

datarate (KB/query)

re
ca

ll
 (

%
)

Fig. 3. Comparison of the recall-datarate using hierarchically struc-
tured and unstructured multi-view features.

10
0

10
1

10
2

60

70

80

90

100

VT + fast 3D

VT + RANSAC 3D

VT + RANSAC 2D

re
ca

ll
 (

%
)

datarate (KB/query)

Fig. 4. Comparison of the recall-datarate using different geometric
verification methods.

server and test images at different viewpoints and at different times.
The images have been recorded by a Cannon IXUS50 digital camera
at a resolution of 2592× 1944 pixels.

The query features are selected and encoded with the rate-
constrained feature selection method from our earlier work [3].
It utilizes stereo features to obtain more reliable query features.
Note, this rate-constrained feature selection differs from single-view
feature-based methods as discussed in prior frameworks [1]. The
advantage of stereo features is explained in [3].

4.1. Structuring of Multi-View Features for Memory-Con-
strained Multi-View Vocabulary Trees

We use two approaches to construct vocabulary trees and compare
their performance. The first approach uses all available multi-view
features of the data set in an unstructured way. The second approach
uses the top of the hierarchically structured multi-view features. For
a fair comparison, we use the same memory constraint for the vo-
cabulary trees. Both trees have the same number of tree levels and
branches.

We set D = 5 for the number of tree levels and K = 8 for the
branches. The total memory usage of such vocabulary trees is about
70 MB. Note that the original view by view feature database uses 5.3
GB, and the multi-view feature database uses 400 MB. For the hi-
erarchically structured multi-view features, the top three levels have
been used on average for the construction of the vocabulary tree.
We use our iterative algorithm to obtain the recall-datarate trade-off.
As shown in Fig. 3, using the hierarchically structured multi-view
features improves the performance significantly. As expected, this
approach selects the most reliable features to construct the vocabu-
lary tree as well as limits the number of outliers at each leaf node.

4.2. Comparison of Different Geometric Verification Methods

We evaluate the performance of fast 3D geometric verification by
comparing it to other two RANSAC based methods, namely the
epipolar-constrained 2D RANSAC and the Helmert-constrained 3D
RANSAC [3]. As shown in Fig. 4, we investigate the trade-off be-
tween recall and datarate for these methods. Note that we use the

(a) proposed ranking method, example 1

(c) proposed ranking method, example 2

(b) reference ranking method, example 1

(d) reference ranking method, example 2

Fig. 5. Comparison of the ranking results using proposed and refer-
ence methods.

same vocabulary tree for all methods. In general, the methods based
on 3D geometry information outperform the 2D RANSAC as the un-
derlying 3D geometry is more discriminative than the 2D geometry.

We also investigate the average execution time by using different
geometric verification methods on a MATLAB platform. To obtain
the top five ranked images, the fast 3D geometric verification method
needs only 0.16 seconds to achieve an average recall of 90%. The
2D RANSAC algorithm needs 3 seconds, and the 3D RANSAC al-
gorithm needs 13 seconds to achieve the same recall level.

4.3. Performance of Ranking

We evaluate the performance of ranking by comparing our method to
a reference method. The reference method uses the scoring function
in (3) and the epipolar-constrained 2D RANSAC for the geometric
verification after vocabulary tree matching. Note that we use the
same multi-view vocabulary tree for both methods.

As shown in Fig. 5, the left most image is the query image from
the client side while the other five images in the same row are the
ranking results. With the improved scoring function, the proposed
method can efficiently retrieve objects with similar visual elements
such as window patterns and eaves. On the other hand, the fast 3D
geometric verification improves the ranking by considering the un-
derlying 3D geometry of the objects such as round corners, sharp
edges, or planar surfaces.

5. CONCLUSIONS

We discussed mobile 3D visual search and proposed an algorithm
for 3D geometry-based ranking. We use multi-view vocabulary trees
and construct them by utilizing hierarchically structured multi-view
features. Object-based tf-idf weighting and scoring functions have
been designed for the mobile 3D visual search scenario. With 3D ge-
ometric information associated with the vocabulary tree, we devel-
oped an iterative algorithm for 3D geometry-based ranking. The ex-
perimental results show that our tree design as well as 3D geometry-
based ranking improve the recall-datarate performance significantly.

6. ACKNOWLEDGMENTS

This work has been supported in part by EIT ICT Labs in the con-
text of the project 14452 “Mobile 3D Visual Search in 3D Environ-
ments”.

7. REFERENCES

[1] B. Girod, V. Chandrasekhar, R. Grzeszczuk, and Y. Reznik,
“Mobile visual search: Architectures, technologies, and the
emerging MPEG standard,” IEEE Trans. on Multimedia, vol.
18, no. 3, pp. 86 –94, Mar. 2011.

[2] D. Chen, G. Baatz, K. Koser, S. Tsai, R. Vedantham, T. Pyl-
vanainen, K. Roimela, C. Xin, J. Bach, M. Pollefeys, B. Girod,
and R. Grzeszczuk, “City-scale landmark identification on mo-
bile devices,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2011.

[3] H. Li and M. Flierl, “Mobile 3D visual search using the
Helmert transformation of stereo features,” in Proc. of the
IEEE International Conference on Image Processing, Sept.
2013.

[4] X. Lyu, H. Li, and M. Flierl, “Hierarchically structured multi-
view features for mobile visual search,” in Proc. of the IEEE
Data Compression Conference, Mar. 2014.

[5] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, J. Singh, and
B. Girod, “Robust image retrieval using multiview scalable
vocabulary trees,” in Proc. SPIE, Visual Communications and
Image Processing, Jan. 2009.

[6] M. Fischler and R. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis
and automated cartography,” Commun. ACM, vol. 24, no. 6,
pp. 381–395, June 1981.

[7] S. Tsai, D. Chen, G. Takacs, V. Chandrasekhar, R. Vedantham,
R. Grzeszczuk, and B. Girod, “Fast geometric re-ranking for
image-based retrieval,” in Proc. of the IEEE International Con-
ference on Image Processing, 2010.

[8] D. Nister and H. Stewenius, “Scalable recognition with a vo-
cabulary tree,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, June 2006.

[9] D. Chen, S. Tsai, V. Chandrasekhar, G. Takacs, R. Vedantham,
R. Grzeszczuk, and B. Girod, “Inverted index compression for
scalable image matching,” in Proc. of the IEEE Data Compres-
sion Conference, Mar. 2010.

[10] T. Kanungo, D. Mount, N. Netanyahu, C. Piatko, R. Silverman,
and A. Wu, “An efficient k-means clustering algorithm: Analy-
sis and implementation,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, vol. 24, pp. 881 –892, July 2002.

[11] J. Sivic and A. Zisserman, “Video Google: A text retrieval
approach to object matching in videos,” in Proc. of the Inter-
national Conference on Computer Vision, Oct. 2003.

[12] J. Beis and D. Lowe, “Shape indexing using approximate
nearest-neighbour search in high-dimensional spaces,” in
Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 1997.

[13] G. Watson, “Computing Helmert transformations,” Journal of
Computational and Applied Mathematics, vol. 197, no. 2, pp.
387 –394, 2006.

