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ABSTRACT

This paper presents a scheme for mobile 3D visual search that fa-
cilitates mobile recognition of 3D objects. We use a multi-view ap-
proach to extract the 3D geometric information of the query objects
and integrate it into SIFT descriptors. To meet a given transmission
bandwidth, we use a rate-constrained quad-tree representation for
feature selection and encoding. With this approach, we are able to
progressively match the query features against the stereo features in
the database and implement a robust geometric verification with the
Helmert transformation. The experimental results show that our pro-
posed approach to mobile 3D visual search outperforms JPEG and
single-view SIFT-based search.

Index Terms— Mobile visual search, 3D geometric verification,
Helmert transformation.

1. INTRODUCTION

The advancement of wireless mobile devices and the desire for an
augmented reality in a real-world environment have raised interest
in applications of mobile visual search [1] [2]. Visual search allows
users interactive and semantic access to real-world objects. With
the integration of digital cameras into mobile devices, image-based
information retrieval for mobile visual search is developing rapidly.
A crucial problem is the efficient utilization of the information in the
mobile images.

The challenges of mobile image retrieval are rooted in the band-
width constraint and the limited computational capacity of mobile
devices. To solve these problems, most of the mobile visual search
algorithms use the so-called bag of features approach where only the
salient image features are extracted and sent.

Therefore, the detection of features and the computation of de-
scriptors play an important role in feature extraction. The well-
known Scale Invariant Feature Transform (SIFT) [3] has been widely
used in visual search applications. It is more robust than many other
well-known features in the context of feature matching and recog-
nition due to its invariance under rotation, scale change and affine
transformation [4]. However, the direct transmission of SIFT de-
scriptors is not practical due to the large data volume. In particular,
the amount of SIFT data is usually larger than the size of the JPEG-
compressed image itself [1]. Hence, several compression schemes
have been proposed to solve this problem. An efficient approach is
known as Compressed Histogram of Gradients (CHoG) [5], which
can reduce the data rate by factor 20 when compared to that of the
uncompressed SIFT descriptors. However at very low data rate,
the recall rate decreases significantly as only a few features can be
matched correctly.

Currently, mobile visual search uses only 2D image-based fea-
tures for object recognition while ignoring the underlying 3D geo-
metric information. Expanding feature descriptors to capture also
3D geometric information will improve the recall rate. In such a
case, the assessment of a query will be based on the visual appear-
ance of the object as well as the underlying 3D geometry. That is,
in cases where the visual appearance of a query is very similar, the
underlying 3D geometry can be used to discriminate objects.

In this paper, we propose an approach that uses stereo features
for 3D object recognition. Our experiments will focus on the recog-
nition of buildings. Unlike dominant color or structural model-based
methods [6] [7], our method uses only the discrete 3D points with-
out utilizing any prior knowledge. To characterize the 3D geometric
structure of objects, we use a multi-view approach to extract stereo
SIFT features with the corresponding 3D geometric information. To
meet the bandwidth constraint on the client side, we propose a rate-
constrained quad-tree for feature selection and encoding. With the
tree-structured data, we are able to match the query features progres-
sively. As the 3D geometric information of the features is available,
we propose a method based on the Helmert transformation [8] to
verify the 3D geometry.
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Fig. 1. Mobile 3D visual search

Our scheme for 3D visual search is shown in Fig. 1. The client
extracts and encodes the stereo features of the query. The server
holds the stereo-feature database derived from the multi-view im-
agery as well as the stereo-feature matching engine.

2.1. 3D Visual Queries on Mobile Devices

In the following, we discuss the algorithm at the client. We aim at
an efficient selection and encoding of the most relevant stereo fea-



tures while meeting the constraints of bandwidth and computational
resources.

2.1.1. Acquisition of Image Pairs and SIFT Feature Matching

The images of the query building are acquired by a monocular digital
camera which can be commonly found on mobile devices. Consid-
ering that the computational capacity of mobile devices is relatively
low, we take only two images from different viewpoints for each
building and define them as the image pair Vk.

For each image pair Vk, we extract the SIFT features and find the
correspondences. The correct correspondences relate to the same
3D point in the scene and, hence, can be used to identify the geo-
metric information of the related features. To refine the matching
results, we use the eight-point epipolar-constrained [9] RANSAC
algorithm [10]. Finally, we get a set of reliable feature correspon-
dences, defined as the stereo feature set Qc at the client side.

There are two advantages of sending stereo features. First, we
can represent the geometric information associated with the features.
Second, features with established correspondences on the client side
are more robust for matching on the server side.

2.1.2. Rate-Constrained Feature Selection

For a query of the database at the server, we transmit a set of stereo
features. In order to meet the bandwidth constraint, we sample stereo
features from Qc and send only the most reliable candidates.

Let Bb be the bandwidth constraint of the mobile device and
Bt = ρM the actual bandwidth, where M is the number of trans-
mitted stereo features and ρ the datarate per stereo feature, which
will be addressed in Section 2.1.3.

Further, let d(x, y) denote the feature distribution over the im-
age support I(x, y), where x and y are the image coordinates. In
order to choose relevant features in a rate-constrained setting, we
approximate the feature distribution by a quad-tree representation.
We partition the image support into a set of M piecewise dyadic re-
gions T = {Rm,m = 1, . . . ,M}, where the individual regions Rm

satisfy ∪M
m=1Rm = I and Rm ∩ Rm′ = ∅ for m �= m′. With that,

the approximate feature distribution for a given partition T is

dT (x, y) =
1

|Qc|
M∑

m=1

|Sm|gm(x, y), (1)

where |Sm| is the size of the stereo feature set Sm in a given region
Rm and gm(x, y) = 1Rm(x, y) the indicator function for the region
Rm. Note that this approximation can be easily expanded to non-
dyadic regions.

As we use the model distribution (1) to approximate the actual
feature distribution, a larger M will lead to a better approxima-
tion with smaller approximation error variance E

{
(d− dT )

2
}

[11].
However, it will also result in a higher bandwidth cost. Therefore,
we need to balance the trade-off between approximation error and
bandwidth. We obtain the optimal partition Topt by solving the fol-
lowing rate-constrained problem

min
T

E
{
(d− dT )

2}

s.t. ρM ≤ Bb. (2)

We solve this problem by recursively partitioning Qc into M sub-
sets from top-to-down. Each node in the tree is defined by a dyadic
square Rm. A new partition T can be formed by decomposing one
of the dyadic squares Rm into four dyadic sub-squares. We always
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Fig. 2. Quad-tree partition of stereo feature space into at most 100
dyadic squares. Each highlighted block indicates one dyadic square
Rm, the number in each square indicates the size of feature set |Sm|.

decompose the dyadic square Rm which leads to a smaller error vari-
ance. With this recursive partition method, we need to visit each
node of the tree only once. Two examples of the rate-constrained
quad-tree approximation are shown in Fig. 2.

For a given optimal partition Topt, we use the Euclidean distance
ratio between the first and second nearest feature correspondence [3]
to choose the most robust stereo feature in each subset Sm. In other
words, we select the stereo feature with the smallest distance ratio
in each Sm. Hence, M robust stereo features from Qc will be trans-
mitted to the server.

2.1.3. Coding of Stereo Features

After choosing M stereo features by rate-constrained approxima-
tion, the features are encoded with high accuracy such that the fea-
ture information can be reconstructed at the server.

We need the location information of features in both images to
reconstruct the 3D geometric information from the stereo features.
For efficient encoding, we encode the 2D location data in one image
and the disparity information in the other. Additionally, the intrinsic
information of the camera, including the focal length and the image
size, is also transmitted. The use of intrinsic camera information is
discussed in Section 2.2.2.

Therefore, we have three sets of parameters to encode: SIFT
descriptors, location data and intrinsic camera information. As we
require a high accuracy for the selected stereo features, we choose
a double-precision representation for each parameter and use arith-
metic coding to encode the parameter sets. With this approach, we
achieve a datarate ρ of about 0.1 KBytes per stereo feature.

2.2. 3D Feature Database at the Server

2.2.1. Representation of Feature Sets

A database with efficient data structure plays a crucial role in mobile
visual search. Comparing the features received from the client to
all the features in the database is infeasible due to the large amount
of features. Therefore, we reuse the quad-tree representation in Sec-
tion 2.1.2 to efficiently index the features in the database for progres-
sive feature matching. Note that we will address the matching strat-
egy in Section 2.3. Unlike conventional databases of image-based
features, we store only the indexed stereo features with geometric in-
formation. This approach reduces significantly the number of stored
features and the geometric information can be used efficiently for
3D object recognition.

For the server database, we acquire multiple images from each
3D object, i.e., building. For N acquired images, we define K image
pairs as (1, 2), (2, 3), . . . , (N − 1, N). With a similar procedure
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Fig. 3. 3D reconstruction of stereo features using multi-view images.
A small snapshot is shown in the upper right corner. The subplot (a)
uses 8 images with 58285 stereo features; the subplot (b) uses 10
images with 82213 stereo features.

as introduced in Section 2.1.1, we obtain the set of reliable stereo
features Qk

s from the k-th image pair at the server. With multi-view
calibration, N views are aligned and the geometric information of
the stereo features set Qk

s is extracted.

2.2.2. Multi-View Calibration

Two-view self-calibration: Our multi-view calibration begins with
a two-view self-calibration for the first image pair (1, 2). We use the
intrinsic information from the EXIF tags of the camera image file to
estimate the intrinsic camera parameter, in particular the focal length
f = w·fm

wm
, where f and w are the focal length and the image width

in pixels, fm and wm are the actual focal length and the width of the
CCD sensor in millimeters, which are readings from the EXIF tags.

To solve the ill-posed problem of self-calibration caused by out-
liers of feature correspondences, we utilize the reliable fundamental
matrix F1 of the epipolar-constrained RANSAC algorithm by im-
posing the singularity constraint rank(F1) = 2 [12]. With the in-
trinsic matrices A1 and A2 of view 1 and 2, we calculate the es-
sential matrix E1 = A2

TF1A1. We set the view 1 as reference
view at the origin of the 3D world coordinates. For a given essen-
tial matrix E1, four solutions for translation matrix T2 and rotation
matrix R2 of view 2 can be calculated by applying singular value de-
composition (SVD) on E1 [12]. Physically impossible solutions are
discarded by using the positive depth constraint [13]. After know-
ing the self-calibration parameters, the set of 3D world coordinate
P 1
s = {(Xn, Yn, Zn)} of the corresponding stereo feature set Q1

s

can be calculated up to an unknown scale.

Adding views: To align all stereo features among all available
views, we use the direct linear transform (DLT) [9] to add additional
views to the calibration process. We compare the neighboring set
Q2

s to Q1
s and choose the joint features U3 = Q1

s ∩ Q2
s. The

associated 3D world coordinates of U3 can be extracted from P 1
s .

The projection matrix of the new view is calculated by the DLT.
The camera calibration parameters are obtained by decomposing the
projection matrix with QR-factorization.

Bundle adjustment: Finally, we use the non-linear least squares
method known as Levenberg-Marquardt algorithm [14] to minimize
the reprojection error caused by accumulating relative orientations.
We use the sparse bundle adjustment [15] for an efficient implemen-
tation. Two examples of 3D reconstruction of stereo features are
shown in Fig. 3.

2.3. 3D Matching

As introduced in Section 2.2, the set of stereo features is approxi-
mated by a quad-tree representation. Now, this representation is used
for progressive stereo feature matching. Additionally, the 3D geo-
metric information of the stereo features permits efficient 3D match-
ing.

2.3.1. Strategy of Matching Pairs of Stereo Features

Similar to Section 2.1.2, we compute the Euclidean distance ratio for
each stereo feature in Qk

s . The indexing of the stereo features in one
Sm is achieved by sorting them according to the Euclidean distance
ratio in ascending order. We define a level set for stereo features with
the same index as

Ji = ∪Ms
m=1Sm(i), (3)

where Ms is the number of partitions, ∪L
i=1Ji = Qk

s , and L =
max |Sm|.

The level set Ji with smaller index contains more robust fea-
tures. Therefore, we propose a progressive matching strategy based
on the best-feature-first policy. We define ν as the minimum number
of matched features after geometric verification. For each received
set of query features, we match it against all stereo feature level sets
Ji from the lowest level. This procedure will stop when the number
of correctly matched features satisfies the threshold ν.

This strategy offers two advantages: First, the best-feature-first
policy allows more reliable features to be used first. This accelerates
the matching process. Second, the number of features in the server
database can be significantly reduced since relatively few features
are needed for matching. Note that this paper focuses on the trade-
off between recall and datarate. Fast methods like the vocabulary
tree [1] can be used to speed up the process.

2.3.2. Geometric Verification using the Helmert Transformation

To obtain the correct matches, we need to introduce geometric ver-
ification into the matching process. Usually, an epipola-constrained
RANSAC algorithm is used for single-view visual search. However,
the epipolar constraint can not capture the 3D information of the ob-
ject. With our multi-view approach, the 3D geometric information
of stereo features can be efficiently used for geometric verification.

First, we need to extract the 3D geometric information from the
query. Combining the location data of the features and the intrinsic
camera information, we obtain the corresponding set of 3D world
coordinates Pc by using the method of two-view self-calibration in
Section 2.2.2.

From Section 2.3.1, we get stereo feature correspondences be-
tween query and database, which are based on descriptor matching.
With that, the associated 3D world coordinates of the query and the
server database are available. The two-view self-calibration can re-
construct the 3D world coordinates up to an unknown scale with rel-
ative translation and rotation. For a correct 3D matching, we use the
so-called seven-parameter Helmert transformation to describe the re-
lationship between the 3D world coordinates of query and server ob-
ject points

�pc = sΦ �ps + �t, (4)

with �pc ∈ Pc and �ps ∈ P k
s , where s is the scale parameter in R

+, Φ
the rotation matrix in R

3 and �t the translation parameter in R
3.

The seven-parameter Helmert transformation can be deter-
mined by finding the least squares solution using the Hanson-Norris
method [16] with at least three correspondences between world
coordinates. However, some misalignment of world coordinates



(a) example 1: without geometric constraint

(c) example 1: with epipolar constraint

(e) example 1:  with Helmert constraint

(b) example 2: without geometric constraint

(d) example 2: with epipolar constraint

(f) example 2:  with Helmert constraint

Fig. 4. Comparison of using different geometric constraints. The
subplots (a) (c) (e) show example 1; the subplots (b) (d) (f) show
example 2. In each subplot, the left image is the query and the right
image is the corresponding one from the database.

caused by erroneous calibration parameters should also be con-
sidered. Therefore, we integrate the Helmert constraint into the
RANSAC procedure. In this case, we use the Helmert transfor-
mation as a model to fit the sets of 3D world coordinates and find
the sample consensus. Only three correspondences are needed per
RANSAC iteration.

3. EXPERIMENTAL RESULTS

We evaluate our mobile 3D visual search for the multi-view image
dataset Stockholm Buildings1 which comprises 50 buildings of the
city. The server holds 254 images of the 50 buildings. At least 2
views have been recorded for each building. The client may use up
to 100 additional test images of the 50 buildings. We took server
and test images at the different viewpoints and at different times.
The images have been taken by a Cannon IXUS50 digital camera at
resolution 2592× 1944 pixels.

3.1. Geometric Verification using the Helmert Transformation

Now, we verify the method of using the seven-parameter Helmert
transformation for geometric verification. At this point, the datarate
is not constrained.

The first example is shown in Fig. 4(a)(c)(e). Due to the change
of viewpoints and lighting conditions, a large amount of features
are wrongly matched without using any geometric verification. As
shown in Fig. 4(c), the epipolar constraint does not work here since
it can not find a consistent solution in the highly noisy environment.
With 3D geometric information, our Helmert-constrained approach
is able to find the correct feature correspondences.

The second example is shown in Fig. 4(b)(d)(f). Here, the query
pair is taken from another image, a so-called ”picture pair of pic-
ture”. In other words, the query content is actually a picture on a
billboard, instead of a real building. As shown in Fig. 4(d), the 3D
recognition fails as the epipolar constraint permits many correspon-
dences. As the actual 3D positions of the query features sit on a flat
surface, our Helmert-constrained based method accepts only very
few correspondences. However, they are quickly discarded by the
RANSAC procedure.

1http://www.ee.kth.se/˜haopeng/sthlmbuildings
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Fig. 5. Comparison of the recall-datarate trade-off between reference
schemes and 3D visual search.

3.2. Trade-Off between Recall and Datarate

In the following, we investigate the trade-off between the recall and
the datarate for 3D visual search. The recall is defined by the per-
centage with which the query object is retrieved correctly from the
server database. The datarate is simply the size of the query packet
which is sent to the server. We choose ν = 12 for the minimum
number of matched features after geometric verification [1].

We compare our mobile 3D visual search with two other
schemes which use single views only to recognize query build-
ing. The first reference transmits the JPEG-compressed image. We
resize the image from 460 × 340 to 128 × 100 to vary the trans-
mission rate. The second reference transmits the compressed SIFT
features from a single view only. We encode the SIFT descriptors
and location data by arithmetic coding. For a given datarate bud-
get, we choose an appropriate number of SIFT features. For a fair
comparison, we use the same dataset and progressive matching for
all schemes. The reference schemes use the epipolar-constrained
RANSAC. The results are shown in Fig. 5.

For the JPEG-based scheme, the recall quickly degrades when
decreasing the resolution. For the single-view SIFT-based scheme,
the recall is limited due to challenging cases (i.e., large baseline,
different lighting conditions) even at high datarate. Our method
achieves 100% recall at 13.5 KB per query by sending only 130
stereo features on average.

4. CONCLUSIONS

We discussed a scheme for mobile 3D visual search and tested it on
the dataset ’Stockholm Buildings’. We use a multi-view approach
to characterize the 3D geometric information of the query build-
ing. Due to the mobile setting, we define stereo features and a
rate-constrained quad-tree representation. This allows progressive
matching at the server, and hence, accelerates the search. To fully
utilize the geometric information, we propose a Helmert-constrained
RANSAC for geometric verification. The experimental results show
that our 3D visual search outperforms JPEG and single-view SIFT-
based methods. Future research may incorporate more compact fea-
ture descriptors, such as CHoG.
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