Picture Coding Symposium 2004

Inter-Resolution Transform for Spatially Scalable Video Coding

Markus Flierl and Pierre Vandergheynst

Motivation

- Spatially Scalable Representations
 - Critically sampled spatial wavelet schemes
 - Overcomplete spatial representations
- Critically sampled spatial wavelet schemes

 Critically sampled high-bands are shift-variant
 - Efficient motion compensation is challenging
- Overcomplete spatial representations
 - Can be shift-invariant for all subbands
 - Efficient motion compensation
 - **Problem:** Compression efficiency

- The Laplacian pyramid
- What is the problem with this overcomplete representation?
- Additional spatial lifting steps
- Related work
- Experiments
- Experimental results

Laplacian Pyramid I

Laplacian Pyramid II

 $G(\omega)$ is an ideal low-pass

Laplacian Pyramid III

Low-frequent quantization noise in high-band degrades reconstruction

• Goal:

Minimize the impact of the low- and high-band quantization noise on the reconstructed images

 Improve the decoder by an additional "lifting" step

• Complement the encoder to permit perfect reconstruction in the noiseless case

Additional Spatial Lifting Step I

 Perfect reconstruction achievable for any pair of lowpass filters G(ω) and U(ω)

Additional Spatial Lifting Step II

$U(\omega)$ and $G(\omega)$ are orthogonal for low frequencies

- We select the low-band to represent the signal of lower resolution
- This avoids additional quantization noise
- For the signal of higher resolution, perfect reconstruction is possible in the noiseless case

• "Framing Pyramids" [Do & Vetterli, 2003] propose only a reconstruction scheme for the Laplacian pyramid.

 Reconstruction is the pseudo inverse if L(ω) and G(ω) are orthogonal with respect to the sampling factor 2.

• Coding scheme:

- QCIF and CIF pictures are spatially decomposed
- Spatial subbands are coded with motioncompensated temporal wavelet transforms [MCTF extension of H.263++, Flierl & Girod, PCS 2003]
- Decoded low-band represents the spatial base layer in QCIF resolution
- Decoded low- and high-band reconstruct the spatially scalable CIF resolution
- Experiments:
 - Motion-compensated Haar and 5/3 kernel
 - GOPs of 32 pictures
 - Neither temporal nor SNR scalability is used

Coding Scheme

- Low-band pictures I_k represent the image sequence of lower resolution
- The low-pass filter L(ω) is symmetric

Rate-Distortion Performance for High Resolution ¹⁴

Rate-Distortion Performance for High Resolution ¹⁵

Rate-Distortion Performance for High Resolution ¹⁶

Signal Processing Institute Swiss Federal Institute of Technology, Lausanne

EPFL

ITS

Rate-Distortion Performance for High Resolution ¹⁷

Rate-Distortion Performance for Low Resolution ¹⁸

Rate-Distortion Performance for Low Resolution ¹⁹

- Discussed a problem of the Laplacian pyramid
- Impact of the low- and high-band quantization noise on the reconstructed images
- Proposed an inter-resolution decomposition and composition with the following advantages:
 - Quantization noise is handled efficiently at the decoder
 - "Lifting" scheme permits perfect reconstruction in the noiseless case
 - Perfect reconstruction even without orthogonal filters
 - Improved coding gain over Laplacian pyramid

