Multihypothesis Motion-Compensated Prediction with Forward-Adaptive Hypothesis Switching

Markus Flierl Telecommunications Laboratory Information Systems Laboratory University of Erlangen-Nuremberg mflierl@stanford.edu

Introduction

Goal

 Improved motion-compensated prediction for efficient video compression

Approaches

- Linear combination of motion-compensated signals
- Forward-adaptive selection of reference frames for motioncompensated prediction

Advantage

More than "additive" gains can be achieved by combining both approaches

Mobile & Calendar QCIF, 10 fps @34 dB PSNR

Multihypothesis Motion-Compensated Prediction

Multihypothesis Motion Compensation

- All hypotheses c_u are shifted versions of the current frame signal
- The shift is determined by the displacement error

$$\Delta_{\mu} \sim \mathcal{N}(0, C_{\Delta\Delta})$$

The ideal reconstruction of the band-limited signal s[l] is shifted by the continuous valued displacement error and resampled on the original orthogonal grid

$$\frac{\Phi_{ee}(\omega)}{\Phi_{ss}(\omega)} = \frac{N+1}{N} - 2P(\omega, \sigma_{\Delta}^{2}) + \frac{N-1}{N}P(\omega, 2\sigma_{\Delta}^{2}(1-\rho_{\Delta}))$$
$$P(\omega, \sigma_{\Delta}^{2}) = \exp(-\frac{1}{2}\omega^{T}\omega\sigma_{\Delta}^{2}) \quad \text{with} \quad \omega = (\omega_{x}, \omega_{y})$$

Optimal Multihypothesis Motion Estimation

$$\min \sigma_{\rm e}^2 \Rightarrow \rho_{\rm A} = \frac{1}{1-N}$$

Bernd Girod Stanford University girod@ee.stanford.edu

Forward-Adaptive Hypothesis Switching

Selection of One Motion-Compensated Signal

Minimizing the Radial Displacement Error

Equivalent Predictor

- Individual and minimum radial displacement errors are Rayleigh distributed
- This suggests an equivalent predictor with reduced displacement error variance

Multihypothesis Prediction with Forward-Adaptive Hypothesis Switching

Combine both predictors and superimpose N hypotheses where each hypothesis is obtained by switching among Mmotion-compensated signals

Theoretical Result

Rate difference when compared to optimum intra-frame encoding:

$$\Delta R = \frac{1}{4\pi^2} \int_{-\pi-\pi}^{\pi} \int_{-\pi}^{\pi} \frac{1}{2} \log_2 \left(\frac{\Phi_{ee}(\omega)}{\Phi_{ss}(\omega)} \right) d\omega$$

References

- [1] B. Girod, "Efficiency Analysis of Multihypothesis Motion-Compensated Prediction for Video Coding," IEEE Tr. on Image Processing, vol. 9, no. 2, pp. 173-183, Feb. 2000.
- [2] M. Flierl and B. Girod, "Multihypothesis Motion Estimation for Video Coding," in Proc. DCC, Snowbird, Utha, Mar. 2001.