# A Double Motion-Compensated Orthogonal Transform with Energy Concentration Constraint

Markus Flierl and Bernd Girod mflierl@stanford.edu

# **1** Introduction

#### Problem

• Motion-compensated (MC) lifted Haar wavelet deviates substantially from orthonormality due to motion compensation

#### Why Orthogonal Transforms?

- · Optimal for certain transform coding schemes at high rates
- · Provide highly robust video representations

#### Goal

- Extend integer-pel accurate MC orthogonal transform in [1]
- MC transform that is orthogonal for any 2-motion field

### 2 Double MC Orthogonal Transform

$$\begin{bmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{bmatrix} = T \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \text{ with } T = T_k T_{k-1} \cdots T_k \cdots T_2 T_1 \text{ where } T_k T_k^T = I$$

#### Incremental Transform $T_{\kappa}$



### **Energy Concentration Constraint**

Pixels are connected by 2-motion:  $x_{2,l} = x_{1,i} = x_{1,j}$ Consider previous incremental transforms by scale factors  $u_{\alpha}$ ,  $v_{\beta}$ 

| $x'_{1,i} = v_1 x_{1,i}$ | $x''_{1,i} = u_1 x_{1,i}$ | $\begin{bmatrix} u_1 x_{1,i} \end{bmatrix}$ | $\begin{bmatrix} v_1 x_{1,i} \end{bmatrix}$ |
|--------------------------|---------------------------|---------------------------------------------|---------------------------------------------|
| $x'_{1,j} = v_2 x_{1,j}$ | $x''_{1,j} = u_2 x_{1,j}$ | $\left  u_2 x_{1,i} \right  = H_3 H_3$      | $I_2 H_1   v_2 x_{1,i}  $                   |
| $x'_{2,l} = v_3 x_{2,l}$ |                           |                                             | $\lfloor v_3 x_{1,i} \rfloor$               |

Energy conservation:  $u_1^2 + u_2^2 = v_1^2 + v_2^2 + v_3^2$ Energy concentration:  $\tan(\phi) = -\frac{v_1}{v_2}$ ,  $\tan(\theta) = \frac{v_3}{\sqrt{v_1^2 + v_2^2}}$ ,  $\tan(\psi) = \frac{u_1}{u_2}$  s.t.  $u_1^2 = v_1^2 + \frac{v_3^2}{2}$ ,  $u_2^2 = v_2^2 + \frac{v_3^2}{2}$ Scale counter:  $m_{\alpha} = u_{\alpha}^2 - 1$ ,  $n_{\beta} = v_{\beta}^2 - 1$ 

Scale counter update rule:  $m_1 = n_1 + \frac{n_3 + 1}{2}$  and  $m_2 = n_2 + \frac{n_3 + 1}{2}$ 

## **3 Experimental Results**

### **Example: Two Decomposition Levels**







temporal high band, 1<sup>st</sup> level

temporal low band, 2<sup>nd</sup> level

rescaled temporal low band, 2<sup>nd</sup> level

### Assessment of Energy Compaction



#### **Reconstructed Image Quality**



Bus QCIF, 15 fps 64 frames K=16 GOP 8x8 block motion

# 4 Conclusions

Orthonormality improves energy compaction, provides highly robust video representations, and permits 2-motion compensation

#### References

 M. Flierl, B. Girod, "A motion-compensated orthogonal transform with energy-concentration constraint," IEEE MMSP, Victoria, BC, Oct. 2006.



Max Plank Center for Visual Computing and Communication Stanford University

