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Abstract— We investigate the rate-distortion efficiency of mo-
tion and disparity compensated coding for multi-view video.
Disparity compensation exploits the correlation among the view
sequences and motion compensation makes use of the temporal
correlation within each view sequence. We define a matrix
of pictures with N view sequences, each with K temporally
successive pictures. For experimental coding purposes, a scheme
based on H.264/AVC is devised. We assess the overall rate-
distortion efficiency for matrices of pictures of various dimensions
(N, K). Moreover, we discuss the impact of inaccurate disparity
compensation within a matrix of pictures. Finally, we propose
and discuss a theoretical model for multi-view video coding that
explains our experimental observations. Performance bounds are
presented for high rates.

Index Terms— Multi-view image sequences, motion and dis-
parity compensated coding, video camera arrays.

I. INTRODUCTION

Today’s advances in display and camera technology en-
able new applications for 3D scene communication: In free
viewpoint video, image sequences recorded simultaneously
with multiple cameras are transformed into a special data
representation that enables interactive 3D navigation through
the dynamic scene [1]. Driven by multi-view video, autostereo-
scopic 3D displays can produce both stereo and movement
parallax with a small number of views [2]. Other researchers
have experimented with densely packed camera arrays [3].
Large video camera arrays may also be part of a 3D TV system
which enables users to view a distant 3D world freely [4]. Such
systems may be based on a ray-space representation as used
for free viewpoint television (FTV) [5] [6]. Others may utilize
the concept of a multi-video-plus-depth data representation [7].
An overview of 3D video and free viewpoint video is given
in [8].

For coding and transmission of multi-view video, statistical
dependencies within the multi-view imagery have to be ex-
ploited. The captured images are characterized by disparities
between views and motion between temporally successive
frames. These are important parameters of the dynamic scene.
The problem of structure and motion estimation in multi-view
teleconferencing-type sequences is discussed in more detail in
[9]. To achieve a good trade-off between scene quality and
bit-rate, disparity and motion among all the pictures has to
be exploited efficiently. Usually, this is accomplished with
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either predictive or subband coding schemes that perform both
disparity and motion compensation.

Predictive coding uses previously decoded pictures as refer-
ences for predicting the current picture. Disparity-compensated
view prediction exploits correlation among the views and
uses concepts known from motion-compensated prediction
[10]. Further, view synthesis prediction may offer additional
benefits. With the help of depth maps, virtual views are
synthesized from previously encoded views, and subsequently,
used for predictive coding of the current view [11], [12]. It
is also possible to consider special systems where, e.g., the
user viewpoints are constrained to a line. Compression and
rendering of such simplified dynamic light fields is discussed
in [13] and [14].

As an alternative to motion and disparity compensated
predictive coding, one can perform a motion and disparity
adaptive subband decomposition of the multi-view video sig-
nal, followed by quantization and entropy coding of the sub-
band coefficients. For static light fields, disparity-compensated
wavelets have been investigated for compression purposes
[15] [16]. Also, schemes for multi-view wavelet video coding
have been devised [17] [18]. The inherent scalability of such
wavelet decompositions is appealing.

The rate-distortion efficiency of multi-view video coding
is of great interest. For single-view video coding, theoret-
ical performance bounds have been established for motion-
compensated prediction [19] as well as motion-compensated
subband coding [20]–[22]. Obviously, the simplest approach
to multi-view coding is to encode the individual video se-
quences independently [23]. But for efficient multi-view video
coding, the similarity among the views should also to be
taken into account. In [24], we have proposed a mathematical
model that captures both inter-view correlation and temporal
correlation. This model is based on the high-rate model for
motion-compensated subband coding of video [20]–[22]. In
the following, we will discuss and study this model in more
detail. In particular, we are interested in the impact of the
accuracy of disparity compensation on the coding efficiency.
Further, we explore the encoding of N views, each with K
temporally successive pictures and its impact on the overall
coding performance. Finally, these model results are compared
to data obtained from actual coding experiments with selected
multi-view video sequences. To emphasize the experimental
observations, the paper presents first the experimental results.
Then, we study the observations in more detail with the help
of the mathematical model.

Rate-distortion efficient compression of static light fields has
previously been investigated in [25]–[29]. This work did not
consider video sequences but focused on interactive streaming
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Fig. 1. Matrix of pictures (MOP) for N = 4 image sequences, each
comprising of K = 4 temporally successive pictures. The coding structure
with bi-predictive slices is also shown.

of static light fields using predictive light field coding. The
theoretical part of the work includes interpolation between
views, arbitrary prediction structures, and in particular, a
model to link the inaccuracy of the underlying scene geometry
model to the inaccuracy of the disparity between images.

Currently, multi-view video coding is also investigated by
the Joint Video Team (JVT). MPEG is one partner of the team
and has previously explored video-based rendering technology
[30]. Now, the JVT is developing a Joint Multiview Video
Model (JMVM) [31] which is based on the video coding
standard ITU-T Recommendation H.264 – ISO/IEC 14496-10
AVC [32]. The current JMVM proposes illumination change-
adaptive motion compensation and prediction structures with
hierarchical B pictures [10]. The JMVM uses the block-based
coding techniques of H.264/AVC to exploit both temporal and
view correlation within temporally successive pictures and
neighboring views. Based on H.264/AVC, we have devised
an experimental coding scheme to investigate the efficiency of
motion and disparity compensated coding of multi-view video.

The paper is organized as follows: Section II outlines the
investigated experimental coding scheme using bi-predictive
slices of H.264/AVC and presents the obtained coding results.
Section III discusses a statistical signal model for multi-view
video coding and establishes performance bounds based on
optimal transform coding.

II. MOTION AND DISPARITY COMPENSATED CODING

In the following, we devise a coding scheme for multi-view
video with motion and disparity compensation. To achieve the
best rate-distortion performance, the statistical dependencies
among all the pictures should be exploited. Towards this end,
we arrange the multi-view video data into a Matrix of Pictures
(MOP). Each MOP consists of N image sequences, each with
K temporally successive pictures. With that, we consider the
correlation among all the pictures within a MOP. The MOP is
then encoded jointly by our multi-view video coding scheme.
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Fig. 2. Intensity value mapping for camera view 8 of the multi-view data set
Ballet. Histogram matching is applied to luminance as well as chrominance
components with camera view 4 as reference.

Our scheme is based on the state-of-the-art video coding
standard H.264/AVC. With this standard, generalized B pic-
tures [33] are available. The concept is implemented in the
form of bi-predictive slices. Bi-predictive slices may utilize
a linear combination of any two motion-compensated signals
for prediction. This improves coding efficiency, particularly for
multihypothesis motion [34]. Moreover, they may themselves
be used as a reference for further prediction. We use these two
features of bi-predictive slices to construct an efficient coding
scheme for multi-view video with H.264/AVC.

A. Coding with Bi-Predictive Slices

We use bi-predictive slices of H.264/AVC to perform a
multiresolution decomposition of the MOP. Multiresolution
signal decompositions [35] offer several benefits. In particular,
they generate signal decompositions that may permit efficient
compression [36]. For our application, we desire a multireso-
lution decomposition in both time and view direction.

We explain our multiresolution decomposition of the multi-
view video signal with the example in Fig. 1. It depicts
a MOP for N = 4 image sequences, each comprising of
K = 4 temporally successive pictures. Each MOP is encoded
with one intra picture and NK − 1 generalized B pictures.
First, each MOP is decomposed in view direction at the
first time instant only. That is, the sequences have view
decompositions at every K-th time instant. The intra picture I0
in each MOP represents the lowest view resolution. The next
view resolution level is attained by including the bi-predictive
slice B01. The highest view resolution is achieved with the
bi-predictive slices B02. Second, the reconstructed N view
images at every K-th time instant are now used as reference
for multiresolution decompositions with bi-predictive slices in
temporal direction. The decomposition in view direction at
every K-th time instant represents already the lowest temporal
resolution level. The next temporal resolution level is attained
by including the bi-predictive slices B1. The highest temporal
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Fig. 3. Average luminance PSNR vs. bit-rate for encoding 8 view-sequences of Breakdancers. The performance is plotted for a GOV size of N = 1, 2, 4,

and 8. The disparity compensation is integer-pel accurate (left) and quarter-pel accurate (right). The temporal GOP size is K = 8 and motion compensation
is quarter-pel accurate.
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Fig. 4. Rate difference to independent encoding of each view sequence
vs. disparity inaccuracy of disparity compensation for 8 view-sequences of
Breakdancers. The performance is plotted for a GOV size of N = 2, 4,

and 8, where N = 1 is the reference. The temporal GOP size is K = 8

and motion compensation is quarter-pel accurate. The rates are obtained for
PSNR = 40 dB.

resolution is achieved with the bi-predictive slices B2. Thus,
the hierarchical decomposition of the MOP with bi-predictive
slices generates a representation with multiple resolutions in
time and view direction.

In general, we encode at every K-th time instant N view
images with one I slice and N − 1 bi-predictive slices. If
possible, bi-predictive slices may use bi-directional prediction,
i.e., references from neighboring left and right views may be
combined in case of horizontal camera arrangements. But rate-
distortion optimal reference picture selection at the encoder
determines the optimal reference pair. The reconstructed N
view images at every K-th time instant are now used as
reference for bi-predictive slices in temporal direction. We
perform hierarchical decompositions with bi-predictive slices

in time and view direction. This permits view scalability
since temporal slices of each view have no reference to their
neighboring view slices. Our scheme can be easily extended
to incorporate disparity-compensated prediction at all time
instances, as discussed in [10]. Such extensions come with a
significant increase in complexity while offering only a limited
overall coding gain.

Note that our hierarchical decomposition with bi-predictive
slices is similar to a dyadic wavelet decomposition in time di-
rection, followed by a decomposition in view direction. How-
ever, unlike a subband coder, our coder operates in “closed-
loop” manner, i.e., bi-predictive slices are reconstructed (with
quantization errors) first, before they serve as reference for
further prediction.

B. Compensation of Inter-View Intensity Variations

Multi-view video sequences recorded with multiple video
cameras often show substantial luminance and chrominance
variations among the views. Even when using cameras of the
same make and model for all views, inaccurate camera cali-
bration may be the cause. To compensate for these variations,
we use histogram matching [37] [38] as a preprocessing step.

Histogram matching may improve disparity-compensated
prediction, and hence, the compression efficiency of multi-
view video coding. A particular view is assumed to be the
reference. The method first computes cumulative histograms
of the reference and current view sequences. Then, the com-
pensation is achieved by mapping each value of the current
view sequence to a corrected value. The goal of the mapping
is to make the cumulative histograms of the reference and
current view sequences similar. With the same reference view,
this is repeated for all remaining views. Note that the same
mapping function is used for all time instances to maintain
temporal coherence for efficient motion compensation.

An example of a typical mapping function is given in Fig. 2.
Histogram matching is applied to luminance and chrominance
components of the multi-view data set Ballet. The mappings of
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Fig. 5. Average luminance PSNR vs. bit-rate for encoding 8 view-sequences of Ballet after histogram matching. The performance is plotted for a GOV
size of N = 1, 2, 4, and 8. The disparity compensation is integer-pel accurate (left) and quarter-pel accurate (right). The temporal GOP size is K = 8 and
motion compensation is quarter-pel accurate.
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Fig. 6. Rate difference to independent encoding of each view sequence vs. disparity inaccuracy of disparity compensation for 8 view-sequences of histogram
matched Ballet (left) and original Ballet (right). The performance is plotted for a GOV size of N = 2, 4, and 8, where N = 1 is the reference. The temporal
GOP size is K = 8 and motion compensation is quarter-pel accurate. The rates are obtained for PSNR = 40 dB.

the component intensity values of camera view 8 with camera
view 4 as the reference are shown. Histogram matching is able
to compensate for luminance and chrominance variations.

C. Experimental Results

With our hierarchical coding scheme and the above prepro-
cessing method, we investigate experimentally the efficiency of
motion and disparity compensated coding of multi-view video.
We use the five multi-view video data sets Ballet, Ballroom,
Breakdancers, Exit, and Race1, each with 8 views. The spatial
resolution is 256 × 192 for Ballet and Breakdancers, and
320 × 240 for the remaining data sets. We have reduced the
original spatial resolution of the data sets with the MPEG
downsampling filter [39] to lower the computational burden
of the extensive simulations.

H.264/AVC allows us to choose freely the size of the refer-
ence picture buffer. To achieve high compression performance,

we use a large buffer. For example, if the temporal GOP size is
K = 8, the reference picture buffer can hold up to 7 pictures.
The buffer gets populated as more pictures in the temporal
GOP are coded. Hence, pictures of the finest temporal resolu-
tion will benefit the most from the large reference buffer. The
same holds for encoding in view direction.

In the following, we report on two experiments which assess
compression efficiency of multi-view video signals. The first
investigates the impact of disparity compensation accuracy.
The second explores the impact of the temporal GOP size
K. Both experiments consider always all 8 views of the
data set, but choose various sizes (N,K) for the MOP. Each
experiment comprises two steps. In the first step, we measure
rate-distortion curves, particularly at high image quality. In the
second step, we choose a PSNR of 40 dB and calculate the
rate difference to independent encoding of each view sequence,
i.e., to the case N = 1.
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Fig. 7. Average luminance PSNR vs. bit-rate for encoding 8 view-sequences of histogram matched Ballet (left) and of Exit (right). The performance is
plotted for a GOV size of N = 1 and 8 as well as a temporal GOP size of K = 1, 2, 4, and 8. Both disparity and motion compensation are quarter-pel
accurate.
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Fig. 8. Rate difference to independent encoding of each view sequence vs. temporal GOP size K for 8 view-sequences of histogram matched Ballet (left)
and original Ballet (right). The performance is plotted for a GOV size of N = 2, 4, and 8, where N = 1 is the reference. Both disparity and motion
compensation are quarter-pel accurate. The PSNR is 40 dB.

Fig. 3 depicts the rate-distortion points for Breakdancers
for various sizes of the Group of Views (GOV) N . The left
plot in the figure shows the results for integer-pel, the right
plot that for quarter-pel accurate disparity compensation. The
temporal GOP size is K = 8 and motion compensation is
quarter-pel accurate. For Breakdancers, preprocessing with
the histogram matching method did not provide any benefits.
Therefore, we use the original data set for the simulations.
To study the rate difference to independent encoding of each
view sequence, we choose the case N = 1 as reference and
plot the rate difference in Fig. 4 at a PSNR of 40 dB. Note
that the rate difference is the actual rate minus the rate for
independent encoding of each view sequence. Hence, it is
negative if the coding efficiency improves over the reference.
We observe that the efficiency improves when increasing the
accuracy from integer-pel (0) to half-pel (-1) and quarter-pel
(-2). The improvement due to accurate compensation is larger

if we perform disparity compensation among N = 8 views
when compared to compensation among N = 2 views only.

The experiment is repeated for Ballet. For this data set,
preprocessing with histogram matching is advantageous. Fig. 5
depicts the rate-distortion points with integer-pel (left) and
quarter-pel (right) accurate disparity compensation. Fig. 6
shows the rate difference for the preprocessed data set (left)
and that of the original data set (right). Again, efficiency
improves with the accuracy of disparity compensation and
increasing GOV size N . Note that preprocessing offers a small
but consistent relative benefit as all three curves shift towards
higher coding efficiency. Further results demonstrate also a
consistent absolute benefit as the advantage is also observed
for the reference N = 1.

We continue with the second experiment and explore the
impact of the temporal GOP size K on the overall coding
performance. Fig. 7 depicts the rate-distortion points for the 8
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Fig. 9. Rate difference to independent encoding of each view sequence vs. temporal GOP size K for 8 view-sequences of histogram matched Ballroom (left)
and Race1 (right). The performance is plotted for a GOV size of N = 2, 4, and 8, where N = 1 is the reference. Both disparity and motion compensation
are quarter-pel accurate. The PSNR is 40 dB.
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Fig. 10. Rate difference to independent encoding of each view sequence vs. temporal GOP size K for 8 view-sequences of Breakdancers (left) and Exit
(right). The performance is plotted for a GOV size of N = 2, 4, and 8, where N = 1 is the reference. Both disparity and motion compensation are quarter-pel
accurate. The PSNR is 40 dB.

view sequences of histogram matched Ballet (left) and original
Exit (right). The results are recorded for various MOP sizes
(N,K). Both disparity and motion compensation are quarter-
pel accurate. For Exit, preprocessing with the histogram
matching method did not offer any benefits. Therefore, we use
the original data set for the simulations. To study the average
rate difference to independent encoding of each view sequence
for various temporal GOP sizes K, we choose the case N = 1
as reference and plot the average rate differences at a PSNR
of 40 dB. Fig. 8 shows the average rate difference for Ballet
with preprocessed (left) and original data set (right). Again,
preprocessing offers a small but consistent relative benefit as
all curves shift towards higher coding efficiency. Further, we
observe that encoding with temporal GOP size of K = 8 and
GOV size of N = 8 provides a much smaller improvement
over its reference encoding with K = 8 and N = 1 than
encoding with temporal GOP size of K = 2 and GOV size of

N = 8 over its reference encoding with K = 2 and N = 1.
This effect becomes weaker for smaller GOV size N .

This experiment is repeated for histogram matched Ball-
room and original Race1 (Fig. 9) as well as for the original
data sets Breakdancers and Exit (Fig. 10). Again, the relative
efficiency grows with increasing GOV size N . But with
increasing temporal GOP size K, the relative efficiency grows
slower with GOV size N .

Finally, we have observed that preprocessing with histogram
matching does not always improve overall coding efficiency.
When using the mapping function, histogram matching may
introduce high spatial frequencies that deteriorate the overall
coding performance. Also, histogram matching may affect the
temporal coherence of the view sequences such that motion
compensation is less efficient. But for the data sets Ballet and
Ballroom, overall coding efficiency is improved.
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III. MATHEMATICAL MODEL FOR MULTI-VIEW VIDEO
CODING

To explain the previous observations, we outline a statistical
signal model to capture the effects of motion compensation
accuracy and disparity compensation accuracy as well as the
dimensions of the MOP on the coding efficiency. We extend
the signal model for K motion-compensated pictures in [22] to
a model for NK disparity and motion-compensated pictures.
These pictures are then decorrelated by the Karhunen-Loeve
Transform (KLT) for optimal encoding and for achieving rate-
distortion bounds.

A. Statistical Signal Model

The model assumes that multiple view sequences are gener-
ated from a root image sequence which is shifted by a disparity
error vector Θ = (Θx,Θy)T and distorted by additive white
Gaussian noise z. The shift shall model disparity compensation
with limited accuracy, and the noise shall capture signal
components that cannot be modeled by a translatory disparity.
Further, it is assumed that the root image sequence {ck, k =
1, 2, . . . ,K} with power spectral density matrix Φcc(ω) is
generated from a root picture v with power spectral density
(PSD) Φvv(ω), which is shifted by a displacement error vector
∆1k = (∆x,1k,∆y,1k)T and distorted by additive white
Gaussian noise nk. Fig. 11 summarizes the model. We use
the same basic components to model both view and temporal
correlation as our experimental codec uses the same coding
technique for exploiting both of them. Note that all K temporal
pictures of the ν-th view, ν = 1, 2, . . . , N , are shifted by the
same disparity error vector Θ1ν , where the reference view is
the first view. We assume that the position of each camera is
constant in time. Hence, we observe the same disparity error
vector at each time instant. For example, consider the multi-
view video of a resting object. As the displacement errors are
zero, we observe the same disparity error vector at each time
instant. For a moving object, displacement error vectors and
disparity error vectors add up to form an individual shift error
vector for each time instant of each view.

The work in [22] assumes the principle of additive motion
for the true motion in the sequence, i.e., dκµ + dµν = dκν ,
as well as for the estimated motion, i.e., d̂κµ + d̂µν = d̂κν .
Consequently, the principle of additive motion holds also for
the displacement error ∆κµ + ∆µν = ∆κν . In the following,
we assume also additive disparity, and consequently, additive
disparity error Θκµ + Θµν = Θκν . Further, we assume that
any temporal picture can be the temporal reference picture.
This implies that the variances of all displacement errors
are identical. Similarly, any view can be a reference view
and the variances of all disparity errors are identical. Finally,
we assume that displacement errors and disparity errors are
statistically independent.

Note that the model in [22] is included as the special case
N = 1, i.e., only one view sequence. Moreover, the models are
identical for N = 1 if the sums of the residual noise signals
ni + zi match the corresponding noise signals in [22].

Now, we adopt from [22] the PSD matrix of the root image
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Fig. 11. Signal model for N image sequences each comprising of a group
of K temporally successive pictures.

sequence, normalized to the PSD of the root picture.

Φcc(ω)

Φvv(ω)
=











1 + α(ω) P (ω) · · · P (ω)
P (ω) 1 + α(ω) · · · P (ω)

...
...

. . .
...

P (ω) P (ω) · · · 1 + α(ω)











(1)
α(ω) is the normalized power spectral density of the video
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noise Φnknk
(ω) with respect to the root picture v.

α(ω) =
Φnknk

(ω)

Φvv(ω)
for k = 1, 2, . . . ,K (2)

P = P (ω) is the characteristic function of the continuous 2D
Gaussian displacement error.

P (ω) = E
{

e−jωT
∆µν

}

= e−
1

2
ωT ωσ2

∆ (3)

With the signal model in Fig. 11 and the above assumptions
for displacement and disparity errors, the PSD matrix of N
view sequences each of length K is

Φss(ω)

Φvv(ω)
= Γ(ω) ⊗ Φcc(ω)

Φvv(ω)
+ Iγ(ω), (4)

where ⊗ denotes the Kronecker product, I the NK × NK
identity matrix, and Γ(ω) the characteristic matrix of the
disparity errors.

Γ(ω) =











1 G(ω) · · · G(ω)
G(ω) 1 · · · G(ω)

...
...

. . .
...

G(ω) G(ω) · · · 1











(5)

G = G(ω) is the characteristic function of the continuous 2D
Gaussian disparity error.

G(ω) = E
{

e−jωT
Θµν

}

= e−
1

2
ωT ωσ2

Θ (6)

Finally, γ(ω) is the normalized power spectral density of the
multi-view noise Φzizi

(ω) with respect to the root picture v.

γ(ω) =
Φzizi

(ω)

Φvv(ω)
for i = 1, 2, . . . , NK (7)

Note that the PSD matrix of N view sequences can be
written as a Kronecker product between the characteristic
matrix Γ(ω) and the PSD matrix of the root image sequence
as we assume statistical independence between displacement
errors and disparity errors.

B. Transform Coding Gain

Now, we use this mathematical model to determine rate-
distortion bounds for multi-view video signals. The practical
coding scheme in Section II is a closed-loop predictive coder.
But here, we are not interested in bounds for a particular
coding scheme. We are rather interested in bounds for multi-
view imagery given parameters like the size of the MOP
(N,K) or the accuracy of disparity compensation. This will
help us to explain the experimental observations.

At high rates, rate-distortion bounds can be determined by
assuming optimal transform coding with the KLT. For that,
we calculate the eigenvalues of the PSD matrix Φss(ω) in
(4). Note that the eigenvalues of a matrix resulting from
a Kronecker product are simply the Kronecker product of
the eigenvalues of the individual factors. The eigenvalues of
Φcc(ω)/Φvv(ω) are λ1(ω) = 1 + α(ω) + (K − 1)P (ω)
and λ2(ω) = 1 + α(ω) − P (ω). The eigenvalues of Γ(ω)
are λ3(ω) = 1 + (N − 1)G(ω) and λ4(ω) = 1 − G(ω).

Hence, the normalized eigenvalues of Φss(ω)/Φvv(ω) with
their respective occurrences are:

Λ∗

i (ω)

Φvv(ω)
=















λ1(ω)λ3(ω) + γ(ω) : 1×
λ1(ω)λ4(ω) + γ(ω) : (N − 1)×
λ2(ω)λ3(ω) + γ(ω) : (K − 1)×
λ2(ω)λ4(ω) + γ(ω) : (N − 1)(K − 1)×

(8)
The reference coding scheme encodes the sequences indepen-
dently and does not exploit the correlation across the N views.
Hence, it encodes eigenvalues Λi(ω) as follows:

Λi(ω)

Φvv(ω)
=

{

λ1(ω) + γ(ω) : N×
λ2(ω) + γ(ω) : N(K − 1)× (9)

Note that the eigenvalues sum to NK[1+α(ω)+γ(ω)]Φvv(ω)
for both schemes.

We assess the performance of the multi-view video coding
scheme by using the average rate difference to independent
encoding of N view sequences.

∆R =
1

NK

NK
∑

i=1

1

4π2

π
∫

−π

π
∫

−π

1

2
log2

Λ∗

i (ω)

Λi(ω)
dω (10)

It represents the maximum bit rate reduction (in bit/sample/
camera) possible by optimum encoding of the eigensignals in
the case of joint coding, compared to optimum encoding of the
eigensignals for independent coding, for Gaussian wide-sense
stationary signals for the same mean square reconstruction
error [40].

In the following, we plot the average rate difference for
GOV size N to independent coding of N view sequences as
a function of the temporal GOP size K as well as of the
disparity inaccuracy ϑ = log2(

√
12σΘ). For both graphs, the

residual video noise level RVNL = 10 log10(σ
2
n) is -30 dB,

which is typical for low-motion video sequences. We show
both graphs also for a high residual video noise level of -10 dB.
The residual multi-view noise level RMVNL = 10 log10(σ

2
z)

is -10 dB reflecting a large disparity model error to capture
new scene content. Note that the root picture is normalized
as σ2

v = 1. The motion inaccuracy β = log2(
√

12σ∆) is a
function of the variance of the displacement error components
σ2
∆

. The value β = 0 represents integer-pel accuracy, β = −1
half-pel accuracy, β = −2 quarter-pel accuracy, etc. For the
graphs, β is chosen to be -2.

Fig. 12 depicts the average rate difference to independent
encoding of each view sequence over the disparity inaccuracy
ϑ of disparity compensation for a temporal GOP size of
K = 8. The RVNL is -30 dB (left) and -10 dB (right). To
improve the readability of the graph, the disparity inaccuracy
ϑ = log2(

√
12σΘ) is a function of the variance of the disparity

error components σ2
Θ

. The value ϑ = 0 represents integer-
pel accuracy, ϑ = −1 half-pel accuracy, ϑ = −2 quarter-
pel accuracy, etc. We observe that for each GOV size N the
rate efficiency over independent encoding improves for more
accurate disparity compensation. This improvement is larger
if we perform disparity compensation among N = 8 views
when compared to compensation among N = 2 views only.
Experimental results in Figs. 4 and 6 show the same effect.
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Fig. 12. Rate difference to independent encoding of each view sequence vs. disparity inaccuracy ϑ of disparity compensation for GOV sizes of N . The
displacement inaccuracy β of motion compensation among K = 8 pictures is -2 (quarter-pel accuracy) and the RMVNL is -10 dB. The RVNL is -30 dB
(left) and -10 dB (right).
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Fig. 13. Rate difference to independent encoding of each view sequence vs. temporal GOP size K for groups of N views. The displacement inaccuracy β

of motion compensation among K pictures as well as the disparity inaccuracy ϑ of disparity compensation among N views is -2 (quarter-pel accuracy). The
RMVNL is -10 dB. The RVNL is -30 dB (left) and -10 dB (right).

Fig. 13 depicts the rate difference in bit per sample
per camera to independent encoding of each view sequence
vs. temporal GOP size K for various GOV sizes N . The
RVNL is -30 dB (left) and -10 dB (right). The displacement
inaccuracy β of motion compensation among K pictures as
well as the disparity inaccuracy ϑ of disparity compensation
among N views is -2 (quarter-pel accuracy). We observe that
the coding scheme with a temporal GOP size of K = 8 and
GOV size of N = 8 shows a much smaller improvement over
its reference scheme with K = 8 and N = 1 than the coding
scheme with a temporal GOP size of K = 2 and GOV size of
N = 8 over its reference scheme with K = 2 and N = 1. This
effect becomes weaker for smaller GOV size N . Experimental
results in Figs. 8, 9, and 10 show the same effect.

Note that there is a trade-off when exploiting the correlation
in temporal and view direction. If the residual video noise
level is small, the reference coding scheme performs efficiently

when exploiting temporal correlation. Hence, only a small
margin is left for multi-view video coding. On the other hand,
if the residual video noise level is large, the reference coding
scheme performs poorly when exploiting temporal correlation.
Hence, a large margin is left for multi-view video coding.

C. Special Cases

Finally, we are interested in the performance bound for very
large MOP sizes, i.e., very large temporal GOP sizes K and
GOV sizes N . In the limit, the eigenvalues λ2(ω) and λ4(ω)
dominate the average rate difference.

∆RN,K→∞ =
1

4π2
· (11)

π
∫

−π

π
∫

−π

1

2
log2

[1 + α(ω) − P (ω)] [1 − G(ω)] + γ(ω)

1 + α(ω) − P (ω) + γ(ω)
dω
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Obviously, if we choose additionally very inaccurate dis-
parity compensation, i.e., ϑ → ∞, and hence, G(ω) → 0, the
average rate difference approaches zero.

∆RN,K→∞;G→0 = 0 (12)

This is reasonable as very inaccurate disparity compensation
is not able to exploit the view correlation. A joint coding
scheme with such an inaccurate disparity compensation will
not provide any benefit. On the other hand, very accurate
disparity compensation, i.e., ϑ → −∞, and hence, G(ω) → 1,
will offer rate savings according to

∆RN,K→∞;G→1 =

1

4π2

π
∫

−π

π
∫

−π

1

2
log2

γ(ω)

1 + α(ω) − P (ω) + γ(ω)
dω. (13)

With very accurate motion and disparity compensation, i.e.,
P (ω) → 1 and G(ω) → 1, the performance bound for very
large MOP sizes simplifies to

∆RN,K→∞;P,G→1 =
1

4π2

π
∫

−π

π
∫

−π

1

2
log2

γ(ω)

α(ω) + γ(ω)
dω.

(14)
Thus, the average rate difference depends on the relative
strength of video noise and multi-view noise. In case the
normalized power spectral density of the video noise is equal
to that of the multi-view noise, i.e., α(ω) = γ(ω), the average
rate difference to independent encoding is -0.5 bit per sample
per camera. This can be seen in the right plot of Fig. 13.

If the multi-view noise is substantially larger than the video
noise, joint encoding provides only a limited advantage over
independent encoding. On the other hand, if the multi-view
noise is substantially smaller than the video noise, joint en-
coding offers a substantial benefit over independent encoding
of the view sequences.

IV. CONCLUSIONS

We study experimentally and theoretically the problem of
coding N multi-view video sequences. We define a matrix
of pictures with N view sequences, each with K temporally
successive pictures. We devise a coding scheme based on
H.264/AVC and utilize histogram matching to compensate
for inter-view intensity variations. For groups of N views
(GOV), we discuss the impact of both inaccurate disparity
compensation and temporal GOP size K on the overall rate-
distortion efficiency. We observe that the efficiency improves
with accurate disparity compensation. Moreover, the relative
efficiency grows with increasing GOV size N . But with
increasing temporal GOP size K, the relative efficiency grows
slower with GOV size N . Finally, we propose and discuss a
high-rate model for multi-view video coding that explains our
experimental observations.
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