Data Compression Conference 2007

Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms

Stanford University

Markus Flierl and Bernd Girod

Max Planck Center for Visual Computing and Communication

Motivation

- Motion-compensated lifted Haar wavelet deviates substantially from orthonormality due to motion compensation
- Why orthogonal transforms?
 - Optimal for certain transform coding schemes at high rates
 - Provide highly robust video representations
- Motion-adaptive transform that strictly maintains orthonormality while permitting flexible
 - Integer-pel accurate motion compensation and
 - Sub-pel accurate motion compensation

Outline

- Motion-Compensated Orthogonal Transform (MCOT)
- Single MC incremental transform
 - Energy concentration constraint
 - Example for a dyadic decomposition of a group of pictures
- Double MC incremental transform
 - Euler rotations
 - Energy concentration constraint
- P-hypothesis MC incremental transform
- Example: Half-pel MC with averaging filter
- Experimental results

Orthogonal Video Transform

Orthogonal transform for pairs of input images:

low band image
$$\longrightarrow \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix} = T \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$$

high band image $\longrightarrow \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \end{pmatrix}$

Factor *T* into a sequence of *k* incremental transforms:

$$T = T_k T_{k-1} \cdots T_{\kappa} \cdots T_2 T_1$$

- Each incremental transform is orthogonal: $T_{\kappa}T_{\kappa}^{T} = I$
- Incremental transforms generate a sequence of transformed image pairs:

$$\begin{pmatrix} \mathbf{x}_{1}^{(\kappa+1)} \\ \mathbf{x}_{2}^{(\kappa+1)} \end{pmatrix} = T_{\kappa} \begin{pmatrix} \mathbf{x}_{1}^{(\kappa)} \\ \mathbf{x}_{2}^{(\kappa)} \end{pmatrix}$$

Single MC Incremental Transform

Single MC Incremental Transform

$$H = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} = \frac{1}{\sqrt{1 + a^2}} \begin{pmatrix} 1 & a \\ -a & 1 \end{pmatrix}$$
$$HH^T = I \qquad \qquad \text{decorrelation factor}$$

Example: Single MC Orthogonal Transform

6

SMCOT: Energy Concentration Constraint

- Choose decorrelation factor for each incremental transform such that the energy in the high band to-be is removed
- Assume that pixel $x_{2,j}$ is connected to pixel $x_{1,j}$, i.e., $x_{2,j} = x_{1,j}$
- Note that pixel x_{1,i} may have been processed previously!
- Therefore, let v_1 be the scale factor for pixel $x_{1,i}$
- After processing, let u_1 be the scale factor for pixel $x_{1,i}$
- For higher levels of temporal decomposition, x_{2,j} is a low band coefficient that carries a scale factor
- Therefore, let v_2 be the scale factor for pixel $x_{2,i}$
- Now, resulting high band pixel to-be x"_{2,i} shall be zero:

$$\left(\begin{array}{c} u_1 x_{1,i} \\ 0 \end{array}\right) = H\left(\begin{array}{c} v_1 x_{1,i} \\ v_2 x_{1,i} \end{array}\right)$$

Definition of Scale Counters

- Let n_1 , n_2 be the scale counters for pixel $x_{1,i}$, $x_{2,j}$
- n₁, n₂ simply count how often the pixel x_{1,i}, x_{2,j} are used as reference for motion compensation
- In the beginning, the scale counter is n = 0 and the scale factor is v = 1
- Let m₁ be the scale counters for pixel x_{1,i} after being processed by the incremental transform
- For arbitrary scale counter *m* and *n*, the scale factors are

$$u = \sqrt{m+1}$$
 and $v = \sqrt{n+1}$

Example: Scale counter update rule for SMCOT:

$$m_1 = n_1 + n_2 + 1$$

IP-MCOT Experimental Results

temporal high band first decomposition level

temporal high band second decomposition level

IP-MCOT Experimental Results

temporal low band rescaled temporal low band second decomposition level second decomposition level

$$v = \sqrt{n+1}$$

10

IP-MCOT Experimental Results

11

Double MC Incremental Transform

Double MC Incremental Transform

Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms

13

- Any rotation in 3D can be given as a composition of rotations about three axes, i.e., $H = H_3 H_2 H_1$
- We choose the following composition:

$$H = \begin{pmatrix} \cos(\psi) & 0 & \sin(\psi) \\ 0 & 1 & 0 \\ -\sin(\psi) & 0 & \cos(\psi) \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{pmatrix}$$
$$\cdot \begin{pmatrix} \cos(\phi) & 0 & \sin(\phi) \\ 0 & 1 & 0 \\ -\sin(\phi) & 0 & \cos(\phi) \end{pmatrix}$$

Euler angles ψ, θ, ϕ are determined by the energy concentration constraint

DMCOT: Energy Concentration Constraint

- Choose 3 Euler angles for each incremental transform
- Assume that pixel $x_{2,l}$ is connected to pixel $x_{1,i}$, i.e., $x_{2,l} = x_{1,i}$
- Assume that pixel $x_{2,l}$ is connected to pixel $x_{1,j}$, i.e., $x_{2,l} = x_{1,j}$
- State zero-energy constraint for the high band pixel

$$\begin{pmatrix} u_1 x_{1,i} \\ u_2 x_{1,i} \\ 0 \end{pmatrix} = H_3 H_2 H_1 \begin{pmatrix} v_1 x_{1,i} \\ v_2 x_{1,i} \\ v_3 x_{1,i} \end{pmatrix}$$

- Obtain Euler angles for averaging the 2 hypotheses
- Use definition of scale counters
- Choose scale counter update rule for double MCOT:

$$m_1 = n_1 + \frac{n_3 + 1}{2}$$
 and $m_2 = n_2 + \frac{n_3 + 1}{2}$

P-Hypothesis MC Incremental Transform

- Number of hypotheses P is a power of 2
- Assume that high-band pixel to-be $x_{2,l}$ is connected to all $P = 2^r$ hypotheses pixel, where r = 0, 1, 2, ...
- Incremental transform is given as a composition of Euler rotations in *P*+1 dimensions
- Obtain Euler angles for dyadic averaging of pairs of hypotheses
- Hence, each of the P hypotheses is weighted by 1/P
- Choose scale counter update rule for P-MCOT:

$$m_p = n_p + \frac{n_{P+1} + 1}{P}$$
 for $p = 1, 2, \dots, P$

Half-Pel MC with Averaging Filter

- IP position via 1-hypothesis MC incremental transform
- HP positions 1 and 2 via 2-hypothesis MC incremental transform averaging IP positions A, B and A, C, respectively
- HP position 3 via 4-hypothesis MC incremental transform
- Type of incremental transform can be chosen on block level

17

HP-MCOT Experimental Results

18

Conclusions

- Class of motion-compensated orthogonal video transforms
- Highly flexible incremental transforms
- Energy concentration constraint
- Permit sub-pel accurate motion compensation
- Bidirectionally MC orthogonal transform to be presented at ICASSP 2007

Further Reading

http://www.orthogonalvideo.org

