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Motivation

= Motion-compensated lifted Haar wavelet deviates sub-
stantially from orthonormality due to motion compensation

= Why orthogonal transforms?
« Optimal for certain transform coding schemes at high rates
* Provide highly robust video representations

= Motion-adaptive transform that strictly maintains
orthonormality while permitting flexible
 Integer-pel accurate motion compensation and
* Sub-pel accurate motion compensation
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s Motion-Compensated Orthogonal Transform (MCOT)

= Single MC incremental transform
* Energy concentration constraint
- Example for a dyadic decomposition of a group of pictures

m Double MC incremental transform
* FEuler rotations
* Energy concentration constraint

s P-hypothesis MC incremental transform
s Example: Half-pel MC with averaging filter
s EXxperimental results
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Orthogonal Video Transform

s Orthogonal transform for pairs of input images:
low band image — { y1 \ 7 X1
high band image — \ y2 | X2
m Factor T into a sequence of k incremental transforms:
T — Tka—l PN P .T2T1

= Each incremental transform is orthogonal: TxT.) =TI

= Incremental transforms generate a sequence of transformed

iImage pairs:
(m+1) (H:)
<n+1> = I« (m)
R 7N
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Single MC Incremental Transform
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Single MC Incremental Transform
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Example: Single MC Orthogonal Transform

x1(1) x1(2) x1(3) )(1(4) x1(5)
2 V2 V2 V2
140 | 220 140 220 140 220 140 220 140 220
V2 V2 | 2 V3 | V2
1001120 1001120 100 | 120 100 | 120
ay = as = ay = 1/\5
x2(2) x2(3) x2(4) x2(5)
0 | 120 0 0 0 0 0 0
100 | 100 100 | 100 0 | 100 0 0
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SMCOT: Energy Concentration Constraint

m Choose decorrelation factor for each incremental transform
such that the energy in the high band to-be is removed

= Assume that pixel x,; is connected to pixel x, ;, i.e., X,; = X;;
= Note that pixel x,; may have been processed previously!

= Therefore, let v, be the scale factor for pixel x

= After processing, let v, be the scale factor for pixel x; ;

= For higher levels of temporal decomposition, x, ; is a low band
coefficient that carries a scale factor

= Therefore, let v, be the scale factor for pixel Xy,
= Now, resulting high band pixel to-be x”, ; shall be zero:
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Definition of Scale Counters

= Letn, n,be the scale counters for pixel x; , x,;

= 14, n, simply count how often the pixel x, ;, x,; are used as
reference for motion compensation

= In the beginning, the scale counter is n= 0 and the scale
factorisv=1

= Let m, be the scale counters for pixel x; ; after being
processed by the incremental transform

m For arbitrary scale counter m and n, the scale factors are
u=+vm-+1 and v=+vn-+1

s Example: Scale counter update rule for SMCOT:

a0 N 1 n 1 | n 2 | 1 /f—'_—'_‘-‘*\
e, 2\
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%ff@’ Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms 8 &"«gip r/ |




IP-MCOT Experimental Results

temporal high band temporal high band
first decomposition level second decomposition level
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IP-MCOT Experimental Results

il

temporal low band rescaled temporal low band
second decomposition level second decomposition level
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IP-MCOT Experimental Results
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Double MC Incremental Transform
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Double MC Incremental Transform
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Euler’s Rotation Theorem

= Any rotation in 3D can be given as a composition of
rotations about three axes, i.e., H = H3H>H;

s We choose the following composition:

cos(y) 0O sin(y) 1 0 0
H = ( 0 1 0 )(O cos(6) sin(@))

—sin(y) 0 cos(y) O sin(8) cos(6)

cos(¢p) O sin(¢)
( 0 1 0 )

—sin(¢) 0 cos(¢)

m Euler angles v, 0, ¢ are determined by the energy
concentration constraint
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DMCOT: Energy Concentration Constraint

e
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Choose 3 Euler angles for each incremental transform
Assume that pixel x,, is connected to pixel x, , i.e., x5, = X,
Assume that pixel x,,is connected to pixel x, ;, i.e., X,,= X,
State zero-energy constraint for the high band pixel

U1T] 4 V1T
uoxy; | = Hz3HoHqy | voxy
0 V3T

Obtain Euler angles for averaging the 2 hypotheses
Use definition of scale counters
Choose scale counter update rule for double MCOT:

| n3 + 1 d | n3+ 1
M1 = N1 an mo — No _
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P-Hypothesis MC Incremental Transform

= Number of hypotheses P is a power of 2

= Assume that high-band pixel to-be Xx,, is connected to all
P = 2" hypotheses pixel, where r=0, 1, 2, ...

= Incremental transform is given as a composition of Euler
rotations in P+171 dimensions

s Obtain Euler angles for dyadic averaging of pairs of
hypotheses

= Hence, each of the P hypotheses is weighted by 1/P
s Choose scale counter update rule for P-MCOT:

1
my = ny nP+;j-|—

for p=1,2,...,P

P e

. o
;_‘}""- =T

ST
flgf &= \Sh
el i =

-‘,III{_‘ o |

| |
“ss2=47 Half-Pel Accurate Motion-Compensated Orthogonal Video Transforms 16 “:’ R4



Half-Pel MC with Averaging Filter

A@B\

integer-pel positions

\ half-pel positions

C D

m |IP position via 1-hypothesis MC incremental transform

s HP positions 1 and 2 via 2-hypothesis MC incremental
transform averaging IP positions A, B and A, C, respectively

s HP position 3 via 4-hypothesis MC incremental transform

= Type of incremental transform can be chosen on block level
8 A Ve \H&a= )
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HP-MCOT Experimental Results
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Conclusions

s Class of motion-compensated orthogonal video transforms
= Highly flexible incremental transforms

s Energy concentration constraint

s Permit sub-pel accurate motion compensation

m Bidirectionally MC orthogonal transform to be presented at
ICASSP 2007
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Further Reading

http://www.orthogonalvideo.org




