International Conference on Image Processing 2006

Coding of Multi-View Image Sequences with Video Sensors

Markus Flierl and Bernd Girod

Max Planck Center for Visual Computing and Communication

Communicating Dynamic 3D Scenes

Outline

- Video sensor and fusion center
- Correlated multi-view image sequences
- Distributed coding with video sensors
 - Encoder of a video sensor
 - Decoding with side information
 - Disparity-compensated side information
- Experimental results
- Model study for stereoscopic images

Video Sensor

Video Sensor

Fusion Center at Remote Location

Fusion Center

Correlated Multi-View Image Sequences

Each camera exploits the temporal correlation among *K* successive pictures

Distributed Coding with Video Sensors

6

Encoder of a Video Sensor

Decoding with Side Information

- Encoder n uses a nested lattice code and transmits R_{TX} syndrome bits for each transform coefficient c
- Decoder n decodes R_{TX} syndrome bits for each transform coefficient c with feed-back:
 - **Encoder n** sends the initial R_{TX} syndrome bits
 - **Decoder n** attempts to decode the transform coefficient *c* given the received R_{TX} syndrome bits and the coefficient side information *z*

$$\hat{\mathbf{c}} = \underset{\mathbf{c} \in \mathcal{C}_{\mu,\nu}}{\operatorname{argmin}} [\mathbf{c} - \mathbf{z}]^2 \text{ given } \mu = R_{TX}$$

 \sim v-th coset of the μ -th nested lattice

- In case of decoding error, **Decoder n** requests further syndrome bits
- No decoding error beyond the critical syndrome rate

Side information from **Decoder 1** is disparity-compensated in the image domain

n-th view of **Decoder n**

compensated side information

disparity compensation

current view pair side information from **Decoder 1**

disparity

estimation

previously decoded view pair

Example Test Sequence *Jungle*

[3DTV Network of Excellence]

Experimental Results

Experimental Results

Model Study for Stereoscopic Images

- Let the image u[l_x,l_y] be a scalar Gaussian random field
- Let u'(x,y) be its space-continuous ideal reconstruction
- Let w[I] be a shifted and noisy version of the image u[I] with the deterministic 2D real-valued shift Θ_c
 white noise

$$\mathbf{w}[l] = \mathbf{u}'(l - \Theta_c) + \mathbf{n}[l]^{\mathbf{n}}$$

• Let **s**[I] be a shifted and noisy version of the image **u**[I] with the uncertain shift Θ , distributed with the PDF f_{Θ}(Θ)

$$\mathbf{s}[l] = \mathbf{u}'(l - \Theta) + \mathbf{n}[l]$$

Compare conditional **differential entropy rate** differences:

$$H(u|s)-H(u)$$
 vs. $H(u|w)-H(u)$

Model Study for Stereoscopic Images

Coding of Multi-View Image Sequences with Video Sensors

14

Conclusions

- Exploit view-correlation of multi-view image sequences
- Operate video sensors in a collaborative fashion
- Centralized decoder performs disparity compensation
- Our experiments show that:
 - Disparity-compensated side information reduces bit-rate up to 10%
 - Without disparity compensation, gain is limited to 3%
- The uncertainty of the estimated disparity at the decoder causes a entropy rate loss when compared to centralized encoding

