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Abstract

This paper discusses robust coding of visual content for a distributed multimedia system. The system encodes

independently two correlated video signals and reconstructs them jointly at a central decoder. The video signals

are captured from a dynamic scene where each signal is robustly coded by a motion-compensated Haar wavelet.

The efficiency of the decoder is improved by a disparity analysis of the first image pair of the sequences followed

by disparity compensation of the remaining images of one sequence. We investigate how this scene analysis at the

decoder can improve the coding efficiency. At the decoder, one video signal is used as side information to decode

efficiently the second video signal. Additional bit-rate savings can be obtained with disparity compensation at

the decoder.

Further, we address the theoretical problem of distributed coding of video signals in the presence of correlated

video side information. We utilize a motion-compensated spatiotemporal transform to decorrelate each video

signal. For certain assumptions, the optimal motion-compensated spatiotemporal transform for video coding with

video side information at high rates is derived. It is shown that the motion-compensated Haar wavelet belongs

to this class of transforms. Given the correlation of the video side information, the theoretical bit-rate reduction

for the distributed coding scheme is investigated. Interestingly, the efficiency of multi-view side information is

dependent on the level of temporal decorrelation: For a given correlation-SNR of the side information, bit-rate

savings due to side information are decreasing with improved temporal decorrelation.
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Distributed Coding of Highly Correlated

Image Sequences with Motion-Compensated

Temporal Wavelets

I. INTRODUCTION

Robust coding of visual content is not just a necessity for multimedia systems with heterogeneous networks

and diverse user capabilities. It is also the key for video systems that utilize distributed compression. Let us

consider the problem of distributed coding of multi-view image sequences. In such a scenario, a dynamic

scene is captured by several spatially distributed video cameras and reconstructed at a single central decoder.

Ideally, each encoder associated with a camera operates independently and transmits robustly its content to the

central decoder. But as each encoder has a priori no specific information about its potential contribution to the

reconstruction of the dynamic scene at the central decoder, a highly flexible representation of the visual content

is required. In this work, we use a motion-compensated lifted wavelet transform to generate highly scalable

bitstreams that can be processed in a coordinated fashion by the central decoder. Moreover, the central decoder

receives images of the scene from different view-points and is able to perform an analysis of the scene. This

analysis helps the central receiver to decode more reliably the incoming robust bitstreams. That is, the decoder

is able of content-aware decoding which improves the coding efficiency of the distributed multimedia system

that we discuss in the following.

Our distributed system captures a dynamic scene with spatially distributed video cameras and reconstructs it

at a single central decoder. Scene information that is acquired by more than one camera can be coded efficiently

if the correlation among camera signals is exploited. In one possible compression scenario, encoders of the

sensor signals are connected and compress the camera signals jointly. In an alternative compression scenario,

each encoder operates independently but relies on a joint decoding unit that receives all coded camera signals.

This is also known as distributed source coding. A special case of this scenario is source coding with side

information. Wyner and Ziv [1] showed that for certain cases the encoder does not need the side information to

which the decoder has access to achieve the rate distortion bound. Practical coding schemes for our application

may utilize a combination of both scenarios and may permit a limited communication between the encoders.

But both scenarios have in common that they achieve the same rate distortion bound for certain cases.

Each camera of our system [2] is associated with an encoder utilizing a motion-compensated temporal

wavelet transform [3]–[5]. With that we are able to exploit the temporal correlation of each image sequence. In

addition, such a wavelet transform provides a scalable representation that permits the desired robust coding of

video signals. Inter-view correlation between the camera signals cannot be exploited as signals from neighboring

cameras are not directly available at each encoder. This constraint will be handled by distributed source coding

principles. Therefore, the subband coefficients of the wavelet transform are represented by syndromes that
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are suitable for distributed source coding. A constructive practical framework for the problem of compressing

correlated distributed sources using syndromes is presented in [6]–[8]. To increase the robustness of the syndrome

representation, we additionally use nested lattice codes [9]. Syndrome-based distributed source coding is a

principle and several techniques can be employed. For example, [8] investigates memoryless and trellis-based

coset construction. For binary sources, turbo codes [10] or low-density parity-check (LDPC) codes [11] increase

coding efficiency. Improvements are also possible for non-binary sources [12]–[14].

A transform-based approach to distributed source coding for multimedia systems seems promising. The

work in [15]–[18] discusses a framework for the distributed compression of vector sources: First, a suitable

distributed Karhunen-Loeve transform is applied and, second, each component is handled by standard distributed

compression techniques. That is, each encoder applies a suitable local transform to its input and encodes the

resulting components separately in a Wyner-Ziv fashion, i.e., treating the compressed description of all other

encoder as side information available to the decoder. Similar to that framework, Wyner-Ziv quantization and

transform coding of noisy sources at high rates is also investigated in [19], [20]. An application to this framework

is the transform-based Wyner-Ziv codec for video frames [21]. In the present article, we capture the efficiency

of video coding with video side information based on a high rate approximation. For motion-compensated

spatiotemporal transform coding of video with video side information, we derive the optimal transform at high

rates, the conditional Karhunen-Loeve transform [22], [23]. For our video signal model, we can show that the

motion-compensated Haar wavelet is an optimal transform at high rates.

The coding of multiple views of a dynamic scene is just one part of the problem. The other part addresses

which view-point shall be captured by a camera. Therefore, the underlying problem of our application is

sampling and coding of the plenoptic function. The plenoptic function was introduced by Adelson and Bergen

[24]. It corresponds to the function representing the intensity and chromaticity of the light observed from

every position and direction in the 3-d space, at every time. The structure of the plenoptic function determines

the correlation in the visual information retrieved from the cameras. This correlation can be estimated using

geometrical information such as the position of the cameras and some bounds on the location of the objects

[25], [26].

In the present work, two cameras observe the dynamic scene from different view-points. Knowing the relative

camera position, we are able to compensate the disparity of the reference view-point given the current view-

point. With that, we increase the correlation of the intensity values between the disparity-compensated reference

view-point and the current view-point which lowers the transmission bit-rate for a given distortion. Obviously,

the higher the correlation between the disparity-compensated reference view-point and the view-point to be

encoded, the lower is the transmission bit-rate for a given distortion. As the relative camera positions are not

known a priori at the decoder, the first image pair of the two view-points is analyzed and disparity values are

estimated. Using these disparity estimates, the decoder can exploit more efficiently the robust representation of

the Wyner-Ziv video encoder.

As the present article discusses distributed source coding of highly correlated image sequences, we mention

related works of applied research on distributed image coding. For example, [27] enhances analog image

transmission systems using digital side information, [28] discusses Wyner-Ziv coding of inter-pictures in video
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sequences, and [29] investigates distributed compression of light field images. In [30], an uplink-friendly

multimedia coding paradigm (PRISM) is proposed. The paradigm is based on distributed source coding

principles and renders multimedia systems more robust to transmission losses. Also taking advantage of this

paradigm, [31] proposes Wyner-Ziv coding of motion pictures.

The article is organized as follows: Section II outlines our distributed coding scheme for two view-points of a

dynamic scene. We discuss the utilized motion-compensated temporal transform, the coset-encoding of transform

coefficients with nested lattice codes, decoding with side information, and enhancing the side information by

disparity compensation. Section III studies the efficiency of video coding with video side information. Based on

a model for transform coded video signals, we address the rate distortion problem with video side information

and determine the conditional Karhunen-Loeve transform to obtain performance bounds. The theoretical study

finds a trade-off between the level of temporal decorrelation and the efficiency of decoding with side information.

Section IV provides experimental rate distortion results for decoding of video signals with side information.

Moreover, it discusses the relation between the level of temporal decorrelation and the efficiency of decoding

with side information.

II. DISTRIBUTED CODING SCHEME

We start with an outline of our distributed coding scheme for two view-points of a dynamic scene. We utilize

an asymmetric coding scheme, that is, the first view-point signal is coded with conventional source coding

principles, i.e., side information cannot improve decoding of the first view-point, and the second view-point

signal is coded with distributed source coding principles, i.e., side information improves decoding of the second

view-point. The first view-point signal is used as video side information to improve decoding of the second

view-point signal.

Encoder 1

Encoder 2

Decoder 1

Decoder 2

Disparity

Compensation

wk[x, y]r -
R1 - -

ŵk[x, y]r

6

6

sk[x, y]r -
R2 - -

ŝk[x, y]r�

Fig. 1. Distributed coding scheme for two view-points of a dynamic scene with disparity compensation. The first view-point signal is

coded at bit-rate R1, the second view-point signal at the Wyner-Ziv bit-rate R2.

Fig. 1 depicts the distributed coding scheme for two view-points of a dynamic scene. The dynamic scene

is represented by the image sequences sk[x, y] and wk[x, y]. The coding scheme comprises of Encoder 1 and

Encoder 2 that operate independently as well as of Decoder 2 that is dependent on Decoder 1. The side

information for Decoder 2 can be improved by considering the spatial camera positions and by performing

disparity compensation. As the video signals are not stationary, Decoder 2 is decoding with feedback.
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A. Motion-Compensated Temporal Transform

Each encoder in Fig. 1 exploits the correlation between successive pictures by employing a motion-com-

pensated temporal transform for groups of K pictures (GOP). We perform a dyadic decomposition with a

motion-compensated Haar wavelet as depicted in Fig. 2. The temporal transform provides K output pictures

that are decomposed by a spatial 8×8 DCT. The motion information that is required for the motion-compensated

wavelet transform is estimated in each decomposition level depending on the results of the lower level. The

correlation of motion information between two image sequences is not exploited yet, i.e., coded motion vectors

are not part of the side information. Fig. 2 shows the Haar wavelet with motion-compensated lifting steps. The

even frames of the video sequence s2k are used to predict the odd frames s2k+1 with the estimated motion

vector d̂2k,2k+1. The prediction step is followed by an update step which uses the negative motion vector as

an approximation. We use a block-size of 16 × 16 and half-pel accurate motion compensation with bi-linear

interpolation in the prediction step and select the motion vectors such that they minimize a Lagrangian cost

function based on the squared error in the high-band hk [5]. Additional scaling factors in low- and high-band

are necessary to normalize the transform.

s2k r - h+ - lk

√
2r

d̂2k,2k+1

?−

1
2

6

−d̂2k,2k+1

rs2k+1 r - h+ - hk

1√
2

Fig. 2. Haar wavelet with motion-compensated lifting steps.

Encoder 1 in Fig. 1 encodes the side information for Decoder 2 and does not employ distributed source

coding principles yet. A scalar quantizer is used to represent the DCT coefficients of all temporal bands. The

quantized coefficients are simply run-level encoded. On the other hand, Encoder 2 is designed for distributed

source coding and uses nested lattice codes to represent the DCT coefficients of all temporal bands.

B. Nested Lattice Codes for Transform Coefficients

The 8×8 DCT coefficients of Encoder 2 are represented by a 1-dimensional nested lattice code [9]. Further,

we construct cosets in a memoryless fashion [8].

t
o0

t
o2

t
o4

t
o6

d d d d?

z

Fig. 3. Coset-coding of transform coefficients where Encoder 2 transmits at a rate RTX of 1 bit per transform coefficient.

Fig. 3 explains the coset-coding principle. Assume that Encoder 2 transmits at a rate RTX of 1 bit per

transform coefficient and utilizes two cosets C1,0 = {o0, o2, o4, o6} and C1,1 = {o1, o3, o5, o7} for encoding.
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Now, the transform coefficient o4 shall be encoded and the encoder sends one bit to signal coset C1,0. With the

help of the side information coefficient z, the decoder is able to decode o4 correctly. If Encoder 2 does not

send any bit, the decoder will decode o3 and we observe a decoding error.

Consider the 64 transform coefficients ci of the 8 × 8 DCT at Encoder 2. The correlation between the i-th

transform coefficient ci at Encoder 2 and the i-th transform coefficient of the side information zi depends

strongly on the coefficient index i. In general, the correlation between corresponding DC coefficients (i = 0)

is very high, whereas the correlation between corresponding high-frequency coefficients decreases rapidly. To

encounter the problem of varying correlation, we adapt the transmission rate RTX to each transform coefficient.

For weakly correlated coefficients, a higher transmission rate has to be chosen.

Adapting the transmission rate to the actual correlation is accomplished with nested lattice codes [9]. The

idea of nested lattices is, roughly, to generate diluted versions of the original coset code. As we use uniform

scalar quantization, we consider the 1-dimensional lattice. Fig. 4 depicts the fine code C0 in the Euclidean space

with minimum distance Q. C1, C2, and C3 are nested codes with the ν-th coset Cµ,ν of Cµ relative to C0. The

nested codes are coarser and the union of their cosets gives the fine code C0, i.e.
⋃

ν C1,ν = C0.

-

0 Q 2Q 3Q 4Q 5Q 6Q 7Q

��
��
C0 ��

��
C0 ��

��
C0 ��

��
C0 ��

��
C0 ��

��
C0 ��

��
C0 ��

��
C0

��
��
C1,0 ��

��
C1,1 ��

��
C1,0 ��

��
C1,1 ��

��
C1,0 ��

��
C1,1 ��

��
C1,0 ��

��
C1,1

��
��
C2,0 ��

��
C2,1 ��

��
C2,2 ��

��
C2,3 ��

��
C2,0 ��

��
C2,1 ��

��
C2,2 ��

��
C2,3

��
��
C3,0 ��

��
C3,1 ��

��
C3,2 ��

��
C3,3 ��

��
C3,4 ��

��
C3,5 ��

��
C3,6 ��

��
C3,7

Fig. 4. Nested lattices. The 1-dimensional fine code C0 is embedded into the Euclidean space with minimum distance Q. C1, C2, and

C3 are nested codes with the ν-th coset Cµ,ν of Cµ relative to C0.

The binary representation of the quantized transform coefficients determines its coset representation in the

nested lattice. If the transmission rate for a coefficient is RTX = µ, then the µ least significant bits of the

binary representation determine the ν-th coset Cµ,ν . For highly correlated coefficients, the number of required

cosets and, hence, the transmission rate is small. To achieve efficient entropy coding of the binary representation

of all 64 transform coefficients, we define bit-planes. Each bit-plane is run-length encoded and transmitted to

Decoder 2 upon request.

C. Decoding with Side Information

At Encoder 2, the quantized transform coefficients are represented with 10 bit-planes, where 9 are used for

encoding the absolute value, and one is used for the sign. Encoder 2 is able to provide the full bit-planes,

independent of any side information at the Decoder 2. Encoder 2 is also able to receive a bit-plane mask to

weight the current bit-plane. The masked bit-plane is run-length encoded and transmitted to Decoder 2.

Given the side information at Decoder 2, masked bit-planes are requested from Encoder 2. For that, Decoder

2 sets the bit-plane mask to indicate the bits that are required from Encoder 2. Dependent on the received
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bit-plane mask, Encoder 2 transmits the weighted bit-plane utilizing run-length encoding. Decoder 2 attempts

to decode the already received bit-planes with the given side information. In case of decoding error, Decoder

2 generates a new bit-plane mask and requests a further weighted bit-plane.

Decoder 2 has the following options for each mask bit: If a bit in the bit-plane is not needed, the mask

value is 0. The mask value is 1 if the bit is required for error-free decoding. If the information at the decoder

is not sufficient for this decision, the mask is set to 2 and the encoded transform coefficient that is used as

side information is transmitted to Encoder 2. With this side information zi for the i-th transform coefficient

ci, Encoder 2 is able to determine its best transmission rate µ = RTX [i] and coset Cµ,ν . This information is

incorporated into the current bit-plane and transmitted to Decoder 2: Bits that are not needed for error-free

decoding are marked with 0. Further, 1 indicates that the bit is needed and its value is 0, and 2 indicates that

the bit is needed with value 1.

Decoder 2 aims to estimate the i-th transform coefficient ĉi based on the current transmission rate µ =

RTX [i], the partially received coset Cµ,ν , and the side information zi.

ĉi = argmin
ci∈Cµ,ν

[ci − zi]
2 given µ = RTX [i] (1)

With increasing number of received bit-planes, i.e. increasing transmission rate RTX [i], this estimate gets

more accurate and stays definitely constant for rates beyond the critical transmission rate R∗
TX [i]. Therefore,

a simple decoding algorithm is as follows: An additional bit is required if the estimated coefficient changes

its value when the transmission rate increases by 1. An unchanged value for an estimated coefficient is just

a necessary condition for having achieved the critical transmission rate. This condition is not sufficient for

error-free decoding and, in this case, Encoder 2 has to determine the critical transmission rate to resolve any

ambiguity.

Note that Decoder 2 receives the coded information in bit-plane units, starting with the plane of least

significant bits. With each new bit-plane, Decoder 2 utilizes a coarser lattice where the number of cosets as

well as the minimum Euclidean distance increases exponentially.

Depending on the quality of the side information, Decoder 2 gives feedback to Encoder 2 about the status

of its decoding attempts. If the correlation of the side information is high, Decoder 2 will decode successfully

without sending much feedback information. On the other hand, weakly correlated side information will cause

decoding errors at Decoder 2 and more feedback information is sent to Encoder 2 until Decoder 2 is successful.

That is, inefficient side information is compensated by the feedback.

D. Disparity-Compensated Side Information

To improve the efficiency of Decoder 2, the side information from Decoder 1 is disparity compensated in

the image domain. If the camera positions are unknown, the coding system estimates the disparity information

from sample frames. During this calibration process, the side information for Decoder 2 is less correlated and

Encoder 2 has to transmit at a higher bit-rate. Our system utilizes block-based estimates of the disparity values

which are constant for all corresponding image pairs in the stereoscopic sequence. We estimate the disparity

from the first pair of images in the sequences. The right image is subdivided horizontally into 4 segments and
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vertically into 6 segments. For each of the 24 blocks in the right image, we estimate half-pel accurate disparity

vectors. Intensity values for half-pel positions are obtained by bilinear interpolation. The estimated disparity

vectors are applied in the image domain and improve the side information in the transform domain. For our

experiments, the camera positions are unaltered in time. Therefore, the disparity information is estimated from

the first frames of the image sequences and is reused for disparity compensation of the remaining images.

III. EFFICIENCY OF VIDEO CODING WITH SIDE INFORMATION

In this section, we outline a signal model to study video coding with video side information in more detail.

We derive performance bounds and compare to coding without video side information.

A. Model for Transform-Coded Video Signals

We build upon a model for motion-compensated subband coding of video that is outlined in [5], [32]. Let

the video pictures sk = {sk[x, y], (x, y) ∈ Π} be scalar random fields over a two-dimensional orthogonal grid

Π with horizontal and vertical spacing of 1.

∆1

∆K−1

vs -s

n0s
?h+ -

s0s

s - -

n1s
?h+ -

s1s

...
...

- -

nK−1s
?h+ -

sK−1s

Fig. 5. Signal model for a group of K pictures.

As depicted in Fig. 5, we assume that the pictures sk are shifted versions of the model picture v and

degraded by independent additive white Gaussian noise nk [5]. ∆k is the displacement error in the k-th picture,

statistically independent from the model picture v and the noise nk but correlated to other displacement errors.

We assume a 2-D normal distribution with variance σ2
∆

and zero mean where the x- and y-components are

statistically independent. As outlined in [5], it is assumed that the true displacements are known at the encoder.

Consequently, the true motion can be set to zero without loss of generality. Therefore, only the displacement

error but not the true motion is considered in the model.
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From [5], we adopt the matrix of the power spectral densities of the pictures sk and normalize it with respect

to the power spectral density of the model picture v. We write it also with the identity matrix I and the matrix

11
T with all entries equal to 1. Note that ω denotes the 2-D frequency.

Φss(ω)

Φvv(ω)
=

















1 + α(ω) P (ω) · · · P (ω)

P (ω) 1 + α(ω) · · · P (ω)
...

...
. . .

...

P (ω) P (ω) · · · 1 + α(ω)

















= [1 + α(ω) − P (ω)] I + P (ω)11T (2)

α = α(ω) is the normalized power spectral density of the noise Φnknk
(ω) with respect to the model picture v.

α(ω) =
Φnknk

(ω)

Φvv(ω)
for k = 0, 1, . . . ,K − 1 (3)

It captures the error of the optimal displacement estimator and shall be statistically independent of the model

picture. P = P (ω) is the characteristic function of the continuous 2-D Gaussian displacement error. For details,

please see Eqns. (3) - (6) in [5].

P (ω) = E
{

e−jωT
∆k

}

= e−
1

2
ωT ωσ2

∆ (4)

B. Rate Distortion with Video Side Information

Now, we consider the video coding scheme in Fig. 1 at high rates such that the reconstructed side information

approaches the original side information ŵk → wk. With that, we have a Wyner-Ziv scheme (Fig. 6) and the

rate distortion function R∗ of Encoder 2 is bounded by the conditional rate distortion function [1].

Encoder 2

Decoder

s0r - -
ŝ0r

...
...R∗

-

sK−1r - -
ŝK−1r

w0r - -
ŵ0r

...
...

wK−1r - -
ŵK−1r

Fig. 6. Coding of K pictures sk at rate R∗ with side information of K pictures wk at the decoder.

In the following, we assume very accurate optimal disparity compensation and consider only disparity

compensation errors. We model the side information as a noisy version of the video signal to be encoded,
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i.e. wk = sk + uk, and assume that the noise uk is also Gaussian with variance σ2
u and independent of sk.

Further, the side information noise uk is assumed to be temporally uncorrelated. This is realistic as the video

side information is captured by a second camera which provides temporally successive images that are corrupted

by statistically independent camera noise. In this case, the matrix of the power spectral densities of the side

information pictures is simply Φww(ω) = Φss(ω) + Φuu(ω) with the matrix of the normalized power spectral

densities of the side information noise

Φuu(ω)

Φvv(ω)
=

















γ(ω) 0 · · · 0

0 γ(ω) · · · 0
...

...
. . .

...

0 0 · · · γ(ω)

















= γ(ω)I. (5)

γ = γ(ω) is the normalized power spectral density of the side information noise Φukuk
(ω) with respect to the

model picture v.

γ(ω) =
Φukuk

(ω)

Φvv(ω)
for k = 0, 1, . . . ,K − 1 (6)

With these assumptions, the rate distortion function R∗ of Encoder 2 is equal to the conditional rate distortion

function [1]. Now, it is sufficient to use the conditional Karhunen-Loeve transform to code video signals with

side information and achieve the conditional rate distortion function.

C. Conditional Karhunen-Loeve Transform

In the case of motion-compensated transform coding of video with side information, the conditional Karhunen-

Loeve transform is required to obtain the performance bounds. We determine the well known conditional power

spectral density matrix Φs|w(ω) of the video signal sk given the video side information wk.

Φs|w(ω) = Φss(ω) − ΦH
ws(ω)Φ−1

ww(ω)Φws(ω) (7)

With the model in Section III-A, the assumptions in Section III-B, and the mathematical tools presented in

[33], we obtain for the normalized conditional spectral density matrix

Φs|w(ω)

Φvv(ω)
=

A(ω)

A(ω) + γ(ω)
γ(ω)I+

P (ω)

A(ω) + γ(ω)
· γ(ω)

A(ω) + KP (ω) + γ(ω)
γ(ω)11T , (8)

where A(ω) = 1 + α(ω) − P (ω). For our signal model, the conditional Karhunen-Loeve transform is as

follows: The first eigenvector just adds all components and scales with 1/
√

K. For the remaining eigenvectors,

any orthonormal basis can be used that is orthogonal to the first eigenvector. The Haar wavelet that we use for

our coding scheme meets these requirements. Finally, K eigendensities are needed to determine the performance

bounds:

Λ∗
0(ω)

Φvv(ω)
=

A(ω) + KP (ω)γ(ω)
A(ω)+KP (ω)+γ(ω)

A(ω) + γ(ω)
γ(ω)

Λ∗
k(ω)

Φvv(ω)
=

A(ω)

A(ω) + γ(ω)
γ(ω), k = 1, 2, . . . ,K − 1 (9)
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D. Coding Gain due to Side Information

With the conditional eigendensities, we are able to determine the coding gain due to side information. We

normalize the conditional eigendensities Λ∗
k(ω) with respect to the eigendensities Λk(ω) that we obtain for

coding without side information as Λ∗
k(ω) → Λk(ω) for γ(ω) → ∞.

Λ∗
0(ω)

Λ0(ω)
=

γ(ω)

A(ω) + γ(ω)
·
A(ω) + KP (ω)γ(ω)

A(ω)+KP (ω)+γ(ω)

A(ω) + KP (ω)

Λ∗
k(ω)

Λk(ω)
=

γ(ω)

A(ω) + γ(ω)
, k = 1, 2, . . . ,K − 1 (10)

The rate difference is used to measure the improved compression efficiency for each picture k in the presence

of side information.

∆R∗
k =

1

4π2

π
∫

−π

π
∫

−π

1

2
log2

(

Λ∗
k(ω)

Λk(ω)

)

dω (11)

It represents the maximum bit-rate reduction (in bit/sample) possible by optimum encoding of the eigensignal

with side information, compared to optimum encoding of the eigensignal without side information for Gaussian

wide-sense stationary signals for the same mean square reconstruction error. The overall rate difference ∆R∗

is the average over all K eigensignals [32], [34].
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Fig. 7. Rate difference between motion-compensated transform coding with side information and without side information vs. correlation-

SNR for groups of K pictures. The displacement inaccuracy β is -1 (half-pel accuracy) and the residual noise is -30 dB.

Fig. 7 depicts the overall rate difference for a residual noise level RNL = 10 log10(σ
2
n) of -30 dB over

the c-SNR = 10 log10([σ
2
v + σ2

n]/σ2
u) for a displacement inaccuracy β = log2(

√
12σ∆) = −1. Note that the

variance of the model picture v is normalized to σ2
v = 1. We observe for a given correlation-SNR of the side

information that larger bit-rate savings are achievable if the GOP size K is smaller. The experimental results

in Figs. 10 and 12 will verify this observation. Finally, for highly correlated video signals, the gain due to side

information increases by 1 bit/sample if the c-SNR increases by 6 dB.
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Fig. 8. Rate difference between motion-compensated transform coding with side information and without side information vs. displacement

inaccuracy β for groups of K pictures. The residual noise is -30 dB and the correlation-SNR is 20 dB.

Fig. 8 depicts the overall rate difference for a residual noise level RNL = 10 log10(σ
2
n) of -30 dB over

the displacement inaccuracy β = log2(
√

12σ∆) for a c-SNR = 10 log10([σ
2
v + σ2

n]/σ2
u) of 20 dB. Again, the

variance of the model picture v is normalized to σ2
v = 1. We observe that for K = 32, half-pel accurate

motion compensation (β = −1), and a c-SNR of 20 dB, the rate difference is limited to -0.3 bit/sample. Also,

the bit-rate savings due to side information increase for less accurate motion compensation. That is, there is a

trade-off between the gain due to accurate motion compensation and side information. Practically speaking, less

accurate motion compensation reduces the coding efficiency of the encoder, and with that, its computational

complexity, but improved side information may compensate for similar overall efficiency.

IV. EXPERIMENTAL RESULTS

For the experiments, we select the stereoscopic MPEG-4 sequences Funfair and Tunnel in QCIF resolution.

We divide each view with 224 frames at 30 fps into groups of K = 32 pictures. The GOPs of the left view

are encoded with Encoder 1 at high quality by setting the quantization parameter QP = 2, where Q = 2QP .

This coded version of the left view is used for disparity compensation. The compensated frames provide the

side information for Decoder 2 to decode the right view.

Figs. 9 and 11 show the luminance PSNR over the total bit-rate of the distributed codec Encoder 2 for the

sequences Funfair 2 and Tunnel 2, respectively. The sequences are the right views of the stereoscopic sequences.

The rate distortion points are obtained by varying the quantization parameter for the nested lattice in Encoder 2.

When compared to decoding without side information, decoding with coefficient side information reduces the

bit-rate of Funfair 2 by up to 5% and that of Tunnel 2 by up to 8%. Decoding with disparity-compensated side

information reduces the bit-rate of Funfair 2 by up to 8%. The block-based disparity compensation has limited
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accuracy and is not beneficial for Tunnel 2. But utilizing more accurate geometrical information about the scene

will improve the side information for Decoder 2 and, hence, will further reduce the bit-rate of Encoder 2.
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Fig. 9. Luminance PSNR vs. total bit-rate at Decoder 2 for the sequence Funfair 2 (right view). Compared is decoding with disparity-

compensated side information, decoding with coefficient side information only, and decoding without side information. For all cases, groups

of K = 32 pictures are used.
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Fig. 10. Bit-rate difference vs. luminance PSNR at Decoder 2 for the sequence Funfair 2 (right view). The rate difference is the bit-rate

for decoding with side information minus the bit-rate for decoding without side information and reflects the bit-rate savings due to decoding

with side information. Smaller bit-rate savings are observed for strong temporal decorrelation (K = 32) when compared to the bit-rate

savings for weak temporal decorrelation (K = 8).
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Fig. 11. Luminance PSNR vs. total bit-rate at Decoder 2 for the sequence Tunnel 2 (right view). Compared is decoding with disparity-

compensated side information, decoding with coefficient side information only, and decoding without side information. For all cases, groups

of K = 32 pictures are used.
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Fig. 12. Bit-rate difference vs. luminance PSNR at Decoder 2 for the sequence Tunnel 2 (right view). The rate difference is the bit-rate for

decoding with side information minus the bit-rate for decoding without side information and reflects the bit-rate savings due to decoding

with side information. Smaller bit-rate savings are observed for strong temporal decorrelation (K = 32) when compared to the bit-rate

savings for weak temporal decorrelation (K = 8).

Fig. 10 and 12 show the bit-rate difference between decoding with side information and decoding without

side information over the luminance PSNR at Decoder 2 for the sequences Funfair 2 (right view) and Tunnel 2

(right view), respectively. The bit-rate savings due to side information are depicted for weak temporal filtering
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with K = 8 pictures per GOP and strong temporal filtering with K = 32 pictures per GOP. Note that both the

coded signal (right view) and the side information (left view) are encoded with the same GOP length K. It is

observed that strong temporal filtering results in lower bit-rate savings due to side information when compared

to the bit-rate savings due to side information for weaker temporal filtering. Obviously, there is a trade-off

between the level of temporal decorrelation and the efficiency of multi-view side information. This trade-off is

also found in the theoretical investigation on the efficiency of video coding with side information.

V. CONCLUSIONS

This paper discusses robust coding of visual content for a distributed multimedia system. The distributed

system compresses two correlated video signals. The coding scheme is based on motion-compensated temporal

wavelets and transform coding of temporal subbands. The scalar transform coefficients are represented by a

nested lattice code. For this representation, we define bit-planes and encode these with run-length coding. As

the correlation of the transform coefficients is not stationary, we decode with feedback and adapt the coarseness

of the code to the actual correlation. Also, we investigate how scene analysis at the decoder can improve

the coding efficiency of the distributed system. We estimate the disparity between the two views and perform

disparity compensation. With disparity-compensated side information, we observe up to 8% bit-rate savings

over decoding without side information.

Finally, we investigate theoretically motion-compensated spatiotemporal transforms. We derive the optimal

motion-compensated spatiotemporal transform for video coding with video side information at high rates. For

our video signal model, we show that the motion-compensated Haar wavelet is an optimal transform at high

rates. Given the correlation of the video side information, we also investigate the theoretical bit-rate reduction

for the distributed coding scheme. We observe a trade-off in coding efficiency between the level of temporal

decorrelation and the efficiency of multi-view side information. A similar trade-off is found between the level

of accurate motion compensation and the efficiency of multi-view side information.
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Multimedia Signal Processing, St. Thomas, US Virgin Islands, Dec. 2002, pp. 57–60.
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