
Thesis for the degree of Master of Science in

Complex Adaptive Systems

Particle swarm optimization of artificial
neural networks for autonomous robots

Mahmood Rahmani

Department of Applied Physics
Chalmers University of Technology

Göteborg, Sweden, 2008

Particle swarm optimization of artificial neural networks for autonomous robots

MAHMOOD RAHMANI

c© MAHMOOD RAHMANI

Department of Applied Physics
Chalmers University of Technology
412 96 Göteborg, Sweden
Telephone: +46 (0)31 772 1000

Chalmers reproservice
Göteborg, Sweden, 2008

Abstract

Artificial neural networks (ANNs), especially when they have feedback connections, are
potentially able to produce complex dynamics, and therefore have received attention in
control applications. Although ANNs are powerful, designing a network can be a difficult
task, and the more complex desired dynamics are, the more difficult the design of the
network becomes. Many researchers have sought to automate ANN design process using
computer programs. The problem of finding the best parameter set for a network to solve
a problem can be seen as a search and optimization problem. This thesis concerns a com-
parison of two widely used stochastic algorithms, genetic algorithms (GAs) and particle
swarm optimization (PSO), applied to the problem of optimizing parameters of ANNs
for a simulated autonomous robot. For this purpose, a mobile robot simulator has been
developed. The neural network-based controller of the robot is optimized using GAs and
PSO in order to enable the robot to accomplish complex tasks. The results show that both
algorithms are able to optimize the network and solve the problem. PSO excels in smaller
networks, while GAs perform better for larger networks.

Keywords : particle swarm optimization, genetic algorithm, neuroevolution, evolutionary
robotics.

Acknowledgment

I would like to express my gratitude to all those who gave me the possibility to complete this
thesis. I would like to thank my supervisor, Prof. Mattias Wahde, who shared his expertise
and research insight with me. I owe inexpressible gratitude to my lovely wife, Fayan, for
continuing to love me even through the many hours I sat at the computer ignoring her. I
am also grateful to my friend Behrang Mahjani for his great support.

Contents

1 Introduction 1
1.1 Aims . 2

2 Artificial neural networks 4
2.1 Artificial neurons . 5
2.2 Artificial neural networks . 5

2.2.1 Feedforward and recurrent networks 6

3 Genetic algorithms 8
3.1 Initialization . 8
3.2 Selection . 8
3.3 Crossover . 9
3.4 Mutation . 10

4 Particle swarm optimization 12

5 Evolution of artificial neural networks 14
5.1 Evolving ANNs using PSO . 17
5.2 Evolutionary robotics and neuroevolution 18

6 Implementation and experiments 20
6.1 Jarsim, a robot simulator . 20
6.2 GA and PSO configuration . 20
6.3 Verification of implementations . 22
6.4 Experiments . 22

7 Results and discussion 24
7.1 Evolving obstacle avoidance and gradient following behaviors 24
7.2 Discussion and suggestions . 28

8 Conclusions and future work 31
8.1 Future work . 31

i

CONTENTS

A The robot simulator 32
A.1 Modeling an infrared proximity sensor . 32
A.2 Modeling a DC motor . 32
A.3 Software architecture of Jarsim . 34

ii

Chapter 1

Introduction

Autonomous mobile robots are electro mechanical systems capable of moving and carrying
out complex tasks in an unstructured environment without continuous human intervention
[5]. The essence of the autonomy comes from human-robot interaction and the nature of
the tasks that are to be accomplished. There are many applications in which some degrees
of autonomy are required. Space exploration, pipe inspection, and rescue applications are
examples of efforts which are sometimes unsafe, difficult, or even impossible for human to
carry out.

An autonomous robot has a processing unit, often called an (artificial) brain, that maps
sensory information to actuator commands. The brain of a robot has to support com-
plicated sensory-motor coordination in order to be able to perform complex tasks. An
artificial neural network (ANN) -a simple model of the human brain- is a potentially
powerful mechanism to produce complex dynamics. It can be used as a robot’s brain while
sensory signals are fed into the network and outputs of the network are considered as
signals for actuators of the robot (e.g. [19, 17, 18, 14, 31, 47, 23]).

Although ANNs are powerful, designing a proper network can be a very tough task and
the more complex a desired dynamics are, the more difficult the design of the network
becomes. Many researchers (e.g. see [35, 24, 9, 1, 37, 40]) have sought to automate ANN
design process by using computer programs. They have used algorithms that explore various
combinations of network parameters (size, topology, connection weights, etc.) and find the
most suitable networks.

Evolutionary algorithms (EAs) are optimization and search methods, based on Dar-
winian evolution. EAs are especially useful for finding global optima of functions which
have many locally optimal solutions, because in comparison with traditional gradient-based
search methods, EAs have more chances to escape from local optima. EAs are independent
of gradient signals and are thus suitable for handling problems where such information
is not available [53]. EAs have been frequently used to carry out various tasks regarding

1

Chapter 1. Introduction

optimization of ANNs, such as evolving connection weights (e.g. [42, 59, 16, 48, 54, 29]),
architecture design (e.g. [20, 56, 35, 24, 25, 45, 30, 43, 23]), adaptation of learning rules
(e.g. [10, 6, 7, 3]), etc. Genetic algorithms (GAs) are a particular class of evolutionary
algorithms that use techniques inspired by evolutionary biology.

The evolutionary algorithm approach is not the only approach for stochastic optimization
of ANNs. In 1995, Kennedy and Eberhart [33] introduced particle swarm optimization
(PSO), which is a stochastic population-based search method inspired by social behavior
of animals such as birds and fish. It is known that PSO is also successful for optimization
of ANNs and in this case it produces better results than GAs [13, 8, 44, 36, 57]. PSO
excels in global search and compare to backpropagation (BP) algorithm, which is a
very common gradient based method for training the connection weights of ANNs, PSO
shows faster convergence (e.g. [26, 50, 39]). Compared to evolutionary algorithms, PSO is
faster in approaching the optima but it is not able to adapt the step size of its velocity for
fine tuning [2].

The term evolutionary robotics (ER) refers to methods that develop the body and
controller of robots using an evolutionary approach. Evolutionary robotics in general and
evolving neurocontrollers (neural network-based controllers) in particular have attracted
many researchers over the last decade. The following are a few examples from pioneers
of ER; Husband et al. [12] used GAs to evolve network architectures and develop a neu-
rocontroller for a simple visually-guided robot to generate adaptive behaviors. Floreano
and Mondada [46] have used GAs to evolve a neural network controller so that a minia-
ture robot, Khepera [41], can navigate in an environment, avoid obstacles, and find light
sources. They obtained the result of homing behavior for battery recharging as an emergent
behavior. Angeline et al. [1] presented a simulated ant problem in a two-dimensional grid
world in which the goal was finding the best agent that collects the most amount of food
in a given period of time. They evolved an ANN brain for the ant to attain good foraging
skills. Gomez et al. [23] evolved neural networks for a prey capture problem using an in-
cremental learning approach. Gruau [24] used GAs to evolve a modular neural network for
controlling a hexapod robot. Kodjabachian et al. [17] also evolved a neural controller for
both simulated and real versions of a hexapod robot. In this experiment the robot learned
to walk and avoid obstacles. Pasemann et al. [47] evolved a recurrent neural network for the
Khepera robot in order to generate obstacle avoidance and gradient-following behaviors.

1.1 Aims

PSO is a successful algorithm for evolving artificial neural networks, particularly in order
to solve problems that are non-gradient and have no explicit objective function. Numerous
researchers have reported good results when using this method in various applications, but
still little work has been done using PSO to develop a neurocontroller for a robot. The
aim of this project is to investigate how PSO and GAs can be used to optimize a neural

2

Chapter 1. Introduction

network in connection with autonomous robots and compare the results obtained from
both methods.

Obstacle avoidance and gradient following are frequently used in evolutionary robotics
[18, 47, 17, 38, 32, 23]. In this project these tasks will be considered for the robot but in a
more challenging environment in which some mobile obstacles are moving around.

Chapters 2, 3, and 4 give brief introductions to artificial neural networks, genetic algo-
rithms, and particle swarm optimization, respectively. Chapter 5 sketches out an overview
of the evolution of neural networks and evolutionary robotics. The experiments done in
this project are described in chapter 6, along with the implementation of GAs and PSO
algorithms and a description for the robot simulator developed in this project. The results
and discussion are described in chapter 7. Finally, chapter 8 presents the conclusions and
future work.

3

Chapter 2

Artificial neural networks

The human brain is an organ made up from a huge number of interconnected cells called
neurons. The number of neurons in a human brain is about 1011 and each neuron is, on
average, connected to around ten thousand other neurons. The functions of neurons and
how they interact determine the behavior of the entire brain. It is believed in neuroscience
that once the individual and concerted actions of brain cells are fully understood, the
origins of the mental ability of humans will be understood [4].

The neuron, as shown in Figure 2.1, has three main parts: dendrites, the body, and an
axon. Dendrites are information providers for neurons. They collect electrical signals from
other neurons and deliver them to the cell body. The body adds signals and if they exceed
a threshold, the axon will be activated. The axon of each neuron is connected to dendrites
of some other neurons. The tail of an axon branches into a number of synapses. Synapses
release chemical substances, namely neurotransmitters, in response to the axonal signal.
Neurotransmitters generate electrical signals into the dendrite [4]. The effect of neurons on
other neurons through synaptic conjunction determines the behavior of the whole network,
and it is thought that the process of learning is related to varying these synaptic effects
[27].

Axon
TerminalAxon

Cell Body

Nucleus

Dendrites Synapse
Receptor

Dendrite

Neurotransmitter
Molecules

Figure 2.1: a sketch of a neuron presenting dendrites, axon, and some synaptic connections.

4

Chapter 2. Artificial neural networks

..
.

wi,2

xi

bi
z1

z2

zn

wi,1

wi,n

Figure 2.2: The artificial neuron.

2.1 Artificial neurons

An artificial neuron, also called a neurod, is a simplified model of a real neuron. As is the
case with the real neurons, an artificial neuron has a number of inputs and one output.
The neuron is modeled as a processing unit that produces an output based on its inputs.
Figure 2.2 depicts the artificial neuron schematically. Although the function of a real neuron
is a complex biochemical and bioelectrical reaction, it is believed that it simply adds the
inputs and performs a threshold function [49].

The stimulation (si) of an artificial neuron (i) with n inputs is defined as the weighted
sum of its inputs:

si =
n∑

j=1

wijzj + bi, (2.1)

where wij resembles the strength of the synaptic connection between two neurons i and j,
and zj is the output of neuron j. A bias term bi is sometimes added to the weighted sum.

The activation of a neuron (xi) is defined as a function of its stimulation:

xi = σ (si) = σ

(
n∑

i=1

wijzj + bi

)
. (2.2)

The activation function σ is a squashing function. Two of the most common used ac-
tivation functions are a logistic sigmoid function, σ(x) = 1

1+e−cx , and hyperbolic tangent,
σ(x) = tanh(cx), where c is a positive constant.

2.2 Artificial neural networks

An artificial neural network is a simple model of the brain. It is a collection of interconnected
artificial neurons.

5

Chapter 2. Artificial neural networks

Neural networks have been used to solve problems of many different kinds. Applications
of neural networks include function approximation, face recognition, handwritten character
recognition, speech processing, noise filtering, image compression, stock market prediction,
mobile object path prediction, loan application scoring, automobile autopilot, soccer robot
control, traveling salesman problem, medical diagnosis, and many others.

In order for the network to mimic a desired behavior, the parameters of the network
should be optimized through the learning process. There are three major learning paradigms:
supervised, unsupervised, and reinforcement. In supervised learning, there is a desired func-
tion that maps an input space to an output space, and the learning process changes the
weights or topology of the network in order to make its behavior as close as possible to the
desired function. Unsupervised learning is a learning process for cases in which the desired
function is unknown. In this case there is usually a cost function to be optimized. Finally,
reinforcement learning is used for cases where both input space and the desired function
are not given, and the learner interacts with its surroundings to optimize its behavior.

2.2.1 Feedforward and recurrent networks

The topology of a network affects its behavior; hence, the way that neurons are connected
to each other is important. If there exists a way to order neurons of a network in which
all of them are only connected to the neurons with larger ordering number, the network
is called a feedforward neural network (FFNN). If backward or lateral connections exist
the network is called a recurrent neural network (RNN). The capability to have memory
and generate periodical sequences are important characteristics of recurrent networks. A
network in which any neuron is connected to all the others is called a fully-recurrent or
fully-connected network. Figure 2.3 shows examples of the three network types.

Figure 2.3: From left to right: a feedforward, a recurrent and a fully-connected network.

In recurrent networks the output of a neuron is given by:

τiẋi(t) + xi(t) = σ

∑
j

wijxj(t) +
∑
j

wijIj(t) + bi

 , (2.3)

6

Chapter 2. Artificial neural networks

where τi is a time constant coefficient, xi(t) is the output of neuron i-th at time t, and
Ij(t) is the value of input j at time t.

Backpropagation is a well-known method for optimizing weights of neural networks,
first formalized by Rumelhart and McClelland [49]. It is a supervised method and requires
existence of the desired output for any given input. This method is most useful for feed-
forward networks.

Algorithm 1 Pseudocode for backpropagation learning algorithm

initialize the weights of the network (randomly)
repeat

for all pairs of input-output of the training set do
feed the input vector to the network and obtain the output
error = difference between the output and the desired output
backward pass I: compute ∆w for all hidden-output connections
backward pass II: compute ∆w for all input-hidden connections
update the weights in the network

end for
until all pairs of input-output learned or termination criteria are met

7

Chapter 3

Genetic algorithms

In his 1859 book On the Origin of Species by Means of Natural Selection, Darwin formu-
lated an idea that, despite its apparent simplicity, could explain the design of all biological
organisms on Earth. This idea is known as evolutionary theory. The principle of the evolu-
tionary theory, or Universal Darwinism, expresses that necessary and sufficient conditions
for evolution are variation, selection and heredity. “What Darwin offered the world was
design out of chaos without the aid of mind.”[15]

The term genetic algorithms (GAs) refers to a class of population-based adaptive algo-
rithms inspired from Darwin’s theory of evolution through the work of John Holland in
the 1970s [28]. Each individual, or genome, in a population can be a composition of all
variables of a problem, or in other words, each individual represents a particular position
in the search space. Hence, GAs can be seen as a search method that is capable of finding
the best set of variables that solve a problem. Major operators of genetic algorithms are
natural selection and crossover (also called recombination). Individuals with advantageous
qualities are more likely to be selected and become more common in the population. Be-
cause of the stochastic nature of GA, it is likely to have more than one solution for a
particular problem.

3.1 Initialization

A number of individual solutions are randomly created at the beginning. Initial population
size depends on the characteristics of the problem and it usually varies between several
hundred to thousands of individuals. The initial population may be seeded in a particular
region, where the probability of finding optimal solutions is large.

3.2 Selection

A number of individuals from the existing generation are selected to breed a new generation.
The selection is typically based on fitness, thus the fitter an individual is, the more likely it

8

Chapter 3. Genetic algorithms

Algorithm 2 Pseudocode for a genetic algorithm

initialize population
repeat

for all individuals do
decode chromosome (create phenotype)
evaluate individual

end for
if satisfactory result obtained then

halt
else

place a copy of the best individual in new population (elitism)
repeat

select two individuals
do crossover with probability Pc

do mutation
put the two new individuals in the new population

until the new population is completed
replace the old (parents) population with the new one (children)

end if
until termination criteria are met

is to be selected. A weak individual still has a chance to be selected, and this helps to keep
the diversity of the population high. Two popular selection mechanisms are roulette-wheel
selection and tournament selection.

Roulette-wheel selection. Individual i with fitness fi is selected with probability pi =
fi∑N

i=1
fi

, where N is the size of the population. (Figure 3.1(left))

Tournament selection. An individual is selected if it wins a tournament among a few
randomly chosen individuals. The behavior of the tournament selection depends on two
parameters: tournament size (k) and the probability of selecting the best individual in the
tournament (p). (Figure 3.1(right))

3.3 Crossover

Crossover is the process of varying DNA of chromosomes by exchanging some of their
sections. This operation is applied for breeding offspring from selected individuals. There
are different ways of applying crossover. Some of them are based on cutting points; the
genome string of each parent splits from a number of cutting points, or crossover points,
and a random swapping of the resulting sections breeds the children. The parents’ string
could have similar or different choices of cutting points. Accordingly, this can result in a

9

Chapter 3. Genetic algorithms

p1

p2

p3

p4

p5

pn

pn-1

01

r (0 ,1)
f >f >fa b c

p 1-p

a

{a,b,c}

{b,c}

p 1-p

b c

k = 3

Figure 3.1: Selection methods: roulette wheel selection, pi is the probability of selecting
i-th individual and r ∈ [0 · · · 1] is a random number with uniform distribution (left).
Tournament selection, tournament size k = 3, fi is the fitness of i-th individual, and p
is the probability of selecting the best individual in the tournament. In this example the
probability of selecting individual a, b, or c is p, p(1− p), and (1− p)2 respectively (right).

change in the length of the children’s string (Figure 3.2). In uniform crossover the number
of cutting points is equal to the number of genes minus one, and each gene can be swapped
with a fixed probability, normally 0.5. In some cases, such as ordered chromosomes, direct
swapping does not create a valid order; hence, a particular type of crossover needs to be
used that ends with a correct order. The crossover is usually applied with probability pc

(see Algorithm 2). This means some of the children may be formed only by mutation and
only one parent is involved in reproduction (asexual reproduction). pc is usually a number
in the range of [0.7, 0.9].

parents

children

crossover point

One-point crossover

crossover points

Two-point crossover
One-point crossover

(different cutting points)

Figure 3.2: Three examples of crossover operator

3.4 Mutation

Mutation is the simplest genetic operator. It randomly flips bits in a binary string genome
from zero to one or from one to zero. This operator improves the algorithm by introducing
new solutions that do not exist in the population. The mutation rate has to be low to

10

Chapter 3. Genetic algorithms

prevent the algorithm from becoming a simple random search. Some types of mutation are
deletion of genes, duplication of genes, inversion of a sequence of genes, and insertion of a
portion of a chromosome into another chromosome.

11

Chapter 4

Particle swarm optimization

Particle swarm optimization (PSO) is a stochastic population-based search method
inspired by the social behavior of animals such as birds and fish. This algorithm was first
introduced by James Kennedy and Russell Eberhart in 1995 [33]. In PSO, each individual,
called a particle, flies through the problem space and adjusts its position according to its
own experience and the experience of its neighbors. A particle can fly either fast and far
from the best positions to explore unknown areas (global search), or very slowly and close
to a particular position (fine tune) to find better results. PSO is quite simple to implement
and has few control parameters. Equations 4.1 and 4.2 are the two fundamental update
rules of standard PSO:

vi ← wvi + c1r1(Pi − xi) + c2r2(Pg − xi), (4.1)

xi ← xi + vi, (4.2)

where vi and xi are velocity and position vectors of particle i, respectively, Pi is the best
local position found by particle i, and Pg is the best global position found in the whole
population. The two parameters c1 and c2 are positive constants, called learning factors ;
c1 presents how much a particle is attracted to its best position, and c2 is the same for
the global position. Values of these two parameters vary depending on the nature of the
problem but they are usually considered to be equal to 2.0. w is the inertia weight and
controls the amount of freedom of the particles to explore. It has been shown, e.g. in [34]
p. 342, that PSO performs better when w decays from 0.9 to 0.4 over time. r1 and r2 are
uniform random variables providing the stochastic aspect of the algorithm.

12

Chapter 4. Particle swarm optimization

Algorithm 3 Pseudocode for particle swarm optimization (continuous numbers)

initialize population (position and velocity of particles)
repeat

evaluate all particles
for all particle i do

if current position of particle i, xi, produces the best fitness in its history then
Pi ← xi

if fitness of xi is the best fitness in global then
Pg ← xi

end if
end if

end for
update velocity and position of particles according to the Equations 4.1 and 4.2

until termination criteria are met

PSO has many variations. the position of a particle can be limited to a range, e.g.
[xmin, xmax]. The parameter vmax can be defined to limit the maximum amount of the par-
ticles’ displacement in one iteration, and it usually equals to |xmax − xmin|. One might
consider different types of population topologies such as square or ring topologies (Fig-
ure 4.1) in which each particle is attracted by every other particle in its neighborhood
rather than being attracted by the global best individual.

Figure 4.1: three population topologies for PSO; fully-connected (left), square (center), and
ring (right).

13

Chapter 5

Evolution of artificial neural networks

Neural networks have been proved to be successful in mapping input patterns to particular
outputs and producing complex dynamics. Finding a proper set of weights and topology
for a network to produce a desired dynamic can be seen as an optimization problem. Evo-
lutionary algorithms (EAs) have been shown to be good at optimization problem solving.
The combination of these two methodologies, which is called neuroevolution, seems to be
promising for developing hybrid computational tools which are more effective than either
approach by itself. It is common to optimize connection weights of neural networks by using
EAs, especially genetic algorithms (GAs). The topology and learning rules of a network
have also been evolved by many researchers, but the number of these applications is not
comparable with the huge number of applications for evolving network weights. Floreano
et al. [20], Yao [56], Fogel [22], and Schaffer et al. [51] provided reviews of various methods
that have been established for evolutionary development of neural networks.

Constructive and destructive approaches. Two general approaches for evolving the
topology of networks are constructive and destructive. In the constructive approach, a
network has initially a few neurons and connections, and while the algorithm proceeds, the
network grows by adding new neurons and connections. Destructive algorithms start with
a large network and evolve it by removing connections and neurons (Yao [56]).

Direct and indirect coding. A designer should decide how a network is encoded in a
genotype; that is, determine which characteristics of the network are coded and what type
of elements (binary or floating point numbers) are used. The modeler also determines the
process of constructing a phenotype from the genotype. This process is called genotype-
to-phenotype mapping. In general, there are two coding scheme approaches: direct and
indirect. In direct encoding, the genotype contains all of the detailed information required
to construct a particular network, including the number of layers, number of neurons in each
layer, and the weight of connections. Having this information, one can always produce an
identical phenotype from its genotype; hence, this approach is called one-to-one mapping.
Because all of the details are kept in the genome, large networks have relatively large
genomes in direct coding. In contrast, the indirect coding scheme is a reduced coding that

14

Chapter 5. Evolution of artificial neural networks

stores either a number of parameters or a set of deterministic developmental rules needed
to specify the network topology, instead of encoding all the details. For example, instead
of keeping the exact value of weights, a distribution of weights might be stored. In indirect
encoding, reproducing an exact phenotype from a genome is usually impossible, because
the genotype denotes a set of networks (one-to-many mapping). Considering the genome’s
size, the indirect coding is more suitable for evolution of large scale networks. But, it has
its own drawbacks, such as the cost of converting genotypes to phenotypes and the noisy
fitness that comes from nonsingularity of phenotypes.

In developmental encoding, either the phenotype might be completely constructed and
then used for evaluation (phylogenetic approach), or the phenotype might continue to
develope even during the evaluation time (ontogenetic approach).

Many researchers have developed neuroevolution methods using indirect encoding. Some
of those methods are introduced below:

Matrix rewriting. Kitano [35] suggested a grammatical encoding which is based on ma-
trix rewriting. The genome is a mixture of non-terminal and terminal symbols representing
the development rules (Figure 5.1). Terminal symbols expand to 2× 2 matrices of 0s and
1s. Non-terminal symbols expand to 2 by 2 matrices of symbols.

Cellular encoding. In this model, proposed by Gruau [24], the genome represents a
grammar tree in which each node is an instruction selected from a set of 13 instructions. The
instructions provide cellular duplication, connection adding and removal, and connection
weight modification. The development of a phenotype starts with a single neuron connected
to an input and an output. The tree is scanned from the root and each instruction is
executed on the phenotype. In comparison with Kitano’s coding scheme, cellular encoding
is more compact and allows repeated subnetworks to be coded efficiently (modularity). The
cellular encoding is used for some common control problem such as pole balancing [25] and
walking behavior [24].

Growing encoding. Nolfi et al. [45] proposed a growing encoding scheme for neural
network architectures. The genotype contains instructions that control axonal growth and
branching. The development of a network in this model starts from a set of individual
neurons distributed over 2-dimensional space (Figure 5.2). The axons of initial neurons
grow and branch in the space and whenever an axon reaches another neuron, a connection
between these two neurons will be established. This method is ontogenetic.

Husband et al. [30] proposed a similar scheme, called a force field development scheme,
in which dendrites of neurons grow out according to ordinary differential equations on a
2D plane. The genotype in this scheme encodes the parameters of the equations in addition
to the positions of neurons and the initial directions of dendrites.

15

Chapter 5. Evolution of artificial neural networks

S
A B
C D

c p a a
a c a e
a a a a
a a a b

1 0 1 1 0 0 0 0
0 1 1 1 0 0 0 0
0 0 1 0 0 0 0 1
0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1

7

2 3

0 1

S
A B
C D

A
c p
a c

B
a a
a e

C
a a
a a

D
a a
a b

a
0 0
0 0

b
0 0
0 1

c
1 0
0 0

e
0 1
0 1

p
1 1
1 1

S A B C D B a a a e D a a a b b 0 0 0 1 . . .Genome:

Figure 5.1: Kitano’s grammar encoding. The genome consists of grammatic instructions.
Starting from a non-terminal symbol S, develop S according to the rules to a 2× 2 matrix
of non-terminals, ABCD, then recursively apply other rules to get the adjacency matrix of
the network. The strictly upper triangular matrix gives a feedforward network. (Redrawn
from [35])

In all methods mentioned above, the genome encodes the whole network. There is an-
other approach in which instead of the entire network, an individual neuron is encoded
(i.e., each individual is a neuron). Moriarty and Miikkulainen [43] introduced a method—
they call it symbiotic, adaptive neuroevolution (SANE)—for evolving individual neurons.
This method evolves networks with one layer of neurons in which each neuron is connected
to some input and output units. As shown in Figure 5.3, a genome in SANE stores all
connection information for an individual neuron. A network is formed by random selection
of a number of neurons from the population. The fitness of an individual neuron for one
generation is the average fitness of all the networks containing the individual. SANE does
not support evolving recurrent neural networks. Gomez and Miikkulainen [23] extended
SANE by adding a subpopulation concept. In the new method, which they call enforced
subpopulation (ESP), the individuals compete in their own subpopulation to form special-
ists for different aspects of the problem at hand. ESP is able to evolve recurrent networks.

One of the difficulties with evolution of networks is the permutation or competing conven-
tion problem. This problem is caused by a many-to-one genotype-phenotype mapping; i.e.,
the population might contain individuals with completely different genomes but (behav-
iorally) the same phenotype [51]. This problem causes the crossover operation to become

16

Chapter 5. Evolution of artificial neural networks

Figure 5.2: Growing encoding scheme. The neurons are positioned across the 2D plane with
their grown and branched axons (right). The phenotypical network after pruning dangling
axons and removing neurons that are not laid on any path between inputs and outputs
(left). (After [45])

ineffective, so even two effective parents can produce very weak offspring (Figure 5.4).
Stanley and Miikkulainen [55] introduced a developmental method, namely neuroevo-

lution of augmenting topologies (NEAT). It has a direct encoding, i.e., storing information
about neurons and connections, along with the genetic historical record. Each new neuron
is assigned an ordered, unique ID number (Figure 5.5). The inherited neurons in the off-
spring network keep the same ID as their parents. The ID is used to evaluate the similarity
of genes, to find alignment points between genomes of different lengths, and to avoid the
competing conventions problem. New individuals usually have low fitness and need time to
be optimized and show better fitness. If such individuals compete with older high-fitness
ones, they might be removed very soon from the population and will not have the oppor-
tunity to become developed. NEAT assigns an innovation number (which denotes how new
the gene is) to permit new individuals to compete separately for reproduction. When they
achieve advantages, they will be released to compete with other individuals.

5.1 Evolving ANNs using PSO

From the early days of particle swarm optimization (PSO), using this method for optimiza-
tion of neural networks has been in the center of attention. Although neuroevolution means
evolving networks and PSO is not known as a complete evolutionary algorithm, optimiza-
tion of networks by PSO mimics evolution of networks; hence, it can be compared to other
neuroevolution algorithms. Many researchers sought to use it as an alternative or comple-
ment of GAs. It is known that PSO succeeds in optimization of networks and produces
better results than GAs [13, 8, 44, 36, 57]. PSO excels at global search and, when compared
to a backpropagation (BP) algorithm, which is a very common gradient based method

17

Chapter 5. Evolution of artificial neural networks

O3

I3

O1 O2 O4 O5

I5 I6 I7 I8I1 I2 I3 I4

0.1
0.20.3 -0.1

0.7

-0.5
0.8

0.4
0.7 I8 0.1 0.9O4 0.9

label weight

I1 0.3 O2 0.8 O3 0.4

I2 -0.1 I5 0.2 O5 -0.5

output layer

input layer

genomes to form
phenotype

Figure 5.3: The symbiotic, adaptive neuroevolution (SANE) method. Each genome encodes
connection information of an individual neuron. The labels refer to input or output units
connected to the neuron. The weight fields denote weight of those connections. To construct
a phenotype, a number of individual neurons are selected randomly from the population
and combined with input and output units. (Redrawn from Moriarty and Miikkulainen
[43])

1 e d 2 a b 3 c

Convention I. Convention II.

c

a

b

d

e

1

2

3

1 d e 2 a b3 c

b

a

c

e

d

1

3

2

Figure 5.4: Competing conventions. Two networks with identical behavior, but completely
different genomes.

for training connection weights of ANNs, PSO shows faster convergence (e.g., [26, 50, 39]).
Particle swarm optimization’s results present networks with good generalization1 on the
data sets. Compared to evolutionary algorithms, PSO is faster at getting close to optima,
but it is not able to adapt its velocity step sizes for fine tuning [2].

5.2 Evolutionary robotics and neuroevolution

Evolutionary robotics (ER) refers to methods that develop the body and controller
of robots using an evolutionary approach. Evolutionary robotics in general and evolving
neurocontrollers (neural-network-based controllers) in particular have attracted many re-
searchers over the last decade. The following are a few examples of pioneering research in
ER: Husband et al. [12] used GAs to evolve recurrent network architectures and develop
a neurocontroller for a simple visually-guided robot which generates adaptive behaviors.

1Generalization means a trained network could classify data from the same class as the learning data
that it has never seen before. This is one of the major advantages of neural networks.

18

Chapter 5. Evolution of artificial neural networks

Node 1
Sensor

Node 2
Sensor

Node 3
Ouput

Node 4
Hidden

Node Genes Connection Genes

In 1
Out 3
Weight 0.5

Innov 2
Enabled

In 2
Out 3
Weight 0.5
Enabled
Innov 3

In 1
Out 4
Weight 0.2
Enabled
Innov 4

In 4
Out 3
Weight 0.6
Enabled
Innov 5

In 3
Out 4
Weight 0.6

Innov 11
DISABLED

Genotype Phenotype

2

3

4

1

Figure 5.5: The neuroevolution of augmenting topologies (NEAT) algorithm. The Genes
can be disabled or enabled. A gene gets an innovation number that shows its origin. (Re-
drawn from [55])

Their result also indicate that applying noise during evolution helps the networks to oper-
ate efficiently. Floreano and Mondada described in [18, 19, 46] how they have used genetic
algorithms to evolve a neural network controller so that the Khepera robot can navigate in
an environment, avoid obstacles, and find light sources. They obtained the result of homing
behavior for battery recharging as an emergent behavior. Angeline et al. [1] presented a
simulated ant problem in a two-dimensional grid world in which the goal is to find the
best agent that collects the most amount of food in a given period of time. They evolved
an RNN brain for the ant to attain good foraging skills. Gomez et al. [23] evolved neural
networks for a prey capture problem using incremental learning approach. Kodjabachian
et al. [17] also evolved a neural controller for both simulated and real versions of a hexapod
robot. In this experiment the robot learned to walk and avoid obstacles. Pasemann et al.
[47] evolved a recurrent neural network for the Khepera robot in order to generate obstacle
avoidance and gradient-following behaviors.

19

Chapter 6

Implementation and experiments

The aim of this project is to study and compare GAs and PSO, which are used to opti-
mize a neurocontroller for a simulated robot. To achieve this the following tasks must be
carried out: constructing a robot simulation, encoding the parameters of the network to
be optimized, implementing the two algorithms, defining complex tasks for the robot in an
environment, and finally running the algorithms to optimize the brain of the robot.

6.1 Jarsim, a robot simulator

A simulator is designed by the author to allow users to experiment with evolutionary
robotic techniques without requiring access to a real robot. The main idea of the simulator
and its models of sensors and actuators have been borrowed from a simulator called ARSim,
written by Mattias Wahde in Matlab. Since the new simulator is written in Java and its
ancestor is ARSim, it is named Jarsim. Jarsim enables users to create simple environments
of rigid objects, wandering obstacles, and light sources (as gradient providers). In addition,
one can easily assemble a two wheeled robot using different numbers of infrared sensors,
light detectors, and configuration of the robot. The only thing that users need to program
is the brain of the robot. One can freely choose any kind of decision making mechanism and
implement it as a subclass of class Brain. Jarsim is provided with a neural network library
that allows users to implement a neural-based brain. The simulator supports multiple
robot simulation. Appendix A presents more architectural and implementation details of
the simulator.

6.2 GA and PSO configuration

Genotype encoding The coding is chosen to be direct and real-valued. The genome is a
sequence of real numbers; each number corresponds to a connection weight of the network.
The bias weights, the constant coefficient c of the activation function tanh(cx), and the
time constant coefficient τ of Equation 2.3 are also included in the genome. All the neurons
of the network use the same activation function and the same τ (i.e., ∀i 3 τi = τ).

20

Chapter 6. Implementation and experiments

w’1,1 b1

in

-1 bias

w’h,h... w 1,1’’ ... w’’h,o bh... b’1 b’o... c

hidden-hidden
weights

hidden-output
weights

hidden
bias

output
bias

w1,1 wi,h...

input-hidden
weights

.
.
.

.
.
.

.
.
.

1

o

1

i

out

1

2

hidden

genotype phenotype

h

Figure 6.1: The genotype and phenotype used for the evolution of the neurocontroller of
the simulated autonomous robot. τ is the time constant coefficient in Equation 2.1, and c
is the constant coefficient in activation function σ(x) = tanh(cx)

.

Particle structure. Since the genome is a vector of real values, it can be directly used
as the data structure for a particle in the PSO algorithm.

Population initialization. Weights and biases are initialized by random real values in
the range [-0.6, 0.6]. τ is set to a random number in the range [∆t,1], where ∆t = 0.01 is
the length of one time step of the simulator. c is a random positive real number less than
10.

Crossover. As shown in Figure 6.2, the genome is divided into seven parts. One-point
crossover is applied to each of the first five parts. The offspring also inherit the τ and c
from their parents as following:

τ ′ = pτ1 + (1− p)τ2,
c′ = qc1 + (1− q)c2,

where τ ′ and c′ are inherited parameters, τi and ci are parameters of parent i, and p and
q are normal random numbers.

Neural network. The architecture of the network is fixed during evolution, and only
the weights will be optimized along with the constant coefficient of the activation function.
The network has three layers. The number of input and output units are considered to be
provided by the task and are immutable by the algorithm; thus, number of input units is
equal to the number of sensors, and the number of output units is equal to the number
of actuators the robot has. In this project, the robot has two DC motors, so the number
of output units is two. All the neurons have been arranged in one hidden layer and are
connected to both the input and output units.

21

Chapter 6. Implementation and experiments

bh cwi wowh bo

cp1 cp2 cp3 cp4 cp5

bh cwi wowh bo

parents

offspring

w1,1

wi,h wi,h

w1,1

.
.
.

1

i

1

2

h

.
.
.

1

i

1

2

h

wi :

c

c
(a)

(b)

Figure 6.2: The crossover operator used for the neural network genome of Figure 6.1, where
cp denotes a cross-point (a). A 2-dimensional matrix of wi is cut vertically (b. left) and its
phenotype after cutting (b. right)

6.3 Verification of implementations

The implementation of both algorithms needs to be verified. To achieve this, a simple
function, exclusive OR (XOR), is used. XOR is a classic test problem in artificial neural
networks studies. It is a binary logical operation that returns true if and only if its argu-
ments are not the same. A fully-connected neural network with two inputs, three hidden
neurons and one output is considered. Both algorithms were applied and were able to
optimize the connection weights of the network to solve the XOR problem.

6.4 Experiments

For a robot to be autonomously mobile, it is necessary that it have skills to detect ob-
stacles and try to avoid them. The complexity of the obstacle avoidance task varies from
application to application and depends on the provided sensory information and com-
plexity of the environment. Obstacle avoidance is a common case study in mobile robotics
[18, 47, 17, 38, 32, 23]. In this project the same case study is used but in a more challenging
environment in which there are some mobile obstacles that are moving around.

22

Chapter 6. Implementation and experiments

PU

IR sensor

right motor

left motor

signal

receivers

Figure 6.3: A two-wheeled robot with one infrared sensor in the front, two signal receivers
(the cross signs) on the left and right hand sides, and one neural network as a brain. The PU
is a hard-wired preprocessing unit which simply receives two inputs, a and b, and returns
k(a− b); k ∈ <. The network has two input units: one is directly connected to the infrared
sensor reading, and the other is connected to the output of the PU. The two outputs of
the network are directly connected to motors. The bias connections of the network have
been intentionally ommited in the figure to make it more readable.

23

Chapter 7

Results and discussion

7.1 Evolving obstacle avoidance and gradient follow-

ing behaviors

In real applications, a mobile robot has to accomplish tasks while interacting with an
environment made of stationary and mobile obstacles. In this experiment, the task for
the simulated robot is to reach a target from an arbitrary starting point. There is a signal
transmitter located at the target to help the robot find it. The obstacles are circular objects
moving around with limited maximum speed that bounce off other objects like a billiard
ball. The number of obstacles is fixed during a training episode. In this scenario, the robot
needs to develop both obstacle avoidance and gradient following behaviors at the same
time. Figure 7.1 depicts one of the configurations used in this experiment.

The simulated robot is equipped with one simulated IR-sensor on its front and two signal
receivers on its left and right hand sides (Figure 6.3). A fully recurrent neural network
with two inputs and two outputs is used for this problem. One input is connected to the
IR-sensor. The other is connected to a hard-wired preprocessing unit that computes the
difference between the readings from the two sideways sensors. Although the network can
be developed in a way such that no preprocessing unit would be needed, in this project
it is preferred to start from a simpler case that does use the preprocessing unit. The two
outputs of the network are connected to the DC motors. The aim of this experiment is to
investigate the performance of the two algorithms, GA and PSO, when they are used to
optimize a neurocontroller for this robot. The number of hidden neurons varies from 2 to
30.

Fitness evaluation. The evaluation field in which the robot is examined is shown in
Figure 7.1. There are four balls with random initial positions and velocities. The target, a
signal transmitter, is located at the center of the field. The amount of signal (s) a sensor
receives is a function of its distance to the target r: s = 1

1+cr2 , where c is a constant

24

Chapter 7. Results and discussion

Figure 7.1: The arena used for robot-ball experiment in Jarsim. There are four balls moving
around with different speeds. A signal transmitter (or one might say light source) is located
at the center.

coefficient equal to 1
l
, and l is the diameter of the arena. The fitness function (f) is:

f = e−kd +N, (7.1)

where d is the distance between the robot and the target at the end of evaluation period, N
denotes how many times the robot touches the target (the robot is automatically beamed
to another starting position whenever it touches the target), and k is a constant coefficient
equal to 2

l
.

Mechanical strategy is a common problem in evaluation of individuals; that is, the al-
gorithm finds solutions which are good at a particular configuration but are not robust
enough when the configuration deviates. To avoid this problem and achieve more robust
and generalized solutions, one has to evaluate each individual a couple of times with dif-
ferent configurations and use the average fitness values instead of just a single value. In a
robot-ball scenario, a set of initial configurations, say ξ, is needed:

ξ = {X,Xb, V, Vb} , b ∈ [1...B], (7.2)

where X and V are initial position and velocity vectors of the robot respectively, Xb and
Vb are position and velocity vectors of the b-th ball, and B is the total number of balls in
the environment. Therefore, ξ determines a snapshot of the arena including positions and
velocities of the balls and robot. Define C as a two dimensional matrix of snapshots:

C =

ξ1,1 ξ1,2 · · · ξ1,m

ξ2,1 ξ2,2 · · · ξ2,m
...

... · · · ...
ξn,1 ξn,2 · · · ξn,m

 . (7.3)

25

Chapter 7. Results and discussion

Each row of C has m different ξ-s which will be used for calculating one sub-fitness (fi). The
evaluator executes a sequence of tasks to calculate the fitness (Algorithm 4). By definition,

Algorithm 4 Pseudocode for the evaluation procedure in robot-ball scenario

for all i ∈ [1 · · ·n] do
reset the robot simulator
for all j ∈ [1 · · ·m] do

set initial condition ξi,j
reset internal state of the robot
start simulator
if robot reached the target then

pause simulator
fi = fi + 1

end if
if maximum simulation step is exceeded or the robot collides with an obstacle then
fi = fi + e−kd, (see description of Equation 7.1)
break (and go to the next i)

end if
end for

end for
return the fitness F = 1

n

∑n
i=1 fi, (see Equation 7.4)

the fitness F assigned to an individual is the average of the sub-fitnesses (fi-s):

F =
1

n

n∑
i=1

fi. (7.4)

Parameter tuning. Each of the two algorithms should be used with its best parameter
setting regarding for the problem in order to have a fair comparison between them. Table 7.1
shows the parameter tuning result for a GA. For small size networks, larger crossover rates
perform better, and for the larger networks, smaller crossover rates, e.g. Pc = 0.1, produce
better results. The best mutation rate found for this problem was Pm = 0.05. When the
network is quite large, Pm can also be proportional to the number of connections. In this
case, Pm = 1

N2 for a fully-connected neural network with N neurons.

Parameters of PSO are also tuned and the results in Table 7.2 show that the best
parameter setting is C1 = 1

2
, C2 = 1

2
, and w decaying from 1.4 to 0.4.

Robot-ball experiment. Both algorithms with their best tuned parameters now are
used to tackle the robot-ball problem. This time each configuration has been examined 50
times to take the average. Figure 7.2 depicts schematically all the loops happening in one
run of the experiment.

26

Chapter 7. Results and discussion

#
of individuals or evaluations

#
of sim

ulation steps

of configurations

of generations
50

300

80

4

2000

of repeats to take average

Figure 7.2: A scheme for inner loops of the optimization procedure in the robot-ball sce-
nario. The given numbers denote arbitrary examples of the parameters. Assuming these
values and one decision per simulation step, the total number of decision made (invoking
the neural network) is roughly 50× 300× 80× 4× 2000 = 9.6× 109. This number is just
an estimation which might vary from the exact number for two reasons. First, the robot
might reach the target and, according to the evaluation procedure, is allowed to examine
more configurations, so the number of examined configuration might differ from 4. Second,
the robot might collide before simulation step 2000, and in this case the number of passed
simulation steps is less than 2000.

Table 7.1: GA parameter tuning for robot-ball problem (over 10 runs). Pc: crossover rate,
Pm: mutation rate, and N : number of neurons

N = 2 N = 9 N = 15 N = 30
Pc = 0.7 Pm = 0.01 4.11 6.06 4.87 3.48
Pc = 0.5 Pm = 0.05 4.79 5.58 6.11 3.60
Pc = 0.5 Pm = 0.10 4.29 6.10 5.63 3.43
Pc = 0.1 Pm = 0.20 4.03 6.30 6.16 3.50
Pc = 0.1 Pm = 0.05 4.01 6.48 6.42 4.69
Pc = 0.1 Pm = 1

N2 4.30 5.66 5.31 4.38

27

Chapter 7. Results and discussion

Table 7.2: PSO parameter tuning for robot-ball problem (over 10 runs).

C1 C2 w = 0.0 w = 0.4 w = 0.9 w decays [1.4 0.4]

0.5
0.5 4.73 5.14 4.20 5.58
1.5 4.29 4.20 4.64 4.98
2.0 4.07 3.84 5.01 5.04

1.5
0.5 4.51 4.82 4.00 5.42
1.5 4.07 4.26 3.65 4.44
2.0 4.57 4.18 3.68 5.20

2.0
0.5 3.70 4.68 4.20 4.96
1.5 4.30 4.09 4.77 5.15
2.0 4.20 4.45 4.35 5.15

The results (Figure 7.3) demonstrate that PSO has better performance for small-size
networks (in this experiment where the number of connections is less than 100) compared
to the GA. For medium-sized networks, which have between 100 and 500 connections, the
fitness function for the GA grows rapidly, but the best fitness for PSO can catch up in
long run. For large scale networks, neither of these two algorithms exhibit a phenomenal
advantage to the other. The larger a network is, the larger the problem space becomes, so
restricting the number of learning epochs to a low number (relative to the difficulty of the
problem) prevents algorithms from finding a good solution.

7.2 Discussion and suggestions

Multiple evaluations. Evaluation of the behavior of a robot in an environment is a
challenging task. A robot can simply learn to carry out a task for a particular initial
condition but may fail if the initial condition deviates slightly. This special case solution,
known as mechanical strategy, can be avoided by multiple evaluations in which a different
configuration is considered for each run. The number of different configurations depends
on the problem. While choosing a small number does not avoid the problem, using a large
number makes the process very slow. Experience shows that using four to six different
configurations is enough for the problem of evolving an autonomous robot in a dynamic
environment.

Multiple runs. Adaptation is a stochastic process. The path that an algorithm takes
to improve performance can be very different, depending on the initial conditions and
other variables of the training process. There are many points in the fitness landscape that
trap the algorithm. In order to compare two stochastic algorithms, it is important to have
multiple runs, and use the average of many runs to have a more reliable comparison.

28

Chapter 7. Results and discussion

Table 7.3: Parameters of GA, PSO, and ANN used for robot-ball problem

general parameters
population size 20
generations 300

GA
selection roulette wheel
mutation rate {0.05, 0.10, 0.05, 0.05, 0.05}
crossover rate {0.50, 0.20, 0.10, 0.10, 0.10}
elitism 2

PSO
C1 0.5
C2 0.5
w decay from 1.4 to 0.4

ANN
of input nodes 2
of hidden neurons {2, 5, 10, 20, 30}
of output neurons 2
τ range [0.01, 1.0]
c range [0.1, 10.0]
weight range [−0.6, 0.6]
activation function tanh(cx)

Evaluation period length. In the evaluation of a robot in a field, one important issue
is the evaluation time, which is the length of time that the robot is allowed to act in the
field. There are different ways to assign this time interval such as a fixed time interval, or an
incremental interval starting from a small initial value. The latter option has some benefits.
For the initial population, which might have many time-consuming, useless individuals, a
short evaluation time avoids wasting time, and hence speeds up the algorithm. On the other
hand, starting from a short evaluation time has its own drawback, which is observed for
some fitness functions in this project. The problem is that the best individuals in this case
would be the ones who act best in the short term, and they do not necessarily completely
accomplish the task during extended evaluation time. The reason is that the potentially
good individuals might not have the chance to achieve a significantly higher fitness in short
time. The fitness function for the robot-ball problem is an example of this type of fitness
function. Depending on the task, one needs to specify an initial value for the evaluation
period length intuitively, and increase it during evolution.

29

Chapter 7. Results and discussion

30201052

Number of hidden neurons

0

1

2

3

4

5

6

7

b
e
s
t

fi
tn

e
s
s

GA

PSO

8

Figure 7.3: Comparison of the best fitnesses for a GA and PSO applied on the robot-ball
problem for small, medium, and large networks. PSO shows better performance for small
networks compared to the GAs. For medium sized networks, the fitness function for the
GA grows rapidly, but the best fitness for PSO can reach the same level in long run. For
large scale networks, neither of these two algorithms exhibit a phenomenal advantage to
the other.

100 200 300
0

2

4

2 neurons

100 200 300
0

2

4

5 neurons

100 200 300
0

2

4

10 neurons

100 200 300
0

2

4

20 neurons

100 200 300
0

2

4

30 neurons

evaluation

fit
ne

ss

GA

PSO

Figure 7.4: Comparison of the best fitnesses during evolution of the GA and PSO applied
to the robot-ball problem for small, medium, and large networks.

30

Chapter 8

Conclusions and future work

The goal of this project was to compare genetic algorithms and particle swarm optimization
while they are used to optimize connection weights of neural networks for a simulated
autonomous robot. A simulator of a wheeled robot has been developed in this thesis. The
brain of the robot is a recurrent neural network, and the aim of the robot is to learn how to
accomplish a complex task in a dynamic environment. Connection weights of the network
are optimized by both algorithms. Both the GA and PSO are capable of optimizing the
neurocontroller. For smaller networks PSO produces better result than the GA, while the
GA is better at optimizing larger networks.

8.1 Future work

The human brain can be seen as a modular neural network. The principle of modular
design might result in a better network, especially when the network is used by a robot
to accomplish a composite task. Although many genotype encoding schemas for neural
networks have been introduced by researchers, small number of them support modularity,
and even those methods are not efficient solutions for encoding large-scale modular net-
works. Developing a genotype encoding scheme that supports modularity for large neural
networks could be an interesting idea to follow.

It is known that some control problems that can not be solved by an evolving network of
conventional sigmoid neurons can be solved by using a spiking neuron model, or sometimes
the spiking model can provide less complex solutions. One idea is to include various neuron
models during evolution of the network.

31

Appendix A

The robot simulator

A.1 Modeling an infrared proximity sensor

The basic idea of infrared proximity sensors is to emit infrared light and receive the reflected
light from obstacles. If an object exists in the intersection area of view of the emitter and
the detector, reflected radiation from the object will be sensed by the detector. Therefore,
the object is detected. In simulated IR sensors, a number of rays can be considered for
the emitter (see Figure A.1-a), and if one or more of the rays intersect the object, the
value of the sensor reading is simply the average of ray readings. The simulated IR sensor
for this simulator has an identical emitter and detector which are installed at the same
position and same direction. So, view areas of both the emitter and detector are completely
overlapped, and this means the detector receives the reflected radiation if and only if a
ray from the emitter intersects an object. Reading the value of each ray depends on its
relative angle κ and the distance di between absolute position of the corresponding sensor
and the closest intersecting point of the ray with any obstacle in front of it. In case there
is no object inside the effective range of the sensor, the value of di will be considered too
large, and this particular ray reads zero. The reading value (r) of such a sensor equals the
average reading of its rays (ri-s).

ri = cos(κ)

(
c1
d2

i

+ c2

)
, (A.1)

where c1 and c2 are constants equal to 0.03 and 0.1 respectively.

r =

∑n
i=1 ri

n
. (A.2)

A.2 Modeling a DC motor

A DC motor is an electro mechanical device that works by converting electric power into
mechanical work. Table A.1 enumerates constant parameters of a DC motor and their
default values in the Jarsim simulator.

32

Chapter A. The robot simulator

obstacle

di rays

direction

not

detected

detected

emitter

detector

(b)(a)

Figure A.1: infrared proximity sensor. The original technique for building an infrared prox-
imity sensor using two identical LEDs (one IR emitter and one detector)(a), a simulated
version of an infrared proximity sensor with four rays (b).

Table A.1: Constants of a DC motor

Variable Name Default value (in Jarsim)
kt Torque constant 0.0333
ke Back EMF constant 0.0333
ra Armature resistance 0.62
fc Coulomb friction 0.008
fv Viscous friction 0.02
T Maximum torque 1.0
V Maximum voltage 12
gr Gear ratio 2.0
ge Gear efficiency 1.0

With these constants values, the torque (τ) of the motor for a given signal (s ∈
[−1 · · · 1]) can be calculated as follows:

ωs = grωa,

τ =
kt

ra

(sV − keωs) , (A.3)

where ωa and ωs are the angular velocity of the axis and the shaft respectively.

Applying friction. The coulombic and viscous friction should be subtracted from τ
depending on the values of ωs and τ itself (Table A.2).

Applying gear effects. τ is multiplied by the gear ratio and the gear efficiency, and
finally minimum and maximum limitations of the torque are applied:

τ = min [max (τ ge gr,−T) ,T] . (A.4)

33

Chapter A. The robot simulator

Table A.2: Computing friction. ε = 10−6.

if |ωs| > ε τ = τ−sign(ωa)fc − ωsfv

if |ωs| ≤ ε & |τ | ≥ fc τ = τ−sign(ωa)fc

if |ωs| ≤ ε & |τ | < fc τ = 0

A.3 Software architecture of Jarsim

For software to be flexible, extendable, and maintainable, advanced software design issues
need to be considered. Jarsim is designed using object oriented methodology and utilizing
architectural design patterns. Figure A.2 depicts a high level class diagram of the simulator.
The main class of the application is called Jarsim, which is a container for all simulation
objects. There are two types of objects in general, mobile objects and stationary objects.
The robot is inherited from the mobile object and is composed of three classes: Brain,
Sensor, and Motor. Three kinds of sensors are implemented: infrared proximity sensor,
odometer, and compass (only IRSensor is used for the experiments in this project).

Jarsim has been written in Java and is easy to use with a quite simple API. Initially,
the user creates an object of the class Robot and an arbitrary number of objects from
classes Sensor and Motor, then adds these sensors and motors to the robot in proper
positions. Finally, the user adds the robot to an instance of Jarsim. By varying the number
of sensors and motors and their parameters and relative positions to the robot, one can
construct different types of robots. This can be done also by the program itself at run-time;
hence, it makes Jarsim a suitable platform for evolving both body and brain of the robot
simultaneously.

The Brain class is designed to be abstract, so the user is able to implement his own
version of the brain, which could be a neural-network-based brain (Figure A.3), a decision-
tree-based brain, or any other kind of decision making process.

Robot

IRSensor

Sensor

CompassDC Motor

Motor **

*

Brain

Odometer

Stationary Object

*

Jarsim

Line

Box

Circle

Figure A.2: high-level class diagram of Jarsim.

34

Chapter A. The robot simulator

RNNBrain Neural Network

RecurrentNNFeedForwardNN

Neuron

2

*

1

Brain

Connection*

Figure A.3: a number of classes that make up the neural-based brain. The class Brain is
an abstract class which here is realized by the class RNNBrain. RNNBrain aggregates a
neural network, which could be a feedforward or recurrent neural network. One can also
implement any other model of behavior (e.g. decision tree, state machine, etc.) by creating
a subclass of Brain.

The two main implementation parts of the optimization process, algorithm and eval-
uator, are shown in Figure A.4. The classes PopulationBasedAlgorithm and Evaluator
provide abstraction layers for the two parts. The class PopulationBasedAlgorithm can be
PSO, GA, or potentially any other population-based algorithm. The Evaluator can be any
optimization problem ranging from the XOR-problem to complicated robot control prob-
lems. Both PSO and GA are designed to be general, and one needs to implement them for
his or her own problem by introducing the structure of particles/genome. The class GA
collaborates with class GeneManipulator in order to manipulate the population of individ-
uals. Having this level of abstraction provides enough flexibility for choosing any arbitrary
pair of algorithm-evaluator (or algorithm-problem) to investigate.

Evaluator

RobotEvaluatorXOREvaluator

PopulationBasedAlgorithm
1

GAPSO

NNPSO GeneManipulator

1

RNNBrain

Simulator

Robot

RNN

*

*

Figure A.4: Algorithm-evaluator class diagram (see the text for the description).

35

Bibliography

[1] P. J. Angeline, G. M. Saunders, and J. B. Pollack, An evolutionary algorithm that
constructs recurrent neural networks,Neural Networks, IEEE, vol. 5, no. 1, pp. 54-65,
1994

[2] P. J. Angeline, Evolutionary optimization versus particle swarm optimization: Philos-
ophy and performance differences, pp. 601-610, 1998

[3] J. Baxter, The evolution of learning algorithms for artificial neural networks, in
Complex Systems, Amsterdam, The Netherlands: IOS, 1992.

[4] M. F. Bear, B. Connors, and M. Paradiso,Neuroscience: Exploring the Brain (Neuro-
science).Lippincott Williams & Wilkins, February 2006.

[5] G. A. Bekey, Autonomous Robots : From Biological Inspiration to Implementation
and Control,The MIT Press, 2005.

[6] Y. Bengio and S. Bengio, em Learning a synaptic learning rule, Dep. Informatique et
de Recherche Operationelle, Univ. Montreal, Canada, Tech. Rep. 751, 1990.

[7] S. Bengio, Y. Bengio, J. Cloutier, and J. Gecsei, em On the optimization of a synap-
tic learning rule, in Preprints Conf. Optimality in Artificial and Biological Neural
Networks, Univ. of Texas, Dallas, 1992.

[8] F. van den Bergh and A. Engelbrecht, Cooperative learning in neural networks using
particle swarm optimizers,South African Computer Journal, 2000, pp. 84-90

[9] E. J. W. Boers and H. Kuiper, Biological metaphors and the design of artificial neural
networks, Master’s thesis, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands, 1992.

[10] D. J. Chalmers, em The evolution of learning: An experiment in genetic connectionism,
in Proc. Connectionist Models Summer School, San Mateo, CA: Morgan Kaufmann,
1990.

[11] N. Chomsky, Rules and Representations, Columbia University Press, New York, 1980.

[12] D. Cliff, I. Harvey, and P. Husbands, Incremental evolution of neural network archi-
tectures for adaptive behavior,School of Cognitive and Computing Sciences, University
of Sussex, Brighton, UK, Tech. Rep. CSRP256, 1992.

36

BIBLIOGRAPHY

[13] A. Conradie, R. Miikkulainen, and C. Aldrich, Adaptive control utilising neural swarm-
ing, in Proceedings of GECCO 2002, pp. 60-67.

[14] I. Davis, A modular neural network approach to autonomous navigation, Ph.D. dis-
sertation, Robotics Institute, Carnegie Mellon University, Pittsburgh, 1996.

[15] D. C. Dennett, Darwin’s Dangerous Idea: Evolution and the Meanings of Life, Simon
& Schuster, June 1996

[16] F. A. Dill and B. C. Deer, An exploration of genetic algorithms for the selection
of connection weights in dynamical neural networks, in Proc. IEEE 1991 National
Aerospace and Electronics Conf. NAECON, vol. 3 1991.

[17] D. Filliat, J. Kodjabachian, and J. Meyer, Incremental evolution of neural controllers
for navigation in a 6-legged robot, Connection Science, pp. 223-240, 1999.

[18] D. Floreano and F. Mondada, Automatic creation of an autonomous agent: Genetic
evolution of a neural-network driven robot, in Proceedings of the Conference on Sim-
ulation of Adaptive Behavior, 1994.

[19] D. Floreano and F. Mondada, Evolutionary neurocontrollers for autonomous mobile
robots,Neural Networks, vol. 11, no. 7-8, pp. 1461-1478, October 1998.

[20] D. Floreano, P. Dürr, and C. Mattiussi, Neuroevolution: from architectures to learning,
Evolutionary Intelligence, vol. 1, pp. 47-62, January 2008.

[21] J. Fodor, The modularity of mind, The MIT Press, Cambridge, MA, 1983.

[22] D. B. Fogel, Evolutionary Computation: The Fossil Record, Wiley-IEEE Press, 1998.

[23] F. Gomez and R. Mikkulainen, Incremental evolution of complex general behavior,
vol. 5, no. AI96-248. Cambridge, MA, USA: MIT Press, January, 1997, pp. 317-342.

[24] F. Gruau, Automatic definition of modular neural networks, Adaptive Behaviour, vol.
3, no. 2, pp. 151-183, 1995

[25] F. Gruau, D. Whitley, and L. Pyeatt, A comparison between cellular encoding and
direct encoding for genetic neural networks, in Genetic Programming 1996, MIT Press,
1996, pp. 81-89.

[26] V. G. Gudise and G. K. Venayagamoorthy, Comparison of particle swarm opti-
mization and backpropagation as training algorithms for neural networks, in Swarm
Intelligence Symposium, Proceedings of the 2003 IEEE, 2003, pp. 110-117.

[27] G. E. Hinton, How neural networks learn from experience, Scientific American, vol.
267, no. 3, pp. 144-151, 1992.

37

BIBLIOGRAPHY

[28] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Anal-
ysis with Applications to Biology, Control, and Artificial Intelligence, University of
Michigan Press, 1975

[29] A. Homaifar and S. Guan, Training weights of neural networks by genetic algorithms
and messy genetic algorithms, in Proc. 2nd IASTED Int. Symp. Expert Systems and
Neural Networks, M. H. Hamza, Ed. Anaheim, CA: Acta, 1990.

[30] P. Husbands, I. Harvey, D. Cliff, and G. Miller, The use of genetic algorithms for
the development of sensorimotor control systems, in From Perception to Action Con-
ference, 1994, pp. 110-121.

[31] P. Husbands, I. Harvey, and D. Cliff, Circle in the round: State space attractors for
evolved sighted robots, Robotics and Autonomous Systems, vol. 15, pp. 83-106, 1995.

[32] M. Islam, S. Terao, and K. Murase, Incremental evolution of autonomous robots for a
complex task, in Evolvable Systems: From Biology to Hardware, ser. LNCS, Springer,
pp. 182-191, 2001

[33] J. Kennedy and R. Eberhart, Particle swarm optimization,vol. 4, 1995, pp. 1942-1948

[34] R. C. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, (The Morgan Kaufmann
Series in Artificial Intelligence). Morgan Kaufmann, 2001.

[35] H. Kitano, Designing neural networks using genetic algorithms with graph generation
system,Complex Systems Journal, vol. 4, pp. 461-476, 1990.

[36] B. Liu, L. Wang, Y. Jin, and D. Huang, Designing neural networks using pso-based
memetic algorithm, 2007, pp. 219-224.

[37] T. B. Ludermir and M. Carvalho, Particle swarm optimization of neural network
architectures and weights, Hybrid Intelligent Systems, HIS 2007, pp. 336-339

[38] J.-A. Meyer, P. Husbands, and I. Harvey, Evolutionary robotics: A survey of appli-
cations and problems, ser. Lecture Notes in Computer Science. Springer, pp. 1-21,
1998

[39] R. Mendes, P. Cortez, M. Rocha, and J. Neves,Particle swarms for feedforward neural
network training, in Neural Networks, IJCNN ’02., pp. 1895-1899, 2002

[40] M. Mandischer, Representation and evolution of neural networks, in Artificial Neural
Nets and Genetic Algorithms, Wien and New York, Springer, 1993.

[41] F. Mondada, E. Franzi, P. Ienne, T. Yoshikawa, and F. Miyazaki,Mobile Robot Minia-
turization: A Tool for Investigation in Control Algorithms, Lecture Notes in Control
and Information Sciences, pp. 501-13. Springer, London, 1994.

38

BIBLIOGRAPHY

[42] D. Montana and L. Davis, Training feedforward neural networks using genetic algo-
rithms, in Proc. 11th Int. Joint Conf. Artificial Intelligence. San Mateo, CA: Morgan
Kaufmann, 1989.

[43] D. E. Moriarty and R. Miikkulainen,Efficient reinforcement learning through symbiotic
evolution, Austin, TX, USA, Tech. Rep. AI94-224, 1994.

[44] U. Natarajan, V. Periasamy, and R. Saravanan, Application of particle swarm opti-
misation in artificial neural network for the prediction of tool life, The International
Journal of Advanced Manufacturing Technology, vol. 31, 2007, pp. 871-876

[45] S. Nolfi and D. Parisi, Evolution of Artificial Neural Networks, M. A. Arbib (ed.),
The Handbook of Brain Theory and Neural Networks, MIT Press, 2003, pp. 418-421

[46] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines (Intelligent Robotics and Autonomous Agents).
The MIT Press, 2004.

[47] F. Pasemann, U. Steinmetz, M. Hülse, and B. Lara, Robot control and the evolution
of modular neurodynamics,Theory in Biosciences, vol. 120, 2001, pp. 311-326.

[48] D. L. Prados, New learning algorithm for training multilayered neural networks that
uses genetic-algorithm techniques, Electron. Lett., vol. 28, 1992.

[49] D.E. Rumelhart and J.L McClelland (Eds.),Parallel distributed processing,Volume 1:
Foundations. MIT Press, Cambridge, MA, 1986.

[50] J. Salerno, Using the particle swarm optimization technique to train a recurrent neural
model, Tools with Artificial Intelligence, IEEE, pp. 45-49, 1997.

[51] J. D. Schaffer, D. Whitley, and L. J. Eshelman, Combinations of genetic algorithms
and neural networks: a survey of the state of the art,COGANN-92, pp. 1-37, 1992.

[52] J. T. Schwartz, The new connectionism: developing relationships between neuroscience
and artificical intelligence, The Artificial Intelligence Debate: False Starts, Real Foun-
dations, MIT Press, pp. 123-141, 1988.

[53] R. S. Sexton, R. E. Dorsey, and J. D. Johnson, Toward global optimization of neural
networks: a comparison of the genetic algorithm and backpropagation, Decis. Support
Syst., vol. 22, no. 2, pp. 171-185, 1998.

[54] M. Srinivas and L. M. Patnaik, Learning neural network weights using genetic
algorithms-Improving performance by search-space reduction, in Proc. IEEE Int. Joint
Conf. Neural Networks, 1991.

[55] K. O. Stanley and R. Miikkulainen, Evolving neural networks through augmenting
topologies, Evol. Comput., vol. 10, no. 1063-6560, pp. 99-127, 2002.

39

BIBLIOGRAPHY

[56] X. Yao, Evolving artificial neural networks, Proceedings of the IEEE, vol. 87, no. 9,
September 1999, pp. 1423-1447

[57] J. Yu, S. Wang, and L. Xi, Evolving artificial neural networks using an improved pso
and dpso, Neurocomputing, 2008.

[58] C. Zhang, H. Shao, and Y. Li, Particle swarm optimisation for evolving artificial
neural network,Systems, Man, and Cybernetics, IEEE, vol. 4, 2000.

[59] D. Whitley, T. Starkweather, and C. Bogart, Genetic algorithms and neural networks:
Optimizing connections and connectivity, Parallel Comput., vol. 14, no. 3, 1990.

[60] Wikipedia, The world’s fastest computer, http://en.wikipedia.org/wiki/IBM Roadrunner,
accessed 14 August 2008.

40

	Introduction
	Aims

	Artificial neural networks
	Artificial neurons
	Artificial neural networks
	Feedforward and recurrent networks

	Genetic algorithms
	Initialization
	Selection
	Crossover
	Mutation

	Particle swarm optimization
	Evolution of artificial neural networks
	Evolving ANNs using PSO
	Evolutionary robotics and neuroevolution

	Implementation and experiments
	Jarsim, a robot simulator
	GA and PSO configuration
	Verification of implementations
	Experiments

	Results and discussion
	Evolving obstacle avoidance and gradient following behaviors
	Discussion and suggestions

	Conclusions and future work
	Future work

	The robot simulator
	Modeling an infrared proximity sensor
	Modeling a DC motor
	Software architecture of Jarsim

