
Essential modelling details in dynamic FE-analyses
of railway bridges

MAHIR ÜLKER-KAUSTELL

Doctoral Thesis
Stockholm, Sweden 2013



TRITA-BKN. Bulletin 120, 2013 KTH School of ABE
ISSN 1103-4270 SE-100 44 Stockholm
ISRN KTH/BKN/B–120–SE Sweden

Akademisk avhandling som med tillstånd av Kungliga Tekniska högskolan fram-
lägges till offentlig granskning för avläggande av teknologie doktorsexamen i brobyg-
gnad fredagen den 1 november 2013 klockan 13:00 i sal Kol, Kungliga Tekniska
högskolan, Brinellvägen 8, Stockholm.

©Mahir Ülker-Kaustell, September 2013

Tryck: Universitetsservice US-AB



Summary

The increased need to reduce the use of fossil fuels imposes higher demands on the
efficiency of rail transportation. Therefore, an improved knowledge regarding the
dynamic properties of railway bridges and infrastructure for railway traffic in gen-
eral is required. Typically, increased train speed, longer trains and increased axle
loads increase the dynamic response in railway bridges. Modelling details for bridge
structures such as the flexibility of the foundations, radiation damping in the subsoil
and the embankments as well as hysteretic effects in bridge bearings and the track
superstructure are typically neglected. The reason for this is that suitable models
which consider the influence of such effects in engineering calculations have not yet
been implemented in the effectual design codes. This thesis is mainly based on a case
study of a ballasted, simply supported steel-concrete composite bridge, which shows
a considerable variation in the natural frequencies and damping ratios depending on
the amplitude of vibration. Furthermore, the natural frequencies were found to in-
crease significantly during the winter. It is well known that the dynamic properties
of typical civil engineering structures are dependent on the amplitude of vibration.
However, the fact that certain railway bridges exhibit such non-linear behaviour
also for very small amplitudes of vibration has been shown only during later years.
This has been verified by means of measurements of the free vibrations after train
passages on three typical Swedish beam bridges for railway traffic. Possible sources
to this amplitude dependency have been identified primarily in the bridge bearings
and the track superstructure. Models of these structural components, based on the
so called Bouc-Wen model, have been implemented in a commercial finite element
program and was used in a preliminary study. The results indicate that roller bear-
ings and pot bearings can give rise to a non-linear mode of vibration, characterised
by two different states. At very small amplitudes of vibration (. 0.1 m/s2), no
movement over such bearings occur (state 1) since their initial resistance to motion
is not overcome. Depending on parameters such as the longitudinal stiffness of the
foundations and substructures, the beam height over the supports as well as the
bearing type, there is an amplitude of vibration at which the initial resistance to
motion is completely overcome (state 2). The bearings are then free to move, with a
resistance characterised by the kinematic friction (pot bearings) or the rolling resis-
tance (roller bearings). During the transition from state 1 to state 2, the frequency
decreases continuously towards an asymptotic value and the damping initially grows
considerably, from a value which corresponds quite well to the recommendations of
the Eurocodes and then returns to a value similar to that in state 1. The preliminary
study indicates that it is possible to design certain bridges so that this increase in
damping is optimal over the relevant range of amplitudes of vibration.
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Sammanfattning

Det ökade behovet att minska användandet av fossila bränslen ställer högre krav på
effektiviteten hos spårbunden trafik. Därför krävs en ökad kunskap om de dynamiska
egenskaperna hos järnvägsbroar och infrastruktur för järnvägstrafik i allmänhet.
Ökade tåghastigheter, längre tåg och ökade axellaster leder typiskt till en ökning av
den dynamiska responsen hos järnvägsbroar. Modelleringsdetaljer för broar som till
exempel grundläggningskonstruktioners eftergivlighet, strålningsdämpning i under-
grund och banker samt hysteretiska effekter från brolager och banöverbyggnad för-
summas regelmässigt. Detta beror av att lämpliga modeller som tar hänsyn till dy-
lika effekter i ingenjörsmässiga beräkningsmetoder ännu ej implementerats i gällande
beräkningsnormer. Denna avhandling bygger i huvudsak på en fallstudie av en fritt
upplagd, ballasterad samverkansbro som visar en betydande variation i egenfrekvens
och dämpkvot, beroende på svängningsamplitud. Vidare befanns egenfrekvenserna
öka betydligt under vintern. Att de dynamiska egenskaperna hos typiska anläg-
gningskonstruktioner är amplitudberoende har länge varit väl känt. Att vissa typer
av järnvägsbroar uppvisar ett sådant beteende även under mycket små svängnings-
amplituder har dock inte kunnat påvisas förrän under senare år. Detta har verifierats
genom mätningar av de fria svängningarna efter tågpassager på tre typiska svenska
järnvägsbroar av balktyp. Tänkbara orsaker till detta amplitudberoende har identi-
fierats i främst brolager och banöverbyggnaden. Modeller av dessa delsystem, baser-
ade på den så kallade Bouc-Wen modellen, har implementerats i ett kommersiellt
finita element program och använts i en preliminär studie. Resultatet antyder att
rullager och pottlager kan ge upphov till en olinjär svängningsmod, karaktäriserad
av två olika tillstånd. Vid mycket små svängningsamplituder (. 0.1 m/s2), förhin-
dras rörelsen över lagren (tillstånd 1) eftersom dess initiala rörelsemotstånd då ej
övervinns. Beroende på parameterar som den longitudinella styvheten hos grundläg-
gningskonstruktioner och underbyggnader, konstruktionshöjd över stöd och lagertyp
finns en svängningsamplitud vid vilken det initiala rörelsemotståndet övervinns helt
(tillstånd 2). Lagren fungerar då som rörliga lager, med ett rörelsemotstånd karak-
täriserat av kinematisk friktion (pottlager) eller rullningsmotstånd (rullager). Vid
en övergång från tillstånd 1 till tillstånd 2, avtar frekvensen kontinuerligt mot ett
asymptotiskt värde och dämpningen växer först betydande från ett värde som tycks
svara ganska väl mot de av Eurokoderna rekommenderade dämpkvoterna, för att
sedan avta och återgå mot ett värde liknande det i tillstånd 1. Den preliminära
studien antyder att man kan utforma vissa broar så att denna dämpningstillväxt
sker på ett optimalt sätt över det relevanta spannet av svängningsamplituder.
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Chapter 1

Introduction

1.1 Background

Railway bridge dynamics is a multi-disciplinary mechanical problem ranging over
structural, geotechnical and mechanical engineering. Here, the dynamic interac-
tion between a railway bridge and a passing train is our primary concern. More
specifically, the repetitive nature of the load induced by a passing train can cause
a state of train-bridge resonance. In the simplest case, only one mode of vibration
is involved in the train-bridge resonance which will occur at different critical train
speeds vcr, depending on the natural frequency f of the mode of vibration and some
characteristic length (such as the axle or bogie distance) of the train L

vcr = fL (1.1)

Several modes of vibration can also interact in resonance states. Although there can
be a significant contribution to the traffic load from the dynamic interaction between
a railway bridge and a passing train, the main issue in railway bridge dynamics is
comfort and safety against train derailment. The structural integrity of the bridge
is typically not at risk in a state of train-bridge resonance and therefore, the design
for bridge deck acceleration is treated as a serviceability limit state.

There are a number of factors which are often neglected in dynamic analyses of rail-
way bridges for high-speed traffic based on the finite element method (FEM). One
important example is the modelling of damping. Typically, viscous damping is used
to model the dissipation of energy from the structure. The damping ratios used are
based on tests on existing bridges. The damping matrix can then be constructed in
many ways. If modal analysis is used to solve the equations of motion, the modal
damping ratios can be specified directly. If instead, direct integration of the equa-
tions of motion is needed for some reason, a modal damping matrix can be formed by
means of the spectral decomposition of the undamped system, but more commonly,
Rayleigh damping is used to compute the viscous damping matrix. Rayleigh damp-
ing can be defined in at least two ways: in a global sense by using the global mass
and stiffness matrices or in a local (element) sense by assigning Rayleigh damping
coefficients corresponding to different materials/elements in the model. However,
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CHAPTER 1. INTRODUCTION

Table 1.1: The damping ratios recommended by Eurocode [11] for dynamic analysis
of railway bridges for high-speed traffic.

ξ Lower bound of critical damping [%]

Bridge type Span length L ≤ 20 m Span length L > 20 m

Steel and composite ξ = 0.5 + 0.125(20− L) ξ = 0.5

Prestressed concrete ξ = 1.0 + 0.070(20− L) ξ = 1.0

Filler beam and
reinforced concrete

ξ = 1.5 + 0.070(20− L) ξ = 1.5

not only material damping is present in a general railway bridge. Many different
sources contribute to the total damping of a given bridge. These sources include
the track superstructure, friction in bearings, friction in joints and dynamic soil-
structure interaction (SSI). Naturally, the damping capacity of a structure plays an
important role in its dynamic behaviour, especially at resonance. Therefore, from
a safety perspective, it is important that it is not overestimated, while from an
economical perspective, it is essential that it is not underestimated. The damping
ratios recommended by the Eurocode [11] for dynamic analysis of railway bridges
for high-speed traffic are given in table 1.1. Clearly, they never exceed 2.2% for the
most damped type of bridges, i.e. reinforced concrete bridges with very short spans.
These values are based on tests performed by the European Rail Research Institute
(ERRI) [5]. The extensive tests accounted for in that report were all based on free
vibrations after passing trains and a lower bound of those tests formed the basis for
the recommendations of the Eurocode. However, it has long been speculated that in
a state of resonance, the damping ratio could increase due to non-linear effects such
as those mentioned above. To the author’s knowledge, there are no reports in the
literature of measurements of the response of a railway bridge in a state of global
train-bridge resonance, so there is no scientific support for that hypothesis. Nev-
ertheless, Swedish experiences with design calculations and assessments of existing
structures based on the Eurocode recommendations, indicate that many otherwise
economical designs cannot be verified to meet the criteria for the dynamic response
given by the Eurocode. Thus, there is a great need to improve our understanding of
the dynamic properties of railway bridges, with emphasis on resonant responses.

There is a natural cause for the negligence of modelling details such as those men-
tioned above. The complexity of the calculations increases rapidly due to non-linear
effects and the frequency dependency of the impedance of the soil-structure interface.
In assessments of existing structures, the inclusion of such details can be motivated,
since measurements of the dynamic response of the structure in question can then
be obtained. However, such measurements are rather costly, and inevitably include
effects from all the mechanisms and physical phenomena which govern the response
of the structure. Therefore, an increased knowledge of those mechanisms is valuable
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1.1. BACKGROUND

both from an academic and a practical engineering perspective.

Experimental techniques for existing structures can be roughly divided in two groups;
Experimental modal analysis (EMA) and operational modal analysis (OMA). EMA
is based on known input and OMA is based on the assumption that the input can
be characterised by white or coloured noise. Generally, the structural system is as-
sumed to be time-invariant or stationary and linear, i.e. its properties do not vary
with time and is independent of the response. In applications of EMA, we need
an exciter which is powerful enough to excite large and heavy structures. This can
become highly impractical considering that we are standing in the forrest on a rainy
day with a 30 minutes long gap between each train and that the exciter weighs
several hundred kilograms. For this reason, and similar reasons in other civil engi-
neering applications, OMA has been given a considerable amount of attention, as
in this case, the background noise caused by ground induced vibrations, wind loads
and perhaps also traffic loads on the structure itself, is used as the source of exci-
tation. However, many of our railway bridges are situated far away from roads and
their natural frequencies are often much higher than the frequency content of the
wind loads. Therefore, extremely sensitive sensors are often needed to obtain robust
estimates of the modal properties from such tests. Also, it cannot be guaranteed
that all modes of vibration within a certain frequency range have been identified by
OMA. This can be guaranteed with EMA, and one can also vary the amplitude of
vibration to capture non-linear effects. Both approaches can be used to obtain esti-
mates of the mode shapes, which are highly tractable in inverse problems, or model
updating problems as they are often denoted by in the civil engineering context.

Model updating is a very attractive tool both in research applications and in dynam-
ical assessments of existing structures. Friswell and Mottershead [24] describe many
of the aspects of model updating and stress the fact that the measurements we wish
to use in our model updating algorithm will include all the significant physical phe-
nomena and mechanisms in the real structure. Consequently, in order for a model
updating algorithm to succeed in finding a realistic set of parameters which makes
the theoretical modes of vibration match the measured ones, the theoretical model
must also reflect all the significant physical phenomena and mechanisms. Thus, one
aim of this project was to learn more about the factors which are essential to the
dynamic response of a given structure. Another important aspect of model updating
of linearised structural models is that the spectral matrix of the undamped system
is not necessarily unique. This means that if only natural frequencies are used in a
model updating algorithm, one could end up with matching frequencies, but non-
matching mode shapes. Therefore, it is recommended that the objective function
which is used in the optimisation part of the model updating scheme is based on
both mode shapes and natural frequencies.

Clearly, the costs involved in EMA and OMA are quite large as they involve many
sensors, an exciter in the case of EMA and large quantities of data. In practical
applications, for dynamical assessments of bridges along an existing railway line,
such techniques could become too expensive and time consuming, especially if many
bridges need to be assessed. Instead, it would be desirable to use a simple instru-
mentation with a minimum of sensors and use passing trains as excitation. For this
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Track superstructure
Ballast

Sleeper-ballast interface

Ballast-bridge deck interface
Rail pads

Soil-structure interaction
Foundations
Abutments

Embankments

Structural properties
Bearings
Concrete

Structural joints
Steel-concrete interface

Environmental variables

Track continuity

Figure 1.1: An overview of factors which may influence the dynamic response of
railway bridges. Factors which have not been considered at all in the
thesis are grey.

reason, the research within the project was aimed towards an improved analysis of
free vibration data from train passages.

At the beginning of this research project, a list of factors and parameters which
may influence the dynamic response of railway bridges was identified. This list is
summarised in figure 1.1, excluding train-bridge interaction which is outside the
scope of the thesis.

It was decided to start looking at SSI and this was the topic of the licentiate thesis
[47] and the journal paper [39] written by the author. In a general context, SSI is
a complicated matter, even in a linearly elastic setting. This complexity lies in the
infinite extent of the surrounding soil, the non-linear constitutive relations of soil
materials, large uncertainties in the soil material properties and their spatial distri-
bution and the frequency dependency in the stiffness and damping characteristics
of the soil-structure interface. In the licentiate thesis, a portal frame bridge was
studied, and it was concluded that three-dimensional effects must be included and
that the typical geotechnical survey may not be sufficient for a correct estimation
of the dynamic stiffness functions of the soil-structure interface. Furthermore, the
interaction with the embankments needs to be further studied. Geotechnical issues
began to dominate the theoretical developments within the project and the financial
support needed to take a scientific approach to the general SSI problem in railway
bridge dynamics, were simply not available.

However, in parallel with this work, the author initiated and supervised a master
thesis [35], much inspired by the work of Rebelo et al. [42]. Rebelo et al. used
something similar to the short time Fourier transform (i.e. Fourier transforms of
windowed portions of a signal) to show that the natural frequency of certain sin-
gle span concrete bridges decreased with the amplitude of vibration. Lorieux [35]
used a similar technique and found that for our test bridge (case 1, see chapter 5),
the frequency decreased, but the damping increased substantially with increasing
amplitude of vibration. This provided some motivation to start looking at other
factors in the list shown in figure 1.1, however, the first step was to validate the
results obtained by Lorieux. This was provided in paper I by an implementation of
the continuous wavelet transform (CWT). The implications of the findings in paper
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I were discussed in paper II. Paper III provided some insights regarding the possible
sources of the non-linear behaviour reported in paper I by the implementation and
application of a model updating scheme based on Bayes theorem. Finally, paper
IV suggested the longitudinal track resistance and the pre-rolling resistance of the
roller bearings as the most likely sources of this non-linear behaviour.

1.2 Aims and scope

The aim of this research project was to use measurements and theoretical models
to improve our understanding of the modelling details which should be included in
dynamic analyses of railway bridges.

As described in section 1.1, from a bridge engineer point of view, the train-bridge
resonance is a serviceability limit state. Therefore the analysis can be based on
the linear theory of elasticity, assuming small deformations, small displacements
and that no significant effects of material non-linearities will appear in the bridge
sub- and/or superstructure. Furthermore, the frequency dependency of the linear
stiffness and damping of the foundations was neglected as motivated in the thesis.

Only free vibrations after the passage of a train were used to study the dynamic
properties of the bridges. Therefore, only the first few modes of vibration were
available and the case studies were essentially limited to the fundamental modes of
vibration of the studied bridges.

Three levels of model complexity were used:

1. Single degree of freedom models based on the generalised coordinate of the
fundamental mode of vibration.

2. Two dimensional beam models limited to the fundamental mode of vibration.

3. A three dimensional model of the case 1 bridge.

Single degree of freedom models were used mainly for development and benchmark-
ing. The two dimensional models were used to study the non-linear mechanisms
in simulations of free vibrations. The three dimensional model was based on lin-
ear theories and used in a sensitivity analysis with the purpose of determining the
most relevant parameters and mechanisms and to study the seasonal effects on the
stiffness of the case 1 bridge.

The Swedish climate is cold and therefore, the dynamic properties of railway bridges
can vary significantly over the seasons. This is shown in paper III, but the theoretical
analysis performed within the project (paper IV) was limited to the warm season.
This choice was made because

1. The variability in the dynamic properties of the case 1 bridge was found to
be much higher during the cold season than during the warm season. This
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variation appears to be related to the formation of ice within the ballast, but
this has not been confirmed.

2. The dynamic properties of the case 1 bridge appears to be more conservative
during the warm season.

1.3 Outline of the thesis

Chapter 2 gives a more detailed background to the Bouc-Wen model which was
used to model various hysteretic effects in paper IV. In chapter 3, more general
motivation for the assumptions made in paper IV is presented in relation to the
studied modelling details. The analysis of non-stationary signals formed a basis for
the presented research and also played a central role in the analysis of the theo-
retical models. Therefore, chapter 4 explains the basic features of such signals and
the methods used to estimate the dynamic properties of the non-linear modes of
vibration. These three chapters form the theoretical background to the performed
research.

In chapter 5, three case studies are presented. Most of the results from case 1 have
been presented in papers I–IV, but two more bridges have been used in preliminary
case studies to illustrate the influence of the modelling details studied on the case 1
bridge in a more general sense. Finally, chapter 6 is devoted to a general discussion
of the results, a summary of the main conclusions and suggestions for future research
within this field.

1.4 Scientific contribution

This research project has contributed scientifically by verifying that the dynamic
properties of certain bridges are dependent on the amplitude of vibration. The most
likely sources of these non-linear effects were found in the movable bearings and the
longitudinal track resistance. It was shown that, during the warm season of the
year, the bearings constitute the main source of the amplitude dependency and that
the track superstructure has a considerable, though much smaller effect.

The results of the research within this project have led to the formulation of a
hypothesis which can be stated in the following way: ”The non-linear mechanisms
of movable bearings give rise to an amplitude dependent mode of vibration which
varies between two states wherein (1) all movable bearings are fixed and (2) all
movable bearings are free to move. The natural frequency of the mode decreases
monotonically and the modal damping ratio is a uni-modal function of the amplitude
of vibration during the transition from state 1 to state 2 ”.

Preliminary case studies performed within the project indicate that it is possible to
design railway bridges so that the damping caused by movable bearings is optimised.
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It was shown that the total structural damping can be separated into at least four
different sources (material damping, radiation damping, and friction-like damping
in bearings and the longitudinal track resistance).
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Chapter 2

Hysteretic macro elements

The term ”hysteresis” often appears when reading about damping in various con-
texts. Some authors, especially within the geotechnical community, use the term
”hysteretic damping” for the type of frequency independent damping obtained by
using the complex modulus

E∗ = (1 + iη)E (2.1)

where E is the modulus of elasticity, η = 2ξ is the loss factor and i is the imaginary
unit. Clearly, this form of damping only makes sense for linear systems in the fre-
quency domain and a transformation of such solutions to the time domain gives rise
to non-causal response [37]. In the commercial finite element package ABAQUS1,
this damping model is referred to as ”structural damping”, which is a more appro-
priate term. The term hysteresis originates from the ancient Greek and according
to Visintin [49], it means ”to lag behind”. In the theory of plasticity, the term is of-
ten used with the meaning that a stress-strain or force-displacement relation follows
different paths upon loading and unloading. In this sense, all the damping models
used in structural dynamics are hysteretic and this is how this term will be used
within this thesis. Furthermore, a distinction is made between rate-independent and
rate-dependent hysteresis. The Kelvin-Voigt model (i.e. an elastic spring and a vis-
cous damper in parallel) is a typical example of a rate-dependent hysteretic system
while friction and plastic mechanisms are examples of rate-independent hysteretic
systems.

The concept of macro elements is highly useful in many applications. In some cases,
complicated three dimensional mechanical systems can be reduced to spring elements
with three translational degrees of freedom and three rotational degrees of freedom.
A simple example of such an element is the dynamic stiffness function of foundations
used extensively in applications of SSI. This macro element consists of springs and
dashpots which may be coupled and are functions of frequency. This very simple,
linearly elastic model can be extended to consider non-linear material behaviour
and contact mechanics. Such developments have been conducted by many authors,
see paper IV and the references therein. In the present context, two new fields of
application of macro elements have been introduced: longitudinal track resistance

1http://www.3ds.com/products-services/simulia/portfolio/abaqus/latest-release/
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and bearing mechanisms.

The main draw-back of condensing mechanisms and substructures into macro ele-
ments is that a lumping of parameters is inevitable when both geometrical detail and
constitutive relations are merged into force-displacement relations. If a theoretical
model cannot be easily constructed in order to validate the macro element, one has
to use measurements to calibrate the macro element model parameters. Mechanical
systems such as bridge bearings can be studied in laboratory conditions but this is
not the case with foundations and abutments. Since their properties are so highly
dependent on the in-situ conditions, full scale tests seem to be the most promising
approach. However, if one would measure the dynamic stiffness functions during
the construction of a bridge, one would have to compensate for the weight of the
sub- and superstructure and the initial settlement of the surrounding soil. After
the construction of the substructure, it is much more difficult to excite the founda-
tion plate. Also, after the construction of the superstructure, the dynamic stiffness
function is no longer that of the foundation alone.

2.1 The Bouc-Wen model

In this section, the Bouc-Wen model (BW-model) will be defined and its model
parameters studied. In order to do so, some basic notions regarding hysteresis in
mechanical systems will be discussed. As mentioned in the introduction to this
chapter, there is a distinction between hysteresis and rate-independent hysteresis.
The following discussion will focus on rate-independent hysteresis, as modelled by
the Bouc-Wen model, see figure 2.1. Linear rate-dependent mechanisms can be
included in a straightforward manner, simply by adding a viscous dashpot in the
parallel system shown in figure 2.1.

In 1971, Bouc published the paper [9] which is often cited as the origin of this type
of models. However, in the same year, Valanis published a paper [48] in which he
defined a theory of plasticity which has become known as the endochronic theory
of plasticity. The title of Valanis 1971 paper, ”A theory of viscoplasticity without
a yield surface”, speaks for itself and the general framework of plasticity derived
by Valanis has, in the authors opinion, not been given the attention it deserves.
Actually, Valanis was able to derive several of the classical plasticity models from his
framework. The main idea in Valanis work is that the path dependence of the plastic
deformations can be controlled by introducing an ”intrinsic” time scale, which only
depends on the history of deformation. The term appears to have been used because
this intrinsic time and the physical, ”wall-clock” time share the property that they are
both monotonically increasing. Much later, in 2004, Erlicher and Point [21] proved
the thermodynamic admissibility of the BW-model and used the concept of intrinsic
time in the same way as Valanis did for his continuum models. The BW-models
are therefore sometimes referred to as endochronic models or univariate endochronic
models. However, the BW-model has also been generalised to constitutive models
in a continuum setting. The classical BW-model has a few flaws, which have been
shortly described in paper IV, with reference to the work of Charalampakis and
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F

uD

Fp

k0

kp = ak0

F, u

kp = ak0a,D, n, β, γ

Figure 2.1: The classical Bouc-Wen model.

Koumouosis [15], who used their solution [14] of the differential equation governing
the BW-model to remedy these flaws. However, for reasons described in paper IV,
this flaws do not influence the type of response studied here. Nevertheless, among
the sources studied by the author, Charalampakis and Koumousis [14] provided the
most comprehensible description of the BW-model.

The restoring force in the classical univariate Bouc-Wen model is given by

F (t) = ak0u+ (1− a)k0Dz (2.2)

where u is the displacement, a is the ratio of the plastic (kp) and initial stiffness,
k0 is the initial stiffness, D is the plastic deformation limit and z is an internal
variable, responsible for the hysteretic behaviour of the model. The internal variable
is governed by an ordinary differential equation, the form of which can be derived
by means of the endochronic theory of plasticity as will be briefly described.

The classical, univariate Bouc-Wen model describes the hysteretic behaviour by
means of an internal variable z, governed by the non-linear ODE

ż =
u̇

D
[1− (β + sgn(u̇z)γ)|z|n] (2.3)

where β,γ and n are model parameters. The sign function sgn(x) is defined as

sgn(x) =





−1, x < 0

0, x = 0

1, x > 0

(2.4)

β and γ govern the shape of the hysteresis loops, see figure 2 in paper IV. n governs
the length of the transition from the elastic to the plastic part of the backbone
curve. When n → ∞, the BW-model tends towards an ideal elasto-plastic model.
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Figure 2.2: The maximum stored elastic energy Ee and the hysteretic energy Eh (the
shaded area), given by the area of the hysteresis loop.

However, the typical issues with non-smooth functions in numerical methods occur
when n & 20 and convergence problems arise.

The book by Ikhouane and Rodellar [30] describes a thorough analysis of many
of the mathematical properties of the Bouc-Wen model. However, in the present
context, we are much interested in the variation of the damping of a given hysteretic
system of the classical Bouc-Wen type. Charalampakis and Koumousis [14] derived
analytical solutions, though expressed in terms of special functions which have to
be evaluated numerically, for some particular parameter combinations, and outlined
a numerical procedure for arbitrary combinations, in the governing equations (2.2)
and (2.3).

The variation of the damping ratio with respect the parameter a is of particular
interest. The damping ratio for a hysteretic system in a steady state can be defined
in terms of the hysteretic energy, which is given by the line integral around the
hysteresis loop

Eh =

∮
Fdu (2.5)

and the maximum elastic energy stored during the loop

Ee =
Fmum

2
(2.6)

These notions are illustrated in figure 2.2. Then, the damping ratio is given by (see
for example [32])

ξ =
Eh

4πEe

(2.7)

As shown in figure 2.3, the ratio between the hysteretic and elastic energies is much
affected by the value of a. One can immediately identify two categories of hysteretic
systems; for small values of a the damping is dominated by the hysteretic energy
and for values of a tending towards one, the damping is increasingly being domi-
nated by the elastic energy. In the proceeding analysis, the hysteretic subsystems,
i.e. foundations, bearings and longitudinal track resistance, all fall within the first
category, whilst the structural modes of vibration are of the second category. For
the track superstructure and the foundations, the plastic stiffness corresponds to
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a = 0.001 a = 0.01 a = 0.1 a = 0.5

Figure 2.3: The influence of the parameter a on the relation between the hysteretic
energy Eh and the maximum elastic energy Eel of a load cycle.

failure and for the bearings it is presumably zero in reality, corresponding to sliding
or rolling where the resistance is constant. Due to their very low plastic stiffness,
they represent unstable mechanisms when the load exceeds a certain value.

In a structural system such as a bridge, global structural stability relies on structural
elements which constrain the rigid body modes of the structure, i.e. fixed bearings
at certain locations. Thus, in the serviceability limit state, we expect a stable
global structural behaviour with modes of vibration varying between two states,
qualitatively defined by

1. All movable bearings fixed.

2. All movable bearings free.

Naturally, other mechanisms such as the track superstructure may influence the
quantitative behaviour, but they cannot violate the demands imposed by the global
stability of the structure. Figure 2.4 shows the damping ratios corresponding to the
different BW-models shown in figure 2.3, as functions of the amplitude of vibration.
These results were computed using the single degree of freedom model described in
section 2.2. However, a displacement controlled analysis was used instead of the force
controlled analysis described there. It is clear that for sufficiently small values of
a, the damping ratio can increase indefinitely with the amplitude of vibration. One
can also see that there exists a limit value of a at which the qualitative behaviour
changes so that the damping ratio increases, but asymptotically, towards a bounded
value. A further increase in a leads to a behaviour where the damping first increases
and then decreases, asymptotically, forming a damping "bump".

2.2 Simple BW-models in Matlab

In order to better understand the BW-model, single and two degree of freedom
(DOF) systems were studied in Matlab. There, a fourth-order Runge-Kutta scheme
was used to solve the equations of motion, although a 2D FEM implementation was
also developed. However, the computational efficiency of the FEM implementation
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Figure 2.4: The influence of the parameter a on the hysteretic damping.

in Matlab was not much greater than the implementation in ABAQUS (see section
2.3) and it will therefore not be further described here.

The single degree of freedom system is based on the equation of motion

mẍ(t) + cẋ(t) + ak0x(t) + (1− a)Dk0z(t) = f(t) (2.8)

where z is governed by the non-linear ODE given by equation (2.3). These equations
define a state-space system with three degrees of freedom

w = (x, ẋ, z)T (2.9)

and we then wish to solve the equation

ẇ = f −Bw − g(w) (2.10)

where
f = (0, f(t)/m, 0)T (2.11)

B =




0 −1 0

ak0/m c/m (1− a)Dk0/m

0 0 0


 (2.12)

and g(w) is a vector holding the non-linear function from equation (2.3)

g(w) =

(
0, 0,

u̇

D
[1− (β + sgn(u̇z)γ)|z|n]

)T

(2.13)
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Superstructure

Foundation

Figure 2.5: The 2-DOF model used to study the influence of non-linear SSI and as
a benchmark for the ABAQUS BW-element.

This solution procedure typically gave stable solutions with time steps ∆t < 10−4.
This is satisfactory for very small systems of equations, but can be prohibitive in
general FE-models.

The 2-DOF BW-model is simply an extension of the 1-DOF model, where the first
DOF has a BW-element in parallel with a viscous dashpot and the second DOF is
linearly elastic (see figure 2.5). This type of models extend the model used in paper
II by separating the motion of the foundations and the generalised coordinate of
the first vertical bending mode of the bridge. This feature was used to study the
influence of the soil material non-linearity on the response of this mode and as a
benchmark for the ABAQUS BW-element (see section 2.3).

2.3 A BW-element in ABAQUS

ABAQUS [19] is a general commercial FE-code which is widely used in many fields
of engineering. ABAQUS allows user-defined elements to be defined by writing a
FORTRAN subroutine which is then compiled and linked together with the FE-
modelling features defined by the standard libraries of ABAQUS. All the computa-
tional procedures available in ABAQUS, can be accounted for, i.e. static problems,
eigenvalue problems, steady-state dynamics and so on. However, the implemen-
tation used within this project is limited to transient dynamics and since we are
studying sources of damping which are quite unknown, the trapezoidal rule with-
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Figure 2.6: Displacements from the benchmark test, Matlab (black, solid lines) and
ABAQUS (grey, dashed lines).

out numerical dissipation was used to solve the equations of motion. The global
equations of motion are solved using Newton’s method and therefore, the tangent
stiffness matrix of the user element must be provided. The solution of the hysteretic
variables must also be provided and both an implicit (Newton’s method) and an
explicit Backward Euler method was tested. However, since the internal variables of
the BW-element are uncoupled, these two methods were equally efficient although
more than 10 iterations were often needed in Newton’s method.

In order to compute the tangent stiffness matrix of the BW-element, the derivative

∂ż

∂z
= − n

D
(βu̇ sgn z + γ|u̇|) |z|n−1 (2.14)

is needed. However, in the form stated above, it is not well defined if n < 1. Overflow
may occur when z → 0. In order to avoid this problem, z was restricted to |z| >
zmin = 1 · 10−14. The implementation of the BW-element was benchmarked using
the 2-DOF system described in the previous section. The model parameters used
in the benchmark test are summarised in table 2.1 and the result of the benchmark
test is shown in figure 2.6. Clearly, the two solutions are indistinguishable from each
other.

Issues with singularities arose in cases where a very small value was assigned to
the parameter a, i.e. the ratio between the plastic and initial stiffness. When
the stiffness tends towards zero, extremely small time steps were needed to obtain
converged results. This could be slightly improved by assigning a larger value to
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Figure 2.7: Some BW-model candidates for the roller bearing mechanism in the case
1 bridge. n is the model parameter described in section 2.1 (equation
(2.3))

Table 2.1: Model parameters used in the benchmark test of the ABAQUS implemen-
tation of the univariate, classical Bouc-Wen model.

k m c k0 a D n β γ

[GN/m] [kg] [kNs/m] [GN/m] [-] [m] [-] [-] [-]

x1 0.180 306000 4.1 - - - - - -
x2 - 100000 4340 6.65 0.363 0.0005 1 0.1 0.9

that parameter. However, this mainly improved the robustness of the solutions, the
time step required was still in the order of 10−5−10−4 s near the load reversal points
of the hysteresis loops. This is probably also highly influenced by the rapid variation
of the stiffness for very small relative displacements over the bearings, see figure 2.7.
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Chapter 3

Modelling details

As described in the chapter 1, several factors influence the dynamic properties of
railway bridges. Having shown that the modes of vibration of railway bridges can
indeed have a non-linear amplitude dependency, the most likely candidates were
identified and research was initiated to determine which of them are most relevant.
Prior to the writing of paper III, the list of candidates was

1. Soil-structure interaction

2. Ballast/track superstructure

assuming that the material properties of the sub- and superstructure were linear.
The work with paper III led to the conclusion that (1) the variation in the stiffness
of the ballast during the warm period of the year is essentially negligible and (2) the
bearing mechanisms are fixed for very small amplitudes of vibration. Thus, the list
above was augmented with the bearing mechanisms

1. Ballast/track superstructure

2. Soil-structure interaction

3. Bearing mechanisms

These three modelling details were assumed to be the most relevant and will be
shortly described in this chapter.

When introducing these modelling details, higher requirements are imposed on the
geometrical modelling and on the modelling of damping. In beam models, the
eccentricity between the support points, the track superstructure and the neutral
axis of the beam elements must be carefully modelled. This can be achieved by
standard techniques, using constraint equations. In a simply supported beam, this
eccentricity becomes relevant only if we restrain the horizontal movement of the
movable bearing. If the movable bearing is fully constrained, the beam is fixed at
both ends. As will be shown in section 3.4, a detailed model of a movable bearing
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has a smooth transition from being fixed at very small displacements, to be moving
at larger displacements. In ABAQUS, one can create these eccentricities by means
of constraints or by using a form of mechanism-elements, referred to as connector-
elements. Connectors can be used to define couplings between nodes with quite
complicated constitutive relations, but here they have mainly been used to define
linearised bearing mechanisms, linear SSI-elements and rigid links.

3.1 Modelling of damping

This section gives a short discussion of damping in railway bridges in general and the
approach taken to the modelling of damping in the case studies described in section
5. Material and friction damping will be discussed in this section and specific sources
of damping, other than material damping, which have been considered in the case
studies will be treated in sections 3.2–3.4.

Damping in civil engineering structures is composed of contributions from several
sources. These sources are:

1. Friction in e.g. bearings, joints, ballast, cracks in concrete.

2. Material damping, i.e. rearrangement of crystals, molecules or granules and
heat transfer in solids (thermoelastic damping).

3. Radiation damping through foundations or abutments and embankments.

In addition to these sources, interaction effects such as train-bridge interaction and
fluid-structure interaction may also dissipate energy from the vibrations of the struc-
ture. The total damping of a structure will be referred to as structural damping.
Naturally, a complete review of this topic is beyond the scope of this thesis, but a
short description of how damping from different sources have been defined in the
case studies will be given in the following.

The complexity of the theoretical modelling of structural dynamics increases quite
rapidly when one tries to separate the sources of damping, even if a linear structural
response is expected. The reason for this is that each of the above mentioned sources
of damping are areas of research of their own. Furthermore, the distinction between
material and structural damping is not entirely clear in civil engineering structures.

Material damping

It is well known that the material damping only constitutes a very small part of the
total structural damping. In general, it depends on the amplitude and frequency
of vibration. Several linear rheological models have been proposed to describe ma-
terial damping in various materials. Bert [8] provided a review of damping models
commonly used until 1973 and the very same models are still in common use today
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as reflected by the contents of handbooks such as reference [27]. In civil engineer-
ing structural dynamics, the Kelvin-Voigt model (i.e. a spring and a dashpot in
parallel) is the most commonly used linear, viscous damping model. Essentially,
this model leads to the linear viscously damped oscillator, to which solutions are
readily obtained by well-known techniques. However, most of the damping in a
railway bridge appears to have its cause in radiation damping and frictional effects,
although train-bridge interaction is also considered important. Radiation damping
is described in section 3.2 and the frictional effects considered herein are described
in sections 3.3 and 3.4.

The mechanisms which generate material damping varies considerably between dif-
ferent types of materials. In metals and other solid, crystalline materials, damping
is generated by heat transfer and plastic work. Thermoelastic damping is a con-
sequence of temperature gradients caused by material inhomogeneities and elastic
deformations [43]. These temperature gradients give rise to a heat flux which in
turn leads to dissipation of energy ultimately to the surroundings of the elastic
body. However, it is clear that some form of very small plastic-like deformations
(i.e. movements of dislocations) also occur at very small amplitudes of vibration,
resulting in fatigue. The material damping in steel structures can therefore vary
somewhat depending on manufacturing processes, the alloy and welding and other
types of heat treatment.

In pure concrete, material damping of pure concrete depends on factors such as its
age, the water-to-cement ratio, loading frequency and amplitude, aggregate propor-
tioning and the presence voids [10]. In reinforced concrete, the material damping is
dependent on the formation and propagation of cracks and thereby on the configura-
tion of reinforcement, pre-stress and confining pressure but also the loading history
and the history of the environmental variables. This, as well as other factors, com-
plicates matters tremendously. In some sense, reinforced concrete is a composite
structure and therefore, the distinction between material damping and structural
damping is not clear and the need for simplifications based on experimental data is
obvious.

In granular materials, the material damping is mainly caused by the rearrangement
of the granules and the frictional inter-granular forces involved in that process.
Therefore, the material damping ratio of granular materials is highly dependent on
the confining pressure and the state of strain, see e.g. [26, 25] and [32]. Neverthe-
less, material damping within the granules is also present. A detailed theoretical
description of the dissipation of energy in granular materials is also very difficult.
Furthermore, it appears to be rather difficult to determine the correct initial state
in natural soil deposits. However, in such cases, in-situ measurements can be used
to obtain a realistic start point for theoretical analyses.

Nevertheless, reasonable values needed to be chosen for the material damping in
the case studies performed within this project. Cremer et al. [18] have gathered
experimental estimates of material damping ratios for many common materials from
the literature. According to Cremer et al., the loss factor of steel is ηsteel = 2·10−5−3·
10−4 and the loss factor of concrete is ηconcrete = 4·10−3−8·10−3. The corresponding
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damping ratios are ξsteel = 1 · 10−5 − 1.5 · 10−4 and ξconcrete = 2 · 10−3 − 4 · 10−3. In
the analysis performed within this thesis, the material damping ratio of the steel-
concrete composite beam in the case 1 bridge was fixed to ξcomposite = 1.5 · 10−3 and
the material damping of concrete was fixed to ξconcrete = 4.5 · 10−3.

Friction damping

The study of friction and wear in contact mechanics is referred to as tribology.
This is a field of research in its own and has applications in essentially all forms of
machines and structures. The friction force itself has its origin in the contact and
deformation of small asperities on the surfaces in contact. Thus, on a microscopic
level, the contacting surface pair consists of a number of small point-like contacts.
Therefore, a distinction must be made between the apparent and the true contact
area. The friction force is proportional to the normal stress on the contact surfaces
(Amonton’s first law of friction). Ultimately, it is given by a critical shear stress
over the true contact area, which depends on the normal load and the deformation
characteristics of the asperities. Thereby, the friction force is independent of the
apparent area (Amonton’s second law of friction).

In general, one must discern between dry and lubricated friction. In the present
context we are mainly interested in dry friction, although some bridge bearings have
lubricated PTFE-stainless steel contacts. Naturally, lubricated friction becomes
more complicated than dry friction because we then also need to consider the flow of
the lubricant between the contacting surfaces. In both dry and lubricated friction,
one may also have to consider chemical processes on the contacting surfaces. In
the case of dry friction, most materials react with the surrounding environment,
creating a surface which has rather different properties than the bulk material. A
simple example is of corrosion of steel, but water or even moisture in the air (which
can adhere to the contact surfaces) can give rise to a certain degree of lubrication.
A deeper discussion of this topic is outside the scope of this thesis. Nevertheless, it
is clear that the multidisciplinary nature of the dynamic response of railway bridges
also touches upon mechanical engineering.

However, a few common notions used in the tribological literature will be used
and the following definitions have been adopted essentially from the textbook by
Armstrong-Hélouvry [6]. We need to consider the distinction between static and
kinematic friction. Static friction refers to the force needed to initiate motion, while
kinematic friction refers to the force needed to maintain motion. However, the
friction coefficient is in general highly dependent on the relative velocity between
the contacting surfaces, especially in lubricated contacts. If the kinematic friction
is independent of the relative velocity it is referred to as Coulomb friction. A linear
dependence of the friction coefficient on the relative velocity is referred to as viscous
friction. The transition from static equilibrium to dynamic equilibrium is referred
to as break-away. Micro-slip or the Dahl effect refer to the deformation of the micro
structure of the contacting surfaces which leads to increasing, partial slip, prior to
motion. Finally, stick-slip is a phenomenon which occurs in cyclic motions, where
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Figure 3.1: The free vibrations of a Coulomb damped ocsillator.

upon load reversal, the relative velocity becomes zero and the static friction has to
be overcome in order to initiate the motion in the reverse direction, see also figure
3.2.

Oscillators with friction dampers have been studied by many authors, see for ex-
ample long and Liu [34]. The most common friction model used in this context is
the Coulomb model, in which the coefficient of friction is a constant. A uni-variate
model with Coulomb damping has the form

mẍ(t) + kx+ fµ(t) = f(t) (3.1)

where x is the displacement, m is the mass, k is the stiffness, f(t) is the external
force and

fµ = −µN sgn ẋ (3.2)

is the friction force where µ is the coefficient of friction and N is the normal force on
the friction device. It is quite straight forward to show that such an oscillator has a
linear decay function (see figure 3.1) if subjected to free vibrations. The idealisation
of the Coulomb friction is often too crude and more realistic models considering
micro-slip and other effects such as velocity, pressure and temperature dependent
friction, may become necessary. A model of micro-slip is inherently included in the
Bouc-Wen model, which corresponds to the single degree of freedom system defined
above when the parameter n → ∞. Break-away friction for instance, cannot be
described by the classical Bouc-Wen model, but with some slight modifications, the
coefficient of friction could fairly easily be made dependent on the sliding velocity,
as was done by Constantinou et al. [17]. These matters will be further described in
section 3.4.
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Figure 3.2: Typical frictional force-displacement loops recorded during (a) triangular
and (b) sinusoidal tests at low peak velocities (about 10mm/s). Both
tests were conducted on non-lubricated interfaces, under the same air
temperature (−10 ◦C), contact pressure (28.1MPa) and displacement
amplitude (50mm) (from Dolce et al. [20]).
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3.2 Soil-structure interaction

Soil-structure interaction is a vast topic and the purpose of this section is to highlight
its most important aspects in the present context. A very useful resource is the
chapter written by Gazetas in the handbook edited by Fang [22] and the licentiate
thesis [47] produced by the author provides some literature studies and theoretical
background relevant for applications in railway bridge dynamics.

The soil-structure interface is typically defined by the foundation structure, which
can often be assumed to be a rigid body. In three dimensions, this rigid body has
six degrees of freedom. Assuming that the soil is isotropic and linearly elastic and
that the contact between the foundation structure and the surrounding soil is never
lost, the dynamic stiffness functions of the foundation can be computed by standard
techniques. As mentioned earlier, the dynamic stiffness functions can be used as a
form of macro element.

It turns out that these dynamic stiffness functions are complex-valued functions of
frequency, where the real part corresponds to a stiffness and the imaginary part cor-
responds to an equivalent viscous damping coefficient. An example of such dynamic
stiffness functions is shown in figure 3.3 which has been taken form the paper by
Padron et al. [40], who used the boundary element method (BEM) and a coupled
BEM-FEM method to compute the dynamic stiffness functions for pile groups with
inclined piles in a homogeneous, isotropic, linearly elastic soil. The frequency is
described by the dimensionless quantity a0 = ωd/cs, where d is the pile diameter
and cs is the shear wave speed of the soil material.

The damping coefficient has two components; radiation damping and soil material
damping. When a foundation is excited by an external force, elastic waves are
generated and travel away from the foundation. Therefore, the energy of the motion
of the foundation is dissipated into the surrounding soil as elastic waves, radiating
away from the foundation and can only return to the foundation if the elastic waves
are reflected against some stiffer region of the subsoil. This can occur if bedrock is
close to the soil surface, but also between layers of different soil stiffness and other
structures embedded in the soil. If the variation in the soil stiffness is increasing
continuously, such reflections can occur at layer boundaries of infinitesimal extent,
causing a much less effective dissipation of energy. The soil material damping ratio
ranges between 1–5% but the total damping of typical foundations is dominated by
the radiation damping.

Although the pile groups studied by Padron et al. are quite small, their results can
give some indications on the order of magnitude of the stiffness and damping that
can be expected from such foundations. The piles used in the piled foundations
of the case 2 and 3 bridges (see chapter 5) are concrete piles with a square cross
section with the side length a = 270mm. A circle with the same area would have a
diameter of d = 304mm. The depth of the soil stratum studied by Padron et al. was
H = 15d = 4.5m, which coincides quite well with that of some of the pile groups in
the case 2 and 3 bridges. If we consider the case with the ratio Ep/Es = 103 where
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CHAPTER 3. MODELLING DETAILS

Figure 3.3: Theoretical vertical dynamic stiffness functions for 3×3 pile groups with
inclined piles (from Padron et al. [40]). The ratio of the pile (head)
spacing and the pile diameter is equal to 5 and Ep and Es denote the
modulus of elasticity of the piles and the soil, respectively.
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3.3. TRACK-STRUCTURE INTERACTION

Ep and Es denote the modulus of elasticity of the piles and the soil, respectively and
assume Ep = 35GPa, we obtain Es = 35MPa, i.e. a soft soil. If it is furthermore
assumed that the density of the soil is ρs = 1600 kg/m3 and that its Poisson ratio
is ν = 0.48, we obtain the shear modulus Gs = Es/(2(1 + ν)) = 12MPa and the
shear speed cs =

√
Gs/ρs = 87m/s. Thus, the frequency range of figure 3.3 is

approximately ω ∈ [0, 46]Hz. Furthermore, the scale factor Esd ≈ 5MN/m. Thus,
in the case studies presented herein, where the studied frequencies are all less than
6Hz, the frequency dependency would not be very important, because in the range
of a0 ∈ [0, 0.2], the variation of the stiffness and damping coefficients is not very
large. The vertical stiffness would be in the order of kzz = 500 · 5 = 2.5MN/m
and the damping coefficient would be much less. Actually, one cannot discern the
damping ratio from zero for a0 ∈ [0, 0.2].

In all three studied cases within this thesis, a consideration of the flexibility and
damping capacity of the foundations was needed in order to make the properties of
the modes of vibration at very small amplitudes of vibration match the estimates
from measurements of bridge deck accelerations during free vibrations. In paper III,
a simple FE-model of the abutments were used to determine the stiffness coefficients
of the support of the case 1 bridge and the damping was determined by means of
the handbook formulas provided in [22]. The results provided by Padron et al.
and discussed above show that the order of magnitude of the stiffness and damping
coefficients used in cases 2 and 3 is reasonable.

3.3 Track-structure interaction

In Sweden, almost all tracks are ballasted and the three studied bridges all carry
ballasted tracks. Therefore this discussion is limited to ballasted tracks and pri-
marily to the longitudinal track resistance. A sketch of a track superstructure on
a bridge and the BW-model of the longitudinal track resistance is shown in figure
3.4. Research regarding the track resistance has been geared mainly towards track
stability in continuously welded tracks and longitudinal forces induced by changes
in temperature or traction caused by trains accelerating or braking. The influence
of the track superstructure on the dynamic response of railway bridges has not been
given much attention at all. Ballast, although the particles are very large compared
to typical soils, has been shown to abide to the same constitutive laws as sand [41].
A comprehensive description of the mechanical properties of ballast in general is
given by Indraratna and Salim [31]. However, they, as well as other authors (see
e.g. [44] and the references therein) seem to focus mainly on the long-term track
quality issues. This is natural, since track maintenance is a major issue for most
railway infrastructure managers. Here, the main emphasis is on short term effects
during the free vibrations after a train passage. Of course, this simplifies matters
considerably. Neglecting the degeneration of the track superstructure and the de-
pendence of the modulus of elasticity of the ballast on the confining pressure, test
results from the ERRI project D202 [1, 4, 2, 3] were used in paper IV to define
a reasonably simple, phenomenological model of the longitudinal track resistance.
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Figure 3.4: A sketch of the track superstructure and the definition of the longitudinal
component of the Bouc-Wen track model.
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Figure 3.5: A summary of the test results for the longitudinal resistance of unloaded
ballasted tracks (from the ERRI D202 project [1, 4, 2, 3]). The figure
also shows the longitudinal track resistance used in the study of the case
1 bridge presented in paper IV.

For the longitudinal track resistance, the macro elements were defined to model one
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3.4. BRIDGE BEARINGS

sleeper and a certain volume of the ballast assumed to be associated with it, see
figure 3.4. The non-linear, hysteretic behaviour was modelled using the Bouc-Wen
model (see section 2.1) and the form of the backbone curves used was determined
using the experiments performed within the ERRI D202 project (see figure 3.5).

One important restriction on the theoretical studies presented herein is that only
the warm period of the year was considered. In paper III it is clearly shown that
very large differences in the stiffness of the case 1 bridge occur between the different
seasons. It is also stated that large differences have been observed in the modal
damping ratios between the different seasons, although those results have not yet
been published. However, the ERRI tests referred to above were only performed
in environmental conditions corresponding to summer or at least in temperatures
above 0 ◦C. Thus, for cold regions such as Sweden, further research on the track
resistance in environmental conditions corresponding to winter with snow, ice and
long periods of temperatures < 0 ◦C is necessary.

3.4 Bridge bearings

Bridge bearings are used primarily to create sound constraints between different
structural parts and to allow for deformations caused by variations in temperature
and shrinkage and creep in concrete bridges. Two types of bearings are commonly
used in Sweden; steel roller bearings and pot sliding bearings. Many other types
of bearings exist, but they will not be considered here. The purpose of this section
is mainly to describe how the pot bearings were modelled in case 2 and 3. The
modelling of the roller bearings in case 1 is described in paper IV.

One important conclusion from paper III is that the roller bearings of the case 1
bridge can be either fixed or moving, depending on the amplitude of vibration. The
basic features of the roller bearings of the case 1 bridge are described in paper IV and
in figure 3.6, a sketch of a roller bearing is shown, together with the eccentricities
which need to be considered. The eccentricity between the top bearing plate and
the neutral axis of the superstructure can be modelled with rigid links when the
Euler-Bernoulli hypothesis is assumed for the deformation of the superstructure.

The rotational function of a pot bearing is obtained by confining a circular rubber
plate between a pot and a piston, see figure 3.7. Due to the incompressibility of
rubber, a pressurised, confined rubber behaves like a fluid. Actually, the sealing ring
(7) in figure 3.7 is absolutely necessary as without it, the rubber would flow out of its
confinement when pressurised. In a pot bearing, the piston can rotate almost freely
about the two horizontal axes. The sliding function of movable bearings is created
by placing a sliding plate on top of the piston and the coefficient of friction is reduced
by adding a sheet of polytetrafluoroethylene (PTFE) in between. The bearing is
then free to translate in two directions. A uni-directional bearing is obtained by
means of a groove and a notch.

In paper IV, a model of a roller bearing was defined on the basis of results from
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Figure 3.6: A sketch of the longitudinal component of the Bouc-Wen roller bearing
element and the relevant eccentricities in the vertical direction.
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Figure 3.7: A section of a TOBE pot bearing (from http://www.spennteknikk.no).

the mechanical engineering literature. It was shown, by reference to the literature
that such mechanisms can be modelled by means of Bouc-Wen models but the exact
form of the Bouc-Wen model could not be determined. For that, some additional
experimental efforts are needed. Instead, parametric studies on the Bouc-Wen model
parameters were performed. A similar approach was used in the preliminary studies
for the case 2 and 3 bridges presented in chapter 5. In the following, some additional
information regarding the frictional properties of the PTFE-steel interface is given in
order to clarify the simplifications made in chapter 5. Clearly, further experimental
efforts are needed also in the case of pot bearings.

The PTFE-steel interface of a pot bearing has a more complicated behaviour than
the rolling resistance of a roller bearing. This is mainly caused by the introduction

30



3.4. BRIDGE BEARINGS

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

velocity [mm/s]

fr
ic

tio
n 

co
e�

ci
en

t [
-]

 

 

T = -10°C
T = 20°C
T = 50°C

Figure 3.8: The coefficient of friction at a bearing pressure of 18.7MPa as function
of the sliding velocity, according to equation (3.3).

of the PTFE-sheet, the frictional properties of which are sensitive to factors such
as temperature, sliding velocity and pressure. Lubrication also influences these
properties, but typically, in the Swedish common practice, the PTFE-steel interface
is unlubricated, so this factor will not be further discussed here. PTFE-steel contacts
have been used in seismic isolation of buildings and structures, see e.g. [12, 17, 20,
29, 38] and the references therein. In such cases, the response is expected to be fast
and at large amplitudes (corresponding to geometrical non-linearity) of vibration.
However, it would appear as if the velocity dependency of the coefficient of friction
cannot be ignored in serviceability limit state railway bridge dynamics.

Figure 3.8 shows the model function due to Constantinou et al. [17]

µ(v) = µmax − (µmax − µmin) exp(−αµv) (3.3)

where µmax and µmin are the maximum and minimum coefficients of friction, respec-
tively, αµ is a parameter depending on temperature, pressure and the condition of
the PTFE-steel interface and v is the relative velocity between the sliding surfaces.
Clearly, the dependency of the friction coefficient on the sliding velocity over the
PTFE-steel interface varies the most at low sliding velocities and increases quite
rapidly. For a simply supported bridge such as the case 1 bridge (the Skidträsk
bridge, which was studied in papers I–IV), the sliding velocity can be estimated in
the following way. Assuming a steady state and linearly elastic behaviour where the
Euler-Bernoulli hypothesis holds in the fundamental model of vibration, the vertical
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displacement v(x, t) may be written

v(x, t) = A sin(2πfnt) sin

(
2πx

L

)
(3.4)

where A is the amplitude of vibration at mid-span, L is the length of the bridge and
fn is the frequency of the fundamental mode of vibration. If the height of the cross
section over the supports is denoted by h, the maximum longitudinal displacement
at the free support is given by

ul =
2πAh

L
(3.5)

and the maximum velocity is

u̇l =
4π2Ahf

L
(3.6)

Inserting the parameter values relevant for the Skidträsk (case 1) bridge, assuming
A = 10 mm, we have ul ≈ 2π · 0.01 · 1/36 ≈ 2 mm and u̇l ≈ 4π2 · 0.01 · 1 · 3.9/36 ≈
40 mm/s. Referring again to figure 3.8, it is clear that the coefficient of friction may
increase with as much as a factor 2 due to the influence of the sliding velocity during
a train passage or in a state of train-bridge resonance.

Furthermore, there is a more or less pronounced break-away effect in the first cycle.
However, it is not expected to have any significant influence on whether sliding will
occur or not, because otherwise, the bearings would behave as fixed bearings at all
times. It is also possible that plastic deformations as well as corrosion and dirt in a
roller bearing could give rise to a break-away like effect, which has not been consid-
ered within this thesis. Stick-slip however, does not appear to be very pronounced
in sinusoidal cycles on PTFE-steel interfaces (see figure 3.2). In the preliminary
studies presented in chapter 5 (case 2 and 3) the break-away friction and the in-
fluence of the sliding velocity was ignored. The pressure dependency was assumed
to be negligible during free vibrations, although a slight variation in the bearing
pressure is expected due to the vertical flexibility of the supports. Furthermore, the
temperature was assumed to be constant. Under these assumptions, the classical
Bouc-Wen model is applicable and the bearing model parameters were determined
in an inverse sense by fixing all the other structural parameters to reasonable values
(see chapter 5) and adjusting the bearing parameters so as to approximately match
the experimentally determined instantaneous quantities. Thus, the theoretical re-
sults for the case 2 and 3 bridges presented in chapter 5 was not expected to fully
resemble the real behaviour of those bridges and it is again stressed that the purpose
was to obtain an indication of the influence of the bearing hysteresis on the global
bridge response.
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Chapter 4

Analysis of non-stationary signals

The result of paper IV and the other case studies presented in chapter 5 implies
that the modes of vibration of typical railway bridges are non-linear. In structural
dynamics, a mode of vibration is often associated with computational techniques
based on the principle of superposition, which rests on the assumption that the
studied structural system is linear. Therefore, the notion of a non-linear mode of
vibration may be disturbing to some structural engineers. Therefore, the aim of
this chapter is to define just that: a non-linear mode of vibration, and to discuss
the restrictions needed in order to make such a definition meaningful. This chapter
is based mainly on the textbooks by Mallat [36] and Flandrin [23] and the journal
paper by Huang et al. [28].

4.1 Analytic signals and the Hilbert transform

The Fourier transform of the function f(t)

f̂(ω) =

∫ ∞

−∞
f(t) exp(−iωt)dt (4.1)

and its inverse
f(t) =

1

2π

∫ ∞

−∞
f̂(ω) exp(iωt)dω (4.2)

is a well known mathematical tool which has been used in applications in most
fields of engineering and science. Although this transformation and its inverse can
be defined for any function f(t) such that

∫ ∞

−∞
|f(t)|dt <∞ (4.3)

(see for example [50]), the physical interpretation of the result of the transforma-
tion is not straight forward. Here, the function f(t) will be restricted to real-valued
functions since we are considering signals from structural systems. In general, the
Fourier transform f̂(ω) is a complex function of the real variable ω and if f(t) is
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CHAPTER 4. ANALYSIS OF NON-STATIONARY SIGNALS

an even function (f(−t) = f(t)), its Fourier transform will be a real-valued func-
tion while if f(t) is odd (f(−t) = −f(t)), its Fourier transform will be a purely
imaginary function. Furthermore, if f(t) is real, it has the property f̂(−ω) = f̂ ∗(ω)
where ∗ denotes the complex conjugate. If the independent variable t represents
time however, the independent variable in the Fourier domain ω will represent a
circular frequency and the notion of a negative frequency does not make sense, but
there is a symmetry/antisymmetry over ω = 0. Given the efficiency of using the
Fourier transform in solving linear ordinary and partial differential equations, these
somewhat strange features of the Fourier transform can be accepted. When it comes
to functions f(t) which are generated by non-stationary or non-linear systems how-
ever, some additional issues arise. Consider a rectangular wave with a certain time
step ∆t between changes in its sign. Its period is then Trect = 2∆t and with the
definition of frequency in terms of the period of oscillation, f = 1/T , the frequency
of this signal will be frect = 1/(2∆t). However, the Fourier transform of this signal
will have frequency components which extend towards ±∞. So, how should these
higher frequencies be interpreted from a physical point of view? The cause of these
higher frequencies lies in the fact that the Fourier transform gives a representation
of our signal f(t) composed of an infinite sum of sine and cosine functions, extend-
ing over the entire set of real numbers. It relies on the destructive and constructive
interference between these trigonometric functions and in order to exactly represent
the function f(t) by its Fourier transform f̂(t) we need to include the entire range
of ω. In this particular example, a finite number of Fourier components would give
a good approximation. The real issues arise when transient phenomena are studied
by means of the Fourier transform. Each Fourier component is completely non-local
in time, so the information in the Fourier domain cannot tell us anything about
what is going on at a given time instant, unless we integrate over the entire Fourier
domain.

One way of dealing with these issues is the continuous wavelet transform, which is
described in paper I. Although the wavelet transform does provide a great improve-
ment in terms of time/frequency localisation, it is a very complex mathematical tool,
where the basis on which the signal is projected is defined by a function, the mother
wavelet, which can be chosen in many different ways. The mother wavelet typically
has more than one parameter which may need to be adjusted and it is inherently
two-dimensional, so the computational work involved is quite time-consuming. Hav-
ing determined the wavelet transform, rather complicated operations are needed in
order to extract the relevant information, i.e. the instantaneous amplitude and fre-
quency. There is another, much more efficient way of dealing with the estimation of
the instantaneous quantities, namely the Hilbert transform.

However, before we turn our attention towards the Hilbert transform, some further
motivation for its use in the present context will be given. A signal x(t) generated
by a non-stationary or non-linear system can be represented by a frequency and
amplitude modulated function on the form

x(t) = A(t) cos(φ(t)) (4.4)

where A(t) and φ(t) are the modulated (instantaneous) amplitude and frequency,
respectively. However, this definition is not unique, a fact which can be easily shown.
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Multiplying and dividing equation (4.4) with an arbitrary function B(t) such that
0 < B(t) < 1, we have

x(t) =
A(t)

B(t)
B(t) cos(φ(t)) = Ā(t) cos(φ̄(t)) (4.5)

where Ā(t) = A(t)/B(t) and φ̄(t) = arccos(B(t) cos(φ(t))). Thus, there exists an
infinite number of pairs (A(t), φ(t)) which can represent the signal x(t).

Given a real valued signal x(t), the so called analytic signal xa(t) corresponding to
x(t) is obtained by removing the negative frequencies from the Fourier transform of
the signal. This does not remove any information from the signal, since x̂(−ω) =
x̂∗(ω). In the frequency domain, this can be achieved by the operation

x̂a(ω) = 2U(ω)x̂(ω) (4.6)

where U(ω) is the Heaviside function

U(ω) =

{
1, ω ≥ 0

0, ω < 0
(4.7)

The inverse Fourier transform of x̂a(ω) can be written

xa(t) = x(t) +
i

π
P.V.

∫ ∞

−∞

x(τ)

t− τ dτ (4.8)

where P.V. denotes the Cauchy principal value
∫ ∞

−∞
f(t)dt = lim

R→∞

∫ R

−R
f(t)dt (4.9)

Thus, the analytic signal is a complex function. The second term of equation (4.9)

H{x(t)} =
i

π
P.V.

∫ ∞

−∞

x(τ)

t− τ dτ (4.10)

is known as the Hilbert transform, which is defined for arbitrary functions f(t) ∈ Lp,
i.e. the functions for which ∫ ∞

−∞
|f(t)|pdt <∞ (4.11)

with p a positive integer greater than zero. From this definition of an analytic signal,
a modulus-phase pair can be defined in the following unambiguous way

ax(t) = |xa(t)| (4.12)

ωx(t) =
d

dt
arg(xa) (4.13)

where ax(t) and ωx(t) are the instantaneous amplitude and frequency, respectively.
Figure 4.1 shows an example of some mono-component signals and their analytic
signal representations.
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Figure 4.1: An illustration of the analytic signal corresponding to (top) a monochro-
matic signal, (middle) an amplitude modulated mono-component signal
and (bottom) an amplitude and frequency modulated mono-component
signal.
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4.2. THE INSTANTANEOUS DAMPING RATIO

In this thesis, the studied signals are mono-component signals, i.e. only one mode
of vibration is present. This was ensured by bandpass-filtering. In the analysis of
the case 1 bridge however, the first vertical bending and the first torsional modes
of vibration are closely spaced, and wether the first torsional mode is present in the
free vibrations or not cannot be determined directly from the analytic signal. This
becomes immediately obvious from the wavelet transform, due to the time/frequency
representation obtained thereby. If several modes of vibration are present in the
scalogram computed by the wavelet transform, they will appear as separate ridges
(see paper I), unless they are extremely closely spaced and have essentially the same
instantaneous variation. These ridges could cross each other if the frequency of some
modes varies much faster with the amplitude of vibration than others. Such cases
could be treated using the concept of the empirical mode decomposition which was
defined by Huang et al. [28].

4.2 The instantaneous damping ratio

The variation in the amplitude is dependent on the type of damping in the structure
generating the signal, a fact which raises the question: How should we define a mea-
sure of the damping in a free vibration signal from a non-linear structure? From the
previous section, it is clear that the instantaneous frequency cannot be unambigu-
ously defined unless certain restrictions are posed. That discussion led us to adopt
the definition that the (non-linear) modes of vibration which we are interested in
can be represented by a narrow band of frequencies. We also used our knowledge of
the non-linear mechanisms involved and arrived at the conclusion that at very small
amplitudes of vibration, a maximum frequency fmax exists, which is continuously
reduced at larger amplitudes of vibration, due to the reduction in the structural
stiffness imposed mainly by the non-linearities of the bearings. If we furthermore
limit the large amplitudes of vibration to those which may occur in a serviceability
limit state, a minimal frequency fmin which the mode in question can assume, can
also be established. Thus, the modes of vibration which we are interested in are
assumed to be well represented by a narrow-band process bounded, in frequency,
essentially by (fmin, fmax). Then, there should also exist some natural restrictions
on the variation of the damping ratio, but how should we compute it if only free
vibration data is at hand?

Equation (2.7) could perhaps be used, with some approximation owing to the fact
that we do not obtain full cycles form free vibrations. However in order to do
so, we need to measure the reaction force corresponding to the generalised degree
of freedom of the mode of vibration. As such data is typically not available, we
need something that can be directly applied using only the information available
in the instantaneous quantities of the free vibration signals. Ideally, we would use
a displacement controlled excitation test to determine the damping ratio from full
hysteresis loops, but as explained in the introductory chapter, such measurements
were not available and would be much more expensive to obtain than free vibration
data. Therefore, in paper I, we defined an equivalent instantaneous viscous damping
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ratio in order to have a measure of the damping properties that can be used when
only free vibration output data is available. This measure of the instantaneous
damping ratio was based on the linear, viscously damped oscillator and has the
form

ξeq = − ȧx
ωxax

(4.14)

using the notation from the previous chapter. Please note that a slightly different
notation was used in papers I–IV. It should be noted however, as shown in paper
IV, that this measure of the damping ratio must be used with caution, as it may
overestimate the damping ratio compared to the formal definition given by equation
(2.7).

The identification of systems with frictional (Coulomb) damping has been studied
by Tomlinson and Hibbert [46], Badrakhan [7] and Liang and Feeny [33], among
others. Tomlinson and Hibbert [46] proposed a methodology, capable of determin-
ing the Coulomb model parameters from forced vibration tests on multi-degree of
freedom systems, which could be used to estimate the properties of bearings and
supports if their behaviour is close to that of Coulomb friction. Badrakhan as well as
Liang and Feeny developed techniques for identification and separation of systems
with combined friction (Coulomb) and viscous damping from measurements of free
vibrations. Such techniques could be useful as first approximations of the non-linear
component of the modes of vibration studied here.

However, the treatment of the friction-like mechanisms in a phenomenological man-
ner, through the non-linear mode of vibration defined in this thesis, appears to be
more relevant in the present context. First, forced vibration tests on existing railway
bridges are very difficult to perform, although some tests of this kind seem necessary
in order to gain support for the hypothesis proposed herein. Second, the frictional
behaviour of these non-linear modes of vibration is not of the Coulomb type. Thus,
methods for the identification of Bouc-Wen models or similar models of hysteresis
seem to be more appropriate. Such methods exist in an abundance for the case of
uni-variate BW-models, see e.g. references [13, 16, 45], which could be used as a
start point for such developments.

4.3 Estimates of the instantaneous quantities

The techniques based on the continuous wavelet transform (CWT) and the Hilbert
transform (HT) have in common that we need to compute derivatives of signals
with noise. It is well known that such operations may lead to significant distortions.
Here, the smoothing algorithms of Matlab were used to remove the most of this
distortion, so having two different methods for the estimation gives an opportunity
to validate the estimates. This deficiency does not exist with the method used
by Rebelo et al. [42] and Lorieux [35]. In the method based on the CWT, the
instantaneous frequency is given by the ridge of the CWT, so in that case we only
need to differentiate the amplitude. However, in the method based on the HT, in
order to compute our estimates as defined by equations (4.13) and (4.14), we need
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to differentiate both the phase and the amplitude in the HT. The implementation
of the two methods are summarised below.

CWT

The CWT method consists of the following five steps:

1. Window, bandpass filter, and down-sample the signal

2. Compute the continuous wavelet transform

3. Determine the ridge and the instantaneous frequency

4. Determine the amplitude along the ridge

5. Compute the equivalent instantaneous damping ratio

The main computational effort lies in computing the CWT. Since it is a function of
both frequency and scale/time, this can take some time if a fine resolution is needed.
However, much of the computational effort lies in plotting the transform.

HT

The HT method consists of the following four steps:

1. Window, bandpass filter, and down-sample the signal

2. Compute the Hilbert transform

3. Compute the instantaneous frequency

4. Compute the equivalent instantaneous damping ratio

Here, the computational effort in each step is similar. The Hilbert transform is
one-dimensional, and can be computed efficiently by means of the Fast Fourier
transform, so the calculations are faster than the CWT method. Also, the end
effects were found to be somewhat less pronounced in the HT method, compared to
the CWT method.
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Chapter 5

Case studies

In this section, some additional results to those published in papers I–IV will be pre-
sented. These consist in a validation of the CWT estimates of the natural frequency
and damping ratio presented in paper I, where the HT has been used instead, and an
extension of the analysis presented in paper IV on two other typical beam bridges.
Section 5.1 gives a comparison between the estimates of the natural frequency and
the damping ratio, as obtained from the CWT and the HT for the case 1 bridge. In
sections 5.2 and 5.3 the two additional bridge cases will be shortly described, along
with the CWT results obtained from measurements of free vibrations on the two
bridges. In section 5.4, a preliminary analysis including BW-models of the bear-
ings in the three bridges is presented. Finally, in section 5.5, some key parameters
have been varied in the theoretical model of the case 3 bridge, with the purpose of
studying the qualitative influence of different model parameters.

5.1 Wavelet versus Hilbert

A comparison between the frequency and damping functions estimated for the case
1 bridge using the CWT and the HT is shown in figure 5.1. The agreement between
the two methods is quite good, but the HT has a much smaller end effect than the
CWT. Furthermore, the CWT analysis took a few minutes to compute while the
HT analysis took a few seconds. The data were taken from the cold period of the
year, hence the larger variability (see paper III) than what was reported in paper I,
were the data were taken from the warm period of the year.

5.2 Case 2 - Ullbrobäcken

The case 2 bridge is shown in figure 5.2 and the result of the CWT-based estimation
scheme is shown in figure 5.3. The bridge is a two span concrete wide beam bridge
with integrated abutments and it carries two ballasted tracks. The superstructure
is prestressed and was assumed to be un-cracked, but the increased thickness over
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Figure 5.1: A comparison between the CWT (dashed) and the HT (solid) for the
first vertical bending mode of the case 1 bridge.

the middle support was considered. The bridge is founded on pile groups which are
quite similar for the end supports, consisting of 24 piles with a batter of 4:1, and
a much larger pile group at the middle, consisting of 40 piles, again with a batter
of 4:1. The stiffness of the foundations was approximated using the static stiffness
of the piles alone, approximated as bars. The end supports are very low and the
middle support consists of two concrete columns, resting on the pile cap of their
foundation. However, in this very much simplified analysis, the substructures were
ignored.

Material damping was assumed as discussed in section 3.1, i.e. Rayleigh damping
was assigned with α = 0.11 and β = 1.1 · 10−4. In order to obtain the modal
damping ratio of 0.6% at very small amplitudes of vibration (see figure 5.3), an
additional radiation/soil material damping was applied as viscous dashpots with the
damping coefficient c = 7.5 MNs/m at the corresponding foundations. The density
of the concrete was taken as 2500 kg/m3 and adding the mass of the ballast, the
equivalent density was 3228 kg/m3 and 3053 kg/m3 for sections 1 and 2, respectively.
With these parameter values, the modulus of elasticity of the concrete was set to
36.5GPa, yielding the natural frequency of the first vertical bending mode f case2 ≈
5.0Hz. Apart from the mass of the ballast, the track superstructure was completely
neglected.
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Figure 5.2: A photograph of the case 2 bridge (Ullbrobäcken) and a sketch of its
2D geometry and its cross section. Measures are in millimeters unless
otherwise stated.

5.3 Case 3 - Sagån

The case 3 bridge is shown in figure 5.4 and the result of the CWT-based estimation
scheme is shown in figure 5.5.

This bridge is a three span prestressed concrete girder bridge which carries one
ballasted track. The cross section is solid as shown in figure 5.4. In the model,
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Figure 5.3: The frequency and damping ratio of the first vertical bending mode of
the case 2 bridge, as given by the CWT

the cross section was approximated by a 3m×1.7m rectangle. The supports are
numbered from left to right in figure 5.4. Supports 1, 3 and 4 are founded on
pile groups while support 2 is founded on bedrock. Supports 1 and 4 are very
similar pile groups consisting of 10 piles. The pile group of support 3 consists of
26 piles. As in case 2, the stiffness of the foundations was approximated using the
static stiffness of the piles alone, approximated as bars. As in case 2, the material
damping was modelled using Rayleigh damping with α = 0.11 and β = 1.1 · 10−4.
In order to obtain the modal damping ratio of 0.7% at very small amplitudes of
vibration (see figure 5.5), an additional radiation/soil material damping was applied
as viscous dashpots with the damping coefficient c = 3 MNs/m at the corresponding
foundations. The density of the concrete was taken as 2500 kg/m3 and adding the
mass of the ballast, the equivalent density was 3600 kg/m3. With these parameter
values, the modulus of elasticity of the concrete was set to 42GPa, yielding the
natural frequency of the first vertical bending mode f case3 ≈ 5.8Hz. Again, apart
from the mass of the ballast, the track superstructure was completely neglected.

5.4 Influence of bearings - all cases

The result of the analysis for case 1 have been reported in paper IV. Here, the main
results from a preliminary analysis of the influence of the bearing mechanisms on
the case 2 and 3 bridges will be summarised and compared to those of the case 1
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Figure 5.4: A photograph of the case 3 bridge (Sagån) and a sketch of its 2D geom-
etry and cross-section. All measures are in millimeters unless otherwise
stated.
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Figure 5.5: The frequency and damping ratio of the first vertical bending mode of
the case 3 bridge, as given by the CWT.

bridge.

Due to the lack of experimental data for the backbone curves of the bearings, rea-
sonable BW-model parameters were determined in the following way. The natu-
ral frequency of the fundamental mode of vibration was determined by fixing all
stiffness parameters except the modulus of elasticity of the concrete. The modu-
lus of elasticity of the concrete was then used to match the fundamental mode of
vibration against the values determined from measurements at very small ampli-
tudes of vibration. The material damping of the superstructures was fixed and the
modal damping ratio at very small amplitudes of vibration was matched with the
experimentally determined modal damping ratio by adjusting the dashpots at the
foundations. These values seemed to be in agreement with the discussion provided
in chapter 3. Then, BW-model parameters were determined so that the measured
frequency and damping functions were reasonable well approximated in the range of
accelerations (0, 0.2) m/s2. Obviously, this procedure is quite rough, but serves well
as an illustration of what can be expected from the non-linear bearing mechanisms.

Figure 5.6 shows the frequency and damping functions of the "best" candidate mod-
els for each of the case studies, together with the measured frequency and damping
functions for each of the bridges. Although these results are of a preliminary nature
and the modelling of the bearings has not yet been verified, the results do provide
some interesting indications. From the CWT analysis presented in the previous
sections of this chapter, the observed non-linear effects were most pronounced in
the case 1 bridge, slightly less pronounced in the case 2 bridge and only a weak
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Figure 5.6: The "best" candidate models for each of the case studies.

indication in the case 3 bridge. The theoretical modelling allowed for some extrap-
olation to larger amplitudes of vibration and from these results, the following could
be observed:

- For the case 1 bridge, the damping ratio increases very much but at 2m/s2, it
has already returned to the value at very small amplitudes of vibration.

- For the case 2 bridge, the damping ratio increases by a factor 2, but again at
2m/s2, it has returned to the value at very small amplitudes of vibration.

- For the case 3 bridge however, the damping ratio does not increase at all until
approximately 0.3m/s2 but it maintains an elevated value all the way up to the
Eurocode criteria for vertical bridge deck acceleration of 3.5m/s2 for ballasted
tracks.

5.5 Parameter variations - case 3

Given that the Euler-bernoulli hypothesis holds true for all three cases, the main
differences between the three bridges, apart from the number of spans and the span
lengths, lie in:

1. The height of the cross sections.
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Bearings

Edge beams

Main beam

Diaphragm height Diaphragm height

Figure 5.7: A sketch of the diaphragms at the supports of the case 3 bridge.

2. The longitudinal stiffness of the supports.

3. The boundary conditions at the ends of the superstructures.

These factors where varied in the case 3 model to evaluate their respective influence.
The height of the cross section influences the longitudinal displacements over the
bearings in a very simple way as long as it can be assumed that the cross sections
remain undeformed. However, it is of course also coupled with the distribution
of the bending stiffness along the superstructure and the division of the spans.
Nevertheless, it is interesting to study how an increase in the cross section height
over the supports influences the dissipation of energy in the bearings. In the case
3 bridge, a diaphragm wall is placed in the superstructure over each support (see
figure 5.4). This could easily be changed as illustrated in figure 5.7, as long as the
stiffness of the diaphragm is large enough to behave essentially as a rigid body.

The longitudinal stiffness of the supports carrying the roller/sliding bearings de-
creases from case 1 to case 3. The relation between the longitudinal stiffness of
the supports and the pre-rolling/-sliding resistance of the bearings influence the dy-
namic properties by allowing for elastic deformations of the foundation instead of
sliding or rolling. This occurs if the foundation stiffness is smaller than the initial
stiffness of the bearings and has the effect that the transition zone between states
1 and 2 is spread over a larger range of amplitudes of vibration. This appears to
partly explain the qualitative difference between the three cases.

The case 1 bridge is simply supported while the two other cases have integrated
abutments. These restraints at the bridge ends are difficult to estimate, but they act
so as to reduce the rotations over the end supports, which are typically equipped with
movable bearings in multi-span bridges. They also provide translational constraints
in the longitudinal direction. Thus, removing these constraints should lead to a
larger response over the bearings and thereby, to more dissipation of energy in the
bearings.

Based on the above listed reasons, a small study of the influence of these parameters
on the free vibrations of the case 3 bridge was performed. The longitudinal stiffness
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Figure 5.8: The result of the parametric study on the case 3 bridge.

of the pile groups at the end supports was increased by a factor 2 as compared
with the case 3 best model candidate. This increased foundation stiffness was held
constant in the study. The diaphragm height (from the neutral axis) was set at
three different values: 1.2m (the original design), 1.5m and 1.8m. For these three
diaphragm heights, the calculations were performed with the assumed embankment
stiffness and without the embankments, i.e. assuming that the bridge design could
work also without integrated abutments. The results of this study are shown in
figure 5.8.

Clearly, the increased foundation stiffness did not have any significant influence
although it did increase the damping with approximately 10% in the range of ac-
celerations between 1 and 3m/s2. The increased diaphragm height led to a larger
difference between the natural frequencies in the two states of the mode of vibra-
tion. Also, significant increases in the damping over essentially the whole range of
amplitudes of vibration was obtained. Thus, the increased damping comes at the
cost of a reduced critical train speed. The removal of the end restraints due to
the integrated abutments increased the damping further and the natural frequency
decreased faster with respect to the amplitude of vibration. Common for all the
results of this study is that the elevated damping was kept over almost the entire
range of amplitude of vibration.
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Chapter 6

Discussion

The conclusions drawn from the research performed within this project are sum-
marised in section 6.1. However, several extensions of the presented work are needed
in order to draw more general conclusions. Apart from verifying the presented the-
oretical results using tests with controlled input forces, these extensions mainly
consist in taking the influence of a passing train into consideration, but seasonal ef-
fects must also be further studied. Suggestions regarding the continued work within
this field are briefly described in section 6.2.

However, a few words regarding the errors involved in the presented analyses need
to be said. Three different techniques were used to determine the instantaneous
natural frequency and damping ratio of the case 1 bridge and they all gave similar
results. Thus, any error in this analysis would be systematic somehow. The sensors
themselves could also introduce some errors, mainly due to noise, sensor misalign-
ment and the calibration of the sensors. A formal error analysis of the numerical
techniques used is beyond the scope of the thesis. Instead, the next best thing was
done, i.e. to decrease the time step until convergence. Obviously, there are sev-
eral possible sources of error in the modelling of the bearings and the longitudinal
track resistance and these have been discussed in chapter 3. Nevertheless, it is the
authors belief that those errors cannot be identified and remedied with the current
state of knowledge. Also, the possible interaction between different mechanisms and
the uncertainties associated with them, can only be handled in a robust manner by
forced excitation tests at amplitudes of vibration which are relevant for a state of
train-bridge resonance.

The model updating was performed "by hand" and much more could be done here,
if proper OMA or EMA is performed. For example, the modulus of elasticity of the
concrete differs quite much between the theoretical models of the case 2 (36.5GPa)
and case 3 (42.5GPa) bridges, although both bridges were built using the same
concrete quality (K40) with a characteristic modulus of elasticity of 32GPa. This
could be ascribed to variations in the density and the amount of ballast (due to
ballast degradation and maintenance operations), but also to the rough estimates
of the bending stiffness used in these preliminary calculations. Also, the stiffness
of the pile groups and the embankments was modelled in a highly simplistic way.
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However, given the state of knowledge regarding the properties of the bearings,
further refinements of these models cannot be motivated at this stage. Nevertheless,
the results do motivate further studies of the bearing mechanisms.

6.1 Conclusions

The analysis of measured free vibration data from three different beam bridges led
to the following conclusions:

- The modes of vibration of the studied bridges are non-linear.

- The natural frequency appears to decrease with increasing amplitude of vibra-
tion. This could lead to a significant decrease in the critical train speed.

- Several techniques exist by which these non-linear modes can be estimated.
Three different techniques have been implemented and used to determine the
instantaneous quantities, i.e. the natural frequency and the damping ratio,
associated with the fundamental mode of vibration and all three yield similar
results within the available range of measured response.

- The wavelet based technique was much more efficient than the short-time
Fourier technique. This efficiency was obtained at the cost of a reduced range of
amplitudes due to the so called ”end effects” inherent in the wavelet transform.

- The most efficient technique was based on the Hilbert transform which is also
distorted by end effects, although to a slightly smaller extent than the wavelet
transform.

- The equivalent instantaneous viscous damping ratio defined in paper I was
found to overestimate the damping ratio by as much as 20-25%.

Modelling details were discussed mainly in papers III and IV and several conclusions
were drawn from those studies:

- Soil-structure interaction is relevant and the variation of the state of stress
and strain in the soil during a train passage appears to remain within the
elastic regime. The flexibility of the foundations was needed to obtain correct
natural frequencies for the first vertical bending and the first torsional modes of
vibrations. The radiation and soil material damping constitute a considerable
part of the structural damping at small amplitudes of vibration.

- Bridge bearings can have a significant influence on the dynamic properties
of a non-linear mode of vibration. The initiation of rolling or sliding gener-
ates a non-linear mode of vibration which has two states; the fixed state at
very small amplitudes of vibration and the free state at larger amplitudes of
vibration. During the transition from the fixed state to the free state, the
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natural frequency decreases monotonically towards an asymptotic value while
the damping ratio behaves like a uni-modal function.

- The longitudinal track resistance was found to have a negligible influence on
the structural stiffness and a significant although much smaller influence than
the bearings on the damping ratio of the case 1 bridge during the warm period
of the year.

- Seasonal effects have a significant effect on the dynamic properties of railway
bridges in cold climates such as that in Sweden. Reluctance to taking seasonal
effects in consideration may lead to erroneous decisions in assessments of ex-
isting bridges. The variation in frequency between different seasons depends
on the type of mode and can be as large as 35%.

The preliminary studies presented in chapter 5 indicate that it could be possible to
design bridges with movable bearings so as to maximise the dissipation of energy
at the movable bearings over a certain range of amplitudes of vibration. Naturally,
the parameters which govern this behaviour are those which govern the movements
over the bearings, i.e. the eccentricity between the neutral axis of the beam and the
support points, the longitudinal stiffness of the supports and the beam end restraints
provided by the track continuity and integrated abutments. Furthermore, the bridge
(case 3) which showed the least non-linear tendency in the CWT analysis, provided
the most beneficial non-linear behaviour, since its damping ratio was maintained
at a high level all the way up to 3.5m/s2 (the maximum allowed acceleration for
ballasted bridges, according to the Eurocode). However, to verify these assertions,
further studies are needed, as described in the following section.

6.2 Further research

In the authors opinion, the continued research within this field should focus on an
extension of the presented analysis towards states of train-bridge resonance and a
generalisation to a wider range of bridges. In order to take this leap, further research
is needed along several different directions:

1. The proposed hypothesis regarding the influence of the bearings must be veri-
fied on existing bridges using forced excitation tests. However, the mechanism
itself could probably be verified in scaled laboratory tests.

2. Laboratory tests on bearings should be used to determine appropriate Bouc-
Wen models or extensions of such models for the hysteretic properties of rolling
and sliding bearings.

3. An extension of the Bouc-Wen element to incorporate coupling of its degrees
of freedom. This could be used to model the pressure dependence of the rolling
resistance and the friction coefficient of the PTFE-steel interface, as well as
the influence of the confining pressure of the ballast on the track longitudinal
stiffness.
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4. Improvements of the computational efficiency of the BW-element should be
sought so that they can be incorporated in more detailed parametric studies
and three dimensional models.

5. An increased wear is expected, especially in pot bearings, if bridges are de-
signed to optimise the dissipation of energy in bearing movements. This must
be carefully studied in order to estimate the costs involved with shorter main-
tenance intervals and to identify possible countermeasures.

Furthermore, a more detailed study of the formation of ice within the ballast and
its evolution during the cold season needs to be further studied. Research within
this project has shown that the damping ratio varies more during the cold season
and it appears to be higher during the cold season than during the warm season.

An appropriate test methodology for railway bridges in general should be able to
study arbitrary modes of vibration within a given range of frequencies and am-
plitudes of vibration. However, testing structures along operating railway lines is
rather expensive, even when studying the modes of vibration at very small ampli-
tudes of vibration. nevertheless, in order to verify the results presented within this
project, at least a few bridges must be tested with known input forces at relevant
amplitudes of vibration.

In practical cases where several bridges along a railway line need to be tested and
operational modal analysis (OMA) can be applied successfully, a combination of
OMA and free vibrations could be very efficient. OMA could then be used to
determine the dynamic properties at very small amplitudes of vibration and guidance
regarding the non-linear behaviour could be obtained from the Hilbert or continuous
wavelet transforms of free vibration signals.
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a b s t r a c t

In this article, the Continuous Wavelet Transform (CWT) is used to study the amplitude dependency of
the natural frequency and the equivalent viscous modal damping ratio of the first vertical bending mode
of a ballasted, single span, concrete–steel composite railway bridge. It is shown that for the observed
range of acceleration amplitudes, a linear relation exists between both the natural frequency and the
equivalent viscous modal damping ratio and the amplitude of vibration. This result was obtained by an
analysis based on the CWT of the free vibrations after the passage of a number of freight trains. The natural
frequency was found to decrease with increasing amplitude of vibration and the corresponding damping
ratio increased with increasing amplitude of vibration. This may, given that further research efforts have
beenmade, have implications on the choice of damping ratios for theoretical studies aiming at upgrading
existing bridges and in the design of new bridges for high speed trains. The analysis procedure is validated
by means of an alternative analysis technique using the least squares method to fit a linear oscillator to
consecutive, windowed parts of the studied signals. In this particular case, the two analysis procedures
produce essentially the same result.

© 2010 Elsevier Ltd. All rights reserved.

1. Background

The dynamic properties of railway bridges are known to
depend on a rather large number of phenomena. These consist
of soil–structure interaction, train–bridge interaction, interaction
between the track and the bridge superstructure and the material
properties of the structure. For certain bridge types, some of these
phenomena give rise to more or less pronounced non-linearities,
which may have noticeable effects on the dynamic properties of
the structure [1].

Today, many railway owners wish to upgrade existing bridges
tomeet the increasingdemandon train speed and axle loads. In this
context, the damping ratio is highly important and can have a large
influence on theoretical estimates of the dynamic response of the
structure. Also, in the design of new railway bridges for high-speed
railway lines according to the Eurocode [2], the vertical bridge deck
acceleration is often decisive for the dynamic analysis. The vertical
bridge deck acceleration must be limited in order to ensure that
the wheel-rail contact is maintained and to eliminate the risk for
ballast instability in the case of ballasted railway bridges. For these
reasons, it would be desirable to learn more about the phenomena
governing the dissipation of energy in railway bridges.

∗ Corresponding author. Tel.: +46 8 7907949.
E-mail address:mahir.ulker@byv.kth.se (M. Ülker-Kaustell).

One approach to increasing our knowledge within this field
would be to establish a reliable experimental methodology to
determine how the damping ratio varies with the amplitude of
vibration and then use that knowledge as a basis for theoretical
studies of the phenomena which are believed to govern this
behavior. For this purpose, alternative methods should be used
to verify the outcome of the experimental procedures. This paper
aims at describing the application of such an alternative, namely
the Continuous Wavelet Transform (CWT). This mathematical
tool has traditionally been applied in quantum mechanics and
signal analysis [3,4], but during later years, several authors have
presented applications in system identification and to some
extent also damage detection (see [5] and the references therein),
though most publications describe theoretical and/or laboratory
studies. Staszewski [6] used the CWT to estimate the damping of
simulated linear and non-linear multi degree of freedom systems
with additive noise, based on the assumption that the system
is viscously damped. Slavič et al. [7] succeeded in applying the
CWT to experimental data produced in a laboratory, for a linearly
elastic, viscously damped beam. Le and Argoul [8] described
procedures to identify the eigenfrequencies, damping ratios and
mode shapes of linear structural systems from free vibration
data by means of the CWT. An extension towards applications
of the CWT to identify non-linear systems was suggested by
Staszewski [9] where the CWT was used to estimate the skeleton
(the variation of the amplitude with time) of different signals.
These concepts were further elaborated by Ta and Lardies [10],
who applied their methodology to simulated numerical data and

0141-0296/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.engstruct.2010.12.012
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experimental data produced in their laboratory. Ta and Lardies
also suggested a modification to the use of the Morlet wavelet in
CWT’s which optimizes the localization of the (Morlet) wavelet
in the time/frequency domain for the signal at hand. Given a
skeleton, a non-linear model was fitted to the measured response.
Of course, in order to succeed in applying the methodology
suggested by [10] to a given real-life mechanical system such
as a railway bridge and draw any useful conclusions from those
results, the nature of the underlying model must be known. In
the present case, the underlying model is not known, but as
indicated by the results presented in [10], the CWT may become
a useful tool in determining such models for railway bridges. A
recent publication by Chang and Shi [11] describes the application
of wavelet transform techniques to identify the parameters and
their time-dependencies in a Bouc–Wen model used to describe
the hysteretic behavior of shear-buildings subjected to ground
accelerations.

It should also be mentioned that several other methods which
aim at identifying non-linear systems from measured data exist,
see for example [12] where a method based on the Hilbert trans-
form is applied to simulated non-linear single-degree-of freedom
systems, and also [13] and the references therein.

This article presents some results of applications of the CWT
to free vibration data measured from a ballasted, single-span
steel–concrete composite bridge, with the main purpose of deter-
mining whether weak non-linearities are present or not. Sugges-
tions based on the work by Staszewski [6] are given as to how
an instantaneous equivalent viscous damping ratio can be esti-
mated from the skeleton curve of the CWT, assuming that the sig-
nal can be modeled as a viscously damped linear oscillator at each
time instant.

2. The continuous wavelet transform

The CWT is well described in textbooks such as [4] and the
following is a short summary of the most important concepts
needed in the proposed analysis of railway bridge dynamics based
on the CWT. The CWT is an integral transform and is thus defined
as the inner product

⟨u, K⟩ =

∫
∞

−∞

u(t)K(t, a, b)dt (1)

of the signal u(t)with a kernel function K(t, a, b)which is a scaled
and shifted version of the complex conjugate of the wavelet ψ(t).
The wavelet can be chosen arbitrarily from the space of square
integrable functions, given that it has a zero average∫

∞

−∞

ψ(t)dt = 0 (2)

and fulfills the following condition of admissibility∫
∞

0

|ψ̂(ω)|2

ω
dω < ∞. (3)

Throughout this text, ˆ(•) will be used to denote the Fourier
transform. Furthermore, the wavelet is normalized ‖ψ‖ = 1 and
centered around t = 0.

By scaling thewavelet by a and shifting it by b, a set of functions
is obtained, which are compared to the signal by means of the
inner product (1) giving a measure of the resemblance between
the signal and the scaled and shifted wavelet. To preserve the
normalization of the wavelet at each scale, the wavelet is divided
by

√
a. The CWT is then defined by an integral of the form

Tψ [u](a, b) =
1

√
a

∫
∞

−∞

u(t)ψ∗


b − t
a


dt (4)

where ∗ denotes complex conjugation.

The duration 1tu and bandwidth 1ωu (or time and frequency
support [3]) of any finite energy function u can be determined in
terms of quantities which are equivalent to the standard deviation

1t2u =
1
Eu

∫
∞

−∞

(t − tu)2|u(t)|2dt (5)

1ω2
u =

1
Eu

∫
∞

−∞

(ω − ωu)
2
|û(ω)|2dω (6)

where the energy Eu of the signal is

Eu =

∫
∞

−∞

|u(t)|2dt < ∞ (7)

tu and ωu are the first moments of the squared absolute value of
the function u(t) and its Fourier transform û(ω)

tu =
1
Eu

∫
∞

−∞

t|u(t)|2dt (8)

ωu =
1
Eu

∫
∞

−∞

ω|û(ω)|2dω. (9)

It can be shown [3,4] that the duration and bandwidth of any finite
energy function satisfies the inequality

1tu1ωu ≥
1
2

(10)

which is referred to as the Heisenberg–Gabor uncertainty princi-
ple. In the present context, this principle shows how an increase in
the localization of a wavelet in time is connected to a decrease in
the localization in frequency and vice versa.

The time (1t) and frequency (1ω) locality, or resolution, of the
CWT depend on the scale and the duration 1tψ and bandwidth
1ωψ of the wavelet according to

1t = a1tψ (11)

1ω =
1ωψ

a
. (12)

Apparently, these quantities also obey the Heisenberg–Gabor
uncertainty principle.

2.1. Scale and pseudo-frequency

The scale is inversely proportional to the frequency but it is
not directly related to the frequency. A small scale contracts the
wavelet so that it matches higher frequencies better and vice
versa. One way to define a relation between frequency and scale
is suggested in the Matlab Wavelet Toolbox manual [14] where
a periodic signal of frequency fc is associated to the wavelet. fc is
called the center frequency and it is given by themaximizer of |ψ̂ |.
Then, a pseudo-frequency f corresponding to the scale a can be
defined by

f =
fc

a1t
(13)

where1t is the sampling period of the analyzed signal.

2.2. Choice of wavelet

Le and Argoul [8] gave a thorough description of several
common wavelet functions and discussed the choice between
them for analyzing transient (free vibration) signals. The most
common wavelet in the present context is the Morlet Wavelet,
defined by

ψ(t) = e−t2/2eiω0t (14)
and it has also been used in the present study, however with a
slight adjustment. In [10] the notion of a modified Morlet wavelet
was given with reference to the factor 2 in the denominator of the
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Fig. 1. The CWT of the first bending mode of the bridge at Skidträsk (see Section 3)
together with its ridge (black solid line) and the boundaries (grey, dashed lines)
within which the edge effect is negligible.

first factor of Eq. (14), whereas in the MatlabWavelet Toolbox, the
(complex) Morlet wavelet is directly defined with this parameter.
This factor may be varied so that the variation of the amplitude of
theMorletwavelet is stretched or contracted. The center frequency
ω0 of theMorlet wavelet is approximately bounded from below by
ω0 ≥ 5 in order to fulfill the condition (3).

2.3. The edge effect

Due to the finite duration of the analyzed signal, there is a
mismatch between the wavelet function and the signal at the
beginning and end of the signal. This is referred to as the edge
effect and there is no knownprocedure bywhich it can be removed.
However, one can determine a domain D for a and b on which the
edge effect is negligible [7,8]. In [8], the following bounds on the
circular frequency were determined

2ctQµψ
ωj

≤ bj ≤ L −
2ctQµψ
ωj

(15)

0 < ωj ≤
2π fNyquist
1 +

cf
2Q

(16)

where ct ≥ 1 and cf ≥ 1 are parameters chosen so that when t
and ω are outside the intervals
Ict = [tψ − ct1tψ , tψ + ct1tψ ] (17)
and
Icf = [ωψ − cf1ωψ , ωψ + cf1ωψ ] (18)
respectively, the wavelet and its Fourier transform have very small
values. In [8] a good compromise was found in ct = cf = 5, which
have also been used here. These bounds are shown in Fig. 1 using
red dashed lines. Severalmethods to reduce the edge effect in short
signals are described in [15], in the present context however, the
above described bounds were found to be sufficient.

2.4. Asymptotic analysis

For a certain group of wavelets, referred to as analytic (or
progressive) wavelets, the analysis can be much simplified if
the signal is asymptotic. An analytic function fa is characterized
by having a Fourier transform which is zero for all negative
frequencies

f̂a(ω) = 0, ∀ω < 0. (19)
A general monochromatic signal can be described in terms of an
instantaneous amplitude A(t) and phase φ(t) by functions of the
form [16]
u(t) = A(t) cos(φ(t)). (20)
Then, the instantaneous circular frequency can be defined as the
time derivative of the phase

ω(t) = φ̇(t). (21)
If the amplitude A(t) varies slowly compared to the phase φ(t), i.e.
if the following conditions are metφ̇(t) ≫

 Ȧ(t)A(t)

 (22)

the signal is asymptotic. If the signal is asymptotic and the wavelet
is analytic, the CWT can be approximated by [16]

T̃ψ [u](a, b) ≈

√
a

2
A(b)eiφ(b)ψ̂∗(aφ̇(b)). (23)

2.5. The ridge and skeleton of the CWT

Assuming that the signal consists of only one component, the
maximum modulus of its CWT will be restricted to a curve in the

a b

Fig. 2. The estimated natural frequency and the corresponding equivalent viscous damping ratio of the first bending mode of the bridge (see Section 3). (a) Without
smoothing the amplitude and phase from the skeleton (grey), with smoothing (black). (b) The dashed parts of the lines illustrate the regions of the CWT-estimates which
are affected by the edge effects and the part during which the train is still on the bridge.
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Fig. 3. The estimated natural frequency and equivalent modal damping ratio of the first bending mode of the bridge at Skidträsk (see Section 3).

time–frequency plane. This curve is referred to as the ridge ar(b)
of the CWT and the modulus of the CWT, evaluated at these points
Tψ [u](ar(b), b) is referred to as the skeleton of the CWT (see Fig. 1).
Given that an analytic wavelet is used, the amplitude A(b) (i.e.
the skeleton) of an asymptotic signal, can be determined from the
modulus of the ridge of the CWT (Eq. (23))

A(b) = 2
|Tψ [u](ar(b), b)|
√
a|ψ̂∗(aφ̇(b))|

(24)

and the phase φ(b) from its argument

φ(b) = arg(Tψ [u](ar(b), b)). (25)

In the presence of considerable noise, the extraction of the
ridge and skeleton of the CWT must be performed using rather
complicated methods, see for example [17]. In the present context
however, the Signal to Noise Ratio (SNR) is high and much simpler
approaches may be used. The ridges were estimated simply by
maximizing themodulus of the CWT along the frequency direction,
at each discrete point in time. The skeletons obtained from
these ridges were in many cases found to be very distorted and
smoothing algorithms such as moving average filters and spline
interpolation were used to decrease the distortion of the skeleton
curves. Since the derivatives of the modulus and phase of the CWT
along the ridge are needed, even very small fluctuations of these
quantities may lead to very large distortions of their derivatives.
Even though the fluctuations in the estimated functions (A(b) and
φ(b)) are often not visible in the natural scale and the smoothed
curves cannot easily be discerned from the un-smoothed curves,
they lead to highly distorted derivatives as shown in Fig. 2(a)
which shows a comparison between the estimated instantaneous
dynamic properties of the bridge at Skidträsk (see Section 3)
with and without smoothing. Fig. 2(b) illustrates the parts of the
amplitude dependent relations of the natural frequency and the
equivalent viscous damping ratio which are affected by the edge
effects of the CWT and the presence of the train in the signal.

2.6. Estimating the instantaneous equivalent viscous damping ratio

The nature of damping is complicated and not fully understood.
Therefore, the viscous damping model, which for many weakly
damped systems is a rather good approximation, is most widely
used. Due to the large model uncertainty inherent in using the
viscous damping model and the great importance of the choice of
the viscous damping ratio on the dynamic response in theoretical

simulations, great care must be taken in estimating an equivalent
viscous damping ratio from experimental data. Lower bounds are
generally used and in the present context, an estimate at the
lower amplitudes of vibration would be chosen to characterize the
damping of the structure. In what follows, these rules will be set
aside, though not forgotten, in order to enable an estimate of the
variation in the damping ratio with the amplitude of vibration.

Assuming that the dissipation of energy at each time instant can
be reasonably well modeled by viscous damping, an instantaneous
equivalent viscous damping ratio can be determined from the
skeleton of the CWT as follows. The free vibrations of the viscously
damped linear oscillator are given by

u(t) = Ce−ξωnteiωDt = Av(t)eiωDt (26)
(where C is a constant, ξ is the damping ratio, ωn is the
undamped natural frequency andωD =


1 − ξ 2ωn is the damped

eigenfrequency) from which the amplitude of the viscously
damped oscillator can be determined as

Av(t) = Ce−ξωnt . (27)
Differentiating Eq. (27) we have

Ȧv(t) = −ξωnCe−ξωnt = −ξωnAv(t) (28)
which gives an expression for the viscous damping ratio

ξ = −
Ȧv(t)
ωnAv(t)

. (29)

This is a constant in the case of a linear system and independent on
which kinematic variable (displacement, speed or acceleration) is
used. However, if we replace Av(t)with the skeleton of the CWT A
and ωn with the instantaneous natural frequency φ̇ we have

ξ̃ = −
Ȧ
φ̇A

(30)

as an estimate of the instantaneous equivalent viscous damping
ratio. It should be mentioned that the same result was obtained
by following the suggestions of Staszewski [6]. However, in [6]
the damping of the studied theoretical systems was taken as a
constant.

An example of the outcome of the above proposed estimate of
the equivalent damping ratio is shown in Fig. 2(b).

2.7. Summary of methodology

Fig. 3 summarizes the proposed methodology in that it shows
the original signal together with the estimated amplitude function
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a b

Fig. 4. (a) The bridge at Skidträsk. (b) The modulus of the Fourier transform of a typical outcome of free vibrations after the passage of a freight train (train 2, see Table 1)
on the bridge at Skidträsk.

Fig. 5. The CWT for acceleration in the range of frequencies between 2.5 and 5 Hz of the entire passage of train nr. 5 (steel arrow). The dashed rectangle marks the region
of interest in the present study.

Table 1
The train passages used in the present study and in [19]. The steel arrow is a freight
train transporting iron ore between mines and steel mills in the northern parts of
Sweden.

Train
nr.

Lorieux [19] Dominating
mode

Train
type

Speed
(km/h)

Total length (m)

1 F-1 Vertical Freight
train

99 424

2 F-3 Vertical/torsion Freight
train

94 602

3 F-4 Torsion Freight
train

98 261

4 F-5 Vertical Freight
train

101 421

5 S-2 Vertical Steel
arrow

101 408

A(t) and the estimated instantaneous dynamic properties, fn(t) and
ξ̃ (t) of the non-linear single degree of freedom system which the
original signal describes. The analysis procedures can be divided
into the following steps:
1. Compute the CWT
2. Compute the ridge by maximizing the modulus of the CWT at

each time instant

3. Extract the amplitude A(t) and the phase φ(t) using Eqs. (24)
and (25)

4. Apply an appropriate smoothing algorithm to the estimated
amplitude and phase

5. Compute the instantaneous natural frequency and equivalent
viscous modal damping ratio using Eqs. (21) and (30).

3. The bridge at Skidträsk

In order to test the capability of the CWT as applied to the
dynamics of real railway bridges, a single span steel–concrete
composite bridge was chosen as test subject. In the following,
a short description of the bridge is given, together with a brief
description of the experimental setup.

The bridge at Skidträsk (see Fig. 4(a)) is a single span,
steel–concrete composite bridge carrying one ballasted track. Its
span is 36 m. It was originally instrumented by the authors for
the purpose of determining the maximum vertical bridge deck
accelerations under normal operating conditions, bridge-weigh-
in-motion [18] and to estimate the dynamic properties of the
bridge. Here, only the part of the instrumentation which is related
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Fig. 6. This figure summarizes the results for the Skidträsk bridge in terms of
natural frequency (top) for the first vertical bendingmode (train nr. 3mainly excited
the first torsional mode) and the corresponding equivalent viscous damping ratio
(bottom) estimates. The black circles show the fitted linear functions.

to the presented study will be described, see [19] for more details.
Three accelerometerswere placed on the edge beams of the bridge:
two (one on each side) at mid-span and one at 1/4 of the span.
Here, only data from one of the mid-span sensors have been used.
However, the two sensors at mid-span can be used to detect
torsional modes by studying the signal obtained from

at =
a1 − a2

B
(31)

where at approximates the torsional acceleration at mid-span, a1
and a2 are the signals obtained from the two accelerometers at
mid-span and B is the distance between the two accelerometers.
The expression (31) is based on the assumption that the cross-
section is rigid in its own place. Naturally, without a more detailed
theoretical analysis of the mode shapes of the structure (or
a more extensive instrumentation), it is impossible to discern
such a ‘‘pure’’ torsional mode from modes which mainly involve
an asymmetric deformation of the bridge deck. However, there
appears to be some form of a torsional mode (∼4.6 Hz) quite close
to the first vertical bending mode at around 3.9 Hz (Fig. 4(b)).

The accelerometers were of the MEMS-type (Colibrys,1 Si-Flex
SF1500S) and the data was gathered using an HBM2 Spider8 data
logger. The measurement system was controlled from a PC.

4. The influence of the train mass

Before presenting the results of the proposed analysis proce-
dures, themost obvious cause for variations in the natural frequen-
cies of a railway bridge excited by a passing train, namely themass
of the train, must be discussed.

The influence of the additional mass of the train on the natural
frequency of the first vertical bending mode can be approximated
using the Euler–Bernoulli beam theory, assuming that the mass of
the train may be distributed over the length of the beam. On this
particular railway, the maximum allowable axle load is 22.5 tons.
The steel arrow iron ore trains have a well known mass as they
utilize the maximum allowable axle load optimally. Furthermore,
they have a special permit to use axle loads of 25 tons. The length
of the steel arrow wagons is approximately 10 m. Thus, a fully
loaded steel arrow adds around 400 tons to the mass of the bridge.
This causes a reduction in the first bending mode frequency of
approximately 20% considering a distributed mass of the bridge
alone of 16–17 tons/m. This is clearly illustrated by Fig. 5 in
which the CWT of the entire passage of train 5 is shown. The
signal was band-pass filtered (using a fourth order Butterworth
filter) over the range of frequencies 2.5–5 Hz so that the shown
signal corresponds to the energy content of the CWT. The figure
shows that when the train is on the bridge, the first bending mode
frequency takes values around 3 Hz which conforms well with the
estimate suggested above as the small amplitude frequency was
found to be 3.9 Hz (see Eqs. (32) and (33)) giving 0.8 ·3.9 = 3.1 Hz.
Such large variations have not been observed in the analyzed
signals.

The dashed rectangle in Fig. 5 marks the region which has
been analyzed in the present study. The observed variation in
the natural frequency is rather slow and takes around 10 s. The
speed of the train is around 100 km/h (see Table 1) so the time it
takes for the last four wagons to leave the bridge is approximately

1 http://www.colibrys.com.
2 Hottinger Baldwin Messtechnik, http://www.hbm.com.

a b

Fig. 7. The variation of (a) the natural frequency and (b) the damping ratio corresponding to the first vertical bending mode of vibration of the bridge at Skidträskån as a
function of the maximum vertical acceleration (during the windowed part of the signal).
Source: Figures from [19].
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Fig. 8. The CWT (left) and the estimated skeleton curves (right) computed on basis of the free vibrations of the train passages whichmainly excited the first vertical bending
mode of the Skidträsk bridge.

Lbridge/vtrain = 36 · 3.6/100 = 1.3 s. Clearly, the slow variations in
the eigenfrequencies cannot be explained by the variation in bridge
mass caused by the passing train.

5. Result

Five train passages with comparatively large acceleration
amplitudes in their free vibrations were chosen for this study.
These train passages are summarized in Table 1, together with the
notation used for these trains in [19].

The results obtained using the CWT in the proposed manner
show that for the bridge at Skidträsk, variations in the natural
frequency and the corresponding equivalent viscous damping ratio
occur during the free vibrations of the structure. The estimated

equivalent viscous damping ratios as well as the natural frequency
of the first vertical bending mode appear to agree well between
the different train passages. The free vibrations of train 3 were
dominated by what is believed to be the first torsional mode of
vibration (see Eq. (31) and Fig. 4(b)).

Rebelo et al. [20] used awindowed Fourier transform technique
to estimate the instantaneous natural frequency of a number
of single span reinforced concrete plate bridges. By applying a
window function with a length of a few periods of the free
vibrations, the instantaneous natural frequency and damping ratio
was computed by a least square fit of the damped linear oscillator
(26) to the windowed signals. It was then found that the natural
frequency of the first bending mode of the analyzed bridges
decreased as the amplitude of vibration increased. The authors
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Fig. 9. The CWT (left) and the estimated skeleton curves (right) computed on basis of the free vibrations of the train passages which generated substantial vibrations in the
first torsional mode of the Skidträsk bridge.

supervised amaster thesis [19] inwhich this approachwas applied
to the data used in the current study. As will be shown in Section 5,
this behavior is confirmed by the analysis based on the CWT.

Fig. 6 shows a rather encouraging summary of the estimated
natural frequencies and equivalent viscous damping ratios for the
bridge. Both the natural frequency and the damping ratio of the
first vertical bending mode converge towards the same values
at low amplitudes of vibration and as far as the different train
passages can be compared, they follow the same curve. This curve
is approximately linear over the available range of acceleration.
By fitting a linear function to the estimated data the following
relations were obtained:

f1(a) = 3.88 − 1.16a (32)
ξ1(a) = 0.005 + 0.100a.

The corresponding linear functions determined by Lorieux [19]
using the method based on windowed Fourier transforms (see
Fig. 7), were

f1(a) = 3.89 − 1.88a (33)
ξ1(a) = 0.006 + 0.104a.

The linear functions are plotted in Fig. 6 using black circles. The
domain of these functions was chosen so that mainly the free
vibration part of the relations was included. The estimates of
the natural frequencies are valid everywhere in the domain D
(Section 2.3). However, the estimated equivalent viscous damping
ratios are only meaningful in a region where both the edge effect
and the fact that free vibrations was assumed in establishing
Eq. (30) are respected (see Figs. 1 and 2).

The free vibrations after train nr. 3 are dominated by a mode
at ∼4.6 Hz which is believed to have a torsional character as

discussed in Section 3. Unfortunately, only one train excited
this mode well enough to get a clear estimate of its properties.
However, it appears that the damping ratio of this mode is much
more sensitive to the amplitude of vibration than the first vertical
mode of vibration.

The estimated damping ratios are in excellent agreement
between the two methods and the natural frequency have the
same constant term. The linear term of the natural frequency
does not agree well but for the available amplitude range, the
discrepancy is not severe. Fig. 8 shows the CWT’s and the estimated
skeleton curves for the train passages in which the free vibrations
were dominated by the first vertical bending mode. In Fig. 9, the
corresponding results are shown for train passages in which the
free vibrations are more or less influenced by the presumed first
torsional mode. In time, the frequency changes quite rapidly in the
beginning (of the domain D in which the edge effect is negligible
as described in Section 2.3) and then slowly converges towards
the low-amplitude value of the natural frequency. Before the ridge
enters D it is much affected by the presence of the train which
shows a large decrease in the natural frequency,most likely caused
by the additional mass of the train.

It should also be noted that the damping ratio at small ampli-
tudes of vibration, as estimated by the two methods, are in per-
fect agreement with the recommendations of the Eurocode (ξ =

0.005) for this bridge type. The recommendations of the Euro-
code are based on extensive experimental work on a large number
of bridges (see ERRI, European Rail Research Institute D 214, [21]
and Frybá [1]).

Both methods were implemented using the functions provided
in Matlab. In terms of computational time, the CWT took in the
order of minutes to produce the presented results whereas the
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windowed Fourier transform took in the order of hours. The main
reason for this is the relatively large number of least-squares
problems which have to be solved in the implementation
of the windowed Fourier transform. However, a specialized
implementation of the two methods, aiming at optimizing the
computational time may very well give a different result in terms
of computational time.

6. Conclusions

The presence of weak non-linear effects in a steel–concrete
composite bridge was detected and quantified using the contin-
uous wavelet transform on the free vibrations after the passage of
a train.

The following conclusions can be drawn from the present
study:

– The identified natural frequencies were found to decrease
whereas the corresponding equivalent modal damping ratios
were found to increase with increasing acceleration.

– The obtained results were validated against the results of
a method based on the windowed Fourier transform. The
agreement between the two methods was satisfactory and it
may thus be concluded that the observed non-linear behavior
does exist in this type of structures.

– The presented results took a fewminutes of computational time
to produce using the CWT whilst the windowed Fourier trans-
form method produced similar results taking a computational
time in the order of several hours.

– A qualitative difference between the dynamic properties of the
first vertical bending mode and the first torsional mode was
found in that the damping ratio of the first torsional mode
appears to increase much faster than that for the first vertical
bending mode.

– Simple arguments regarding the influence of the mass of the
train have clearly shown that this factor alone cannot explain
the observed variations in the estimated natural frequencies.

The nature of the observed non-linearity is not well understood
today. In the author’s opinion, the phenomena most likely to
cause effects such as those observed are interaction between
the structure and the ballasted track, soil–structure interaction,
and the non-linear material properties of cracked concrete. The
authors intend to perform further studies within this field in order

to study the influence of the above mentioned phenomena and
to classify those bridge types in which the observed behavior
can be expected. Extensions of the used method, geared towards
identifying parameters in non-linear single and multi-degree-of-
freedom models may become useful in future work within this
field.
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a b s t r a c t

Previous experimental work has identified variations in the natural frequency and the modal damping
ratio of the first vertical bending mode of vibration of a simply supported, single span steel–concrete
composite bridge. It was found that the natural frequency decreased and the modal damping ratio
increased with increasing amplitudes of vibration. This paper illustrates the influence of these variations
on the train-bridge resonance of this particular bridge by means of a non-linear single degree of freedom
system, based on the previously mentioned experimental results. As one might expect, the results indi-
cate that the influence of the increasing damping ratio leads to a considerable decrease in the resonant
amplitude whilst the decreasing natural frequency decreases the critical train speed at which resonance
occurs. Further studies along this line of research may help us reduce the uncertainties in dynamic
assessments of existing bridges based on dynamic measurements and improve our understanding of
the dynamic properties of railway bridges in general.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic response of railway bridges subjected to high-
speed trains is mainly governed by different states of resonance
between the bridge and the train. The load induced by the train
will, at certain train speeds, have components with frequencies
that match eigenfrequencies of the structure. Thus, many possible
combinations of train configurations and train speeds can exist
which cause states of train-bridge resonance. This is one of the
main issues in design of new bridges for high-speed railway lines
and in dynamic assessments of existing bridges, which is becoming
increasingly interesting for railway owners who wish to increase
the maximum allowed train speed and axle loads.

From an analysis of single degree of freedom systems, one
knows that in a state of resonance, the amplitude of vibration is
mainly governed by the damping of the system. This also holds
true for multi degree of freedom systems as well as for continuous
systems, although in such cases, different combinations of modes
may be relevant. However, variations in the eigenfrequency are
also likely to influence the state of resonance, mainly by altering
the critical train speed.

Previous studies [2,4] have given indications that for certain
bridges, the damping ratio and the natural frequency have a
dependency on the amplitude of vibration. The nature of these
non-linearities are not well known but candidates have been

suggested in the non-linear material properties of soil materials
and concrete, which both have the same tendency: the damping
increases and the stiffness decreases with the deformation of the
materials. Fink and Mähr [3] reported experimental findings from
a scaled laboratory model of a ballasted railway bridge which sup-
port the hypothesis that the ballast is one of the main sources to
this behavior.

This paper aims at illustrating the influence of the non-linear
dynamic properties of a simply supported, ballasted composite
bridge on its response at resonance. A simple single degree of free-
dom system representing the first vertical bending mode of the
bridge is used to simulate the response caused by a typical freight
train and for a theoretical study of the train bridge resonance based
on the Eurocode HSLM (High Speed Load Model) trains [5].

As the state of resonance is often dominated by a single mode of
vibration, a qualitative analysis of this type of models may provide
some insight into the real behavior at resonance. A formalized
knowledge of the railway bridge response at resonance may lead
to substantial savings for society, if it turns out that at resonance,
the increased damping leads to a much smaller response than that
predicted by linear theories.

2. Theory

2.1. A non-linear single degree of freedom system

Without explicitly knowing the sources to the non-linear
behavior, models can only be devised in a ‘‘black-box’’ sense.
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Measurements can give estimates of the relations between the dy-
namic properties (natural frequency and damping ratio) of differ-
ent modes of vibration and the amplitude of vibration in those
modes, see [4] and the references therein. Given such relations, a
non-linear single degree of freedom system can be established

m€xþ cðxÞ _xþ kðxÞx ¼ f ð1Þ

where x is the generalized coordinate of the fundamental mode of
vibration, m is the generalized mass, c(x) is an amplitude dependent
viscous dashpot coefficient, k(x) is a non-linear spring constant and
f = f(t) is the generalized forcing function.

The non-linearities are assumed to be small in the sense that
the frequency does not vary much around the limit value at
€x ¼ 0 and the mode shape is assumed to be constant, independent
on the amplitude of vibration. Furthermore, the ’’black-box’’ nature
of the proposed model presumes that variations in support stiff-
ness and damping and the interaction between the structure and
the embankments and with the track superstructure are all
grouped together in the eigenfrequency and the damping ratio.

The load model used to define the generalized force function f(t)
is also subjected to some simplifying assumptions, namely that the
train-bridge interaction may be neglected, thus leaving out the var-
iation in mass damping and perhaps to some extent in stiffness,
caused by the passing train.

Frybá [1] derived a solution for the response of a simply sup-
ported beam subjected to a pulse train moving along the beam.
In the present analysis, we wish to solve for the temporal coordi-
nate using a numerical technique in order to include the non-linear
system parameters, but the generalized force for the first mode of
vibration is approximated in the same way as in [1]:

f ðtÞ ¼
XN

i¼1

Fi�iðtÞ/ðct � diÞ ð2Þ

where Fi is the axle load of axle number i, N is the number of axles,
�(t) is a function defined by

�iðtÞ ¼ Hðt � di=cÞ � Hðt � ðdi þ LÞ=cÞ ð3Þ

where H(t) is Heaviside’s function. Furthermore, di is the distance
from the ith axle to the first point on the beam, L is the length of
the beam and /(x) is the first (vertical bending) mode of vibration

/ðxÞ ¼ sin
px
L

� �
ð4Þ

This representation of the load function is a consequence of
expanding the spatial coordinate in a Fourier series. This series will
repeat itself indefinitely along the spatial coordinate, but we are
only interested in x 2 (0,L). The function �i(t) simply ensures that
the load is not applied to the repeated occurrences of the physical
structure. Otherwise, the analysis would comprise a structure
equivalent to an infinite continuous beam on simple supports.

The parameters of Eq. (1) can be rearranged so that the follow-
ing equation is obtained

€xþ 2nðxÞxnðxÞ _xþx2
nðxÞx ¼

f
m

ð5Þ

where n(x) and xn(x) are the amplitude dependent damping ratio
and natural circular frequency of the fundamental mode of
vibration.

A methodology to determine the amplitude dependency of the
natural frequency and damping ratio from measured free vibra-
tions after the passage of a train using the continuous wavelet
transform (CWT) have been presented in [4]. More general applica-
tions of the CWT have been presented in several papers, see for
example [6]. In this paper, bilinear relations based on the analysis
presented in [4], were used to model the amplitude-dependency of

the dynamic properties of the first mode of vibration. These rela-
tions, which may be represented by the generic relation

gð€xÞ ¼
g0 þ kj€xj; j€xj 6 €xc

gc; j€xj > €xc

�
ð6Þ

are shown in Fig. 1 with the parameters given in Table 1. The linear
part of these functions were determined by means of the CWT,
based on five train passages at slightly different speeds. For further
details, the reader is referred to [4]. The constant parts of these
functions have been assumed and reflect the lack of knowledge
about these relations at accelerations greater than 0.3 m/s2.

The relations given by Eq. (6) were derived using measurements
of acceleration. However, in solving non-linear differential equa-
tions it is much more convenient to have the non-linearity on
the displacement and/or the velocity as then, well-known numer-
ical methods may be directly applied. In the present context, this
does not pose any serious difficulties, because the non-linear rela-
tions given by Eq. (6) are defined using the free vibrations of a sin-
gle mode of vibration. Therefore, the displacement during the free
vibrations can be determined from measurements of acceleration
simply by applying a high-pass filter to the signal and integrate
it numerically. By doing so, and normalizing the results it is easy
to verify that the displacement during free vibrations is propor-
tional to the accelerations according to

uðtÞ �
€uðtÞ
x2 ð7Þ

with a phase-shift p. This is shown in Fig. 2, where x was taken as
2p3.9 rad/s which clearly shows that the variation in frequency is
slow enough to make this approximation feasible, i.e. the accelera-
tion of the free vibrations may be obtained from the displacement
function by applying a scaling and a translation. Formally, this
means that the frequency and amplitude modulated signal which
is considered here

uðtÞ ¼ AðtÞ cosðxðtÞtÞ ð8Þ

has the property that _xðtÞ � 1, i.e. slow variations in x(t). Thereby,
the generic relation (6) can be restated as a function of displace-
ment, simply by making the change of variables €x ¼ �x2

0x, with
x0 being the natural frequency at small amplitudes of vibration.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.01

0.02

0.03

0.04

0 0.5 1 1.5 2 2.5 3 3.5
3.4

3.6

3.8

4

Fig. 1. Top: The damping ratio function (in %) for the SDOF-model. Bottom: The
frequency function (in Hz) for the SDOF-model.
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2.2. Numerical procedures

Solutions to Eq. (5) are most conveniently determined by means
of numerical methods. In this particular case, an explicit method
based on central differences was found to give quick and robust
solutions. Hence, the first and second derivatives were approxi-
mated by

_xi �
xiþ1 � xi�1

2Dt
ð9Þ

€xi �
xiþ1 � 2xi þ xi�1

Dt2 ð10Þ

If the initial values are zero, we can set xi�1 = 0 and step forward
in time using the force term

f̂ ¼ fi � axi�1 � bxi ð11Þ

where the coefficients a and b are given by

a ¼ m
1

Dt2 �
nðxiÞxnðxiÞ

Dt

� �
ð12Þ

b ¼ m x2
nðxiÞ �

2
Dt2

� �
ð13Þ

and a stiffness k̂

k̂ ¼ m
1

Dt2 þ
nðxiÞxnðxiÞ

Dt

� �
ð14Þ

so that

xiþ1 ¼ f̂ ðxiþ1Þ=k̂ðxiþ1Þ ð15Þ

Having performed these operations for time step iþ 1; _xi and €xi can
be computed using Eqs. (9) and (10), respectively.

As the method is explicit, one has to ensure that the time step
Dt is sufficiently small, so as to avoid numerical instabilities.

3. The Skidträsk bridge and the Steel Arrow train

The question at hand is whether the amplitude dependency of
the dynamic properties of the bridge has any influence on its dy-
namic response due to passing trains. Thus, a comparison will be
made between the proposed model and the corresponding linear
single degree of freedom system which would have been devised
without this information. Primarily, the Steel Arrow train will be
used in this comparison, as measurements of passages with this
train are available.

In this section, a short description of the Skidträsk bridge and
the part of the instrumentation of the bridge which was used in
this paper will be given. Also, the Steel Arrow train will be defined
in terms of the parameters needed to model it using Eq. (2).

3.1. The Skidträsk bridge

The skidträsk bridge is a simply supported composite bridge
with a span of 36 m carrying one ballasted track, see Fig. 3. It
was instrumented with a number of sensors, of which two vertical
accelerometers at mid span, one on each upper flange of the steel
beams, which were used in this paper. A more detailed description
of the bridge and its instrumentation may be found in [7,8]. The
parameters used to model the bridge with a linear single degree
of freedom system were E = 210 GPa, I = 0.82 m4 and m = 17,000
kg/m, where E is the elastic modulus of an equivalent steel section,
I is the area moment of inertia of this equivalent cross section and
m is bridge mass in which the mass of the ballast has been consid-
ered. In accordance to the Eurocode [5], the damping ratio for such
a bridge should be chosen as 0.5%.

3.2. The Steel Arrow train

The Steel Arrow train is used for steel ore transports in the
northern parts of Sweden. Each wagon has a length of 13.9 m, a bo-
gie distance of 8.6 m and the axle distance within a bogie is 1.8 m.
For the locomotives, the corresponding distances are 13.9 m, 7.7 m
and 2.7 m, respectively. The axle loads are comparatively well
known for this train type, as the wagons are typically filled with
an equal amount of ore pellets. The axle loads of the locomotives
and wagons are 19.5 and 22.5 metric tons, respectively. The train
set studied in this paper consists of 24 wagons, pulled by two
locomotives.

Table 1
Parameters in the bilinear relation given by Eq. (6).

g0 gc k (s/m) €xc (m/s2)

n 0.005 0.035 0.1 0.3
fn 3.9 Hz 3.5 Hz �1.2 0.3
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Fig. 2. Comparison between the measured acceleration and the acceleration
computed from high-pass filtered and integrated acceleration assuming slow
frequency variations.

Fig. 3. The bridge at Skidträsk.
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4. Result

4.1. Comparison with measurements

The model based on information about the first mode of vibra-
tion can of course only be compared to the measured reality in a
frequency range which resembles the contributions related to this
mode. Thus, a band-pass filter is necessary in order to make a just
comparison in the time domain. However, in the real structure, a
torsional mode exists with a frequency quite close to that of the
first vertical bending mode. This is likely to cause some distur-
bances in a comparison, but the most severe errors are most likely
caused by reducing the number of degrees of freedom to one and
the simplicity of the load model.

Fig. 4 shows a comparison between the model and the mea-
sured response due to a Steel Arrow train moving at approximately
102 km/h. The free vibrations after the train passage are shown in
Fig. 5.

4.2. Theoretical impulse responses

The impulse response of the model was computed for input
forces F = 5, 10 and 50 kN. The result is shown in Fig. 6.

4.3. Theoretical response at train-bridge resonance

The train-bridge resonance was studied by simulating train pas-
sages at different train speeds v 2 (50,300) (km/h) with a step of
Dv = 1 km/h. This was done using the Steel Arrow configuration
described in Section 4.1 and with the HSLM trains of the Eurocode.
In this analysis, the linear model based on parameter values
according to the Eurocode is compared to the proposed non-linear
model. The results obtained for the Steel Arrow are shown in Figs. 7
and 8. However, it is also interesting to see what influence a vari-
able frequency may have on the critical train speed. Therefore, a
model in which the damping ratio was taken constant, whilst the
natural frequency was allowed to vary with amplitude in accor-
dance with Eq. (6) was also studied. This result is shown in Fig. 9.

5. Discussion

5.1. Comparison with the Steel Arrow train measurements

Given the highly simplified model used, the agreement between
the measured signal and the simulation is quite good. However,
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some aspects of reality will not be correctly represented with such
a simple model as that proposed here. The most likely source to the
discrepancies which can be observed in Fig. 4 is the highly simpli-
fied load model and the assumption that the mode shape is
constant.

It goes without saying that the used load model is questionable
in a comparison against the measured reality. The chosen load
model does not include the variation in mass, stiffness and damp-
ing caused by the presence of the train. Nor can it describe defects
in the train set and the rail-wheel contact which is known to give
rise to impulses which may be ‘‘felt’’ by the bridge even though
they often include much higher frequencies than what is custom-
ary in the bridge community.

The issues regarding the choice of mode shape and possible
variations in the mode shape with the amplitude of vibration
can, presumably, be ascribed to soil-structure interaction at the
foundations/abutments and to the interaction between the bridge
and the track superstructure. Such effects are not represented in
the proposed model. In order to overcome these difficulties, further
research regarding the nature of the observed non-linearities must
be performed.

The comparison between the model and the measurements of
the free vibrations which is shown in Fig. 5 show a much higher
resemblance, which is encouraging, but not completely unex-
pected as the parameters of the model are based on such
measurements.

To summarize this comparison, the agreement between the
proposed model and the measured reality gives some confidence
in the proposed model and it is therefore appropriate to use it in
a theoretical study of the critical train speed for this particular
bridge. Due to its simplicity, both in terms of instrumentation
needs and analysis, it may also be used in a first check on existing
railway bridges along lines for which an increase in maximum al-
lowed train speed is planned.

5.2. Impulse responses

Fig. 6 shows the impulse response functions for the proposed
model and the corresponding linear model. It is clear that the var-
iation in the dynamic properties of the system leads to a decreased
resonance amplitude and a spreading of the frequency content
over the range of frequencies in which the natural frequency var-
ies. This observation may be useful when analyzing measurements
from railway bridges as estimates of mode shapes using ‘‘output-
only’’ methods such as the Frequency Domain Decomposition [9]
sometimes lead to several very similar modes with closely spaced
frequencies.

5.3. Critical train speeds

A comparison of Figs. 7 and 9 clearly shows that it is the in-
creased damping which gives rise to the decreased resonance
amplitude of the non-linear model. The variation (decrease) in
the natural frequency leads to a decreased critical speed, appar-
ently a scaling of the train speed, and an increase in the displace-
ment, due to the weakening of the system at higher amplitudes
of vibration.

5.4. Possible sources of the observed non-linearity and future work

The presented analysis is the outcome of work with two issues
related to high-speed railway bridges; the choice of design param-
eters and the analysis of existing bridges in capacity assessments.
These are closely interrelated as we need to understand the under-
lying physics in order to gain confidence in the implications of the
presented results, but also in order to device appropriate testing
procedures for existing bridges.

As mentioned earlier, the most probable sources of the observed
non-linear behavior is the soil material properties of either the
foundations or the ballasted track superstructure. However, other
conceivable sources such as bearing friction and cracks in the con-
crete deck cannot, at the state of understanding at which we are
now, be completely ruled out. Of course, any combination of these
sources may also be possible. The reason for taking the soil mate-
rial properties as the most likely candidate is motivated by the
relation between soil strain and elastic moduli and material damp-
ing ratio. Figs. 10 and 11 show generic curves based on the so-
called hyperbolic model (see for example [10,11]) describing the
variation of the soil shear modulus (normalized against the shear
modulus for small strain) and damping ratio with strain. However,
these quantities are also dependent on the state of stress (or rather,
the mean effective stress, as indicated in the figures). In the thesis
by Neild [12], a similar behavior, i.e. increasing damping and
decreasing stiffness with amplitude of vibration, is reported based
on experiments on cracked reinforced concrete beam.

From a theoretical point of view, the development of elasto-
plastic and hypoplastic material models and macro-element
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Fig. 8. Maximum absolute values of the vertical acceleration as function of train
speed for the ten HSLM-A trains of the Eurocode.
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models for shallow foundations should be sufficient to model this
behavior. However, from a practical point of view, such efforts can-
not be justified unless some more conclusive experimental find-
ings can support the developments this far. Furthermore,
procedures for determining model constants for relevant ranges
of vibration amplitudes from non-destructive tests must be de-
vised. This can be achieved in more than one way, but in the
authors opinion, two types of tests should be devised for this
purpose:

i. Measurements during the construction stages.
ii. Measurements on existing bridges.

Both types of experiments should be based on excitation with
known forces, i.e. using a hydraulic exciter, so that both force
and displacement control can be used. The first type of tests would
enable a qualitative and to some extent quantitative study of the
influence of the foundations and the track superstructure on the
dynamic properties of a tested bridge. Naturally, such tests would
have to be performed on a number of bridges of different type and
span lengths, preferably also on different soil configurations. The

main purpose of these tests would be to validate theoretical mod-
els and the inclusion of the results of geotechnical surveys in such
models. In doing so, issues related to the choice of model parame-
ters in constitutive relations and macro-element formulations
would have to be handled. Given that the type one tests really
gives conclusive results regarding the influence of the foundation
and track superstructure on the dynamic properties of a set of typ-
ical bridges, type two tests could be performed on arbitrary exist-
ing bridges, thus making a much more systematic study possible.
Such studies could take phenomena such as seasonal variations
and the influence of track realignment in consideration.

5.5. Concluding remarks

In order to draw general conclusions regarding the observed
behavior, a more thorough investigation of the presented results
must be made. The sources of the observed non-linearities must
be understood in order to implement an approach such as that
used here in dynamic assessments of existing bridges with suffi-
cient confidence. If for example, the track superstructure is the
main source to these effects, winter conditions may alter the
functions which describe the variation in natural frequency and
damping ratio due to freezing of the ballast, especially if the
railway line in question is not heavily trafficked. Also, the bilinear
relations used here cannot be directly applied with full confidence
in a state of resonance, where the acceleration are much higher
than 0.3 m/s2.
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Abstract

In this article it is shown empirically that ballasted bridges in cold climates can exhibit a step-like variation of
their eigenfrequencies as the yearly season changes. The bridge under study was observed to have significantly
higher natural frequencies (as much as 35 %) during the winter months compared to the summer. This
variation was rather discrete in nature and not proportional to temperature. Furthermore the increase in
natural frequencies took place only after the temperatures had dropped below 0 ◦C for a number of days. It
was thus hypothesized that this change in natural frequencies was due to changes in the stiffness parameters
of some materials with the onset of frost. In low temperature conditions not only the mean value of the
measured frequencies increased, but also their variance increased considerably. Given the large spread of
the measured natural frequencies, the stiffness parameters were assumed to be stochastic variables with an
unknown multivariate distribution, rather than fixed values. A Bayesian updating scheme was implemented
to determine this distribution from measurements. Data gathered during one annum of monitoring was
used in conjunction with a finite element model and a meta model, resulting in an estimation of the relevant
stiffness parameters for both the cold and the warm condition.

Keywords: Railway bridges, Dynamics, Ballasted track, Seasonal effects, Bayesian updating,
Markov-Chain Monte-Carlo Sampling

1. Introduction

The influence of long periods of low tempera-
ture on the dynamic properties of ballasted rail-
way bridges has not been given much attention.
This paper presents a study of the influence of sea-
sonal effects on the natural frequencies of a bal-
lasted single span steel-concrete railway bridge. It
is shown that the natural frequencies of the first ver-
tical bending and torsional modes of vibration in-
crease markedly during the cold period of the year.
An analysis of measured free vibration signals dur-
ing one annum is used as a basis for a Bayesian
updating procedure, which is applied on a three di-
mensional finite element model of the structure.

In dynamic assessments of existing railway
bridges with the purpose of increasing the allowable
train speed and/or axle loads, the analyst primarily
needs information regarding the natural frequencies

∗Corresponding author
Email address: mahir.ulker@byv.kth.se (Mahir

Ülker-Kaustell)

and the corresponding modal damping ratios of the
first few modes of vibration. This information can
be obtained by fairly simple instrumentations using
the free vibrations from passing trains. However,
as will be shown, the natural frequencies estimated
during the cold season can be misleading. The nat-
ural frequencies are needed to estimate the critical
train speeds at which train-bridge resonance may
occur [1, 2, 3] and can be used in various model up-
dating schemes, see for example [4, 5], preferably to-
gether with their corresponding mode shapes. The
damping ratios are needed to estimate the response
amplitudes for different train speeds and will not be
treated here. Naturally, estimates of the properties
of higher order modes would also be desirable, but
are more difficult to obtain.

In applications of structural health monitoring
(SHM), an awareness of temporal variations in the
dynamic properties of the structure being moni-
tored is also very important. Such systems need
to update the ”healthy” state according to the sea-
sonal variations so as to avoid false positives as sug-
gested by Peeters et al. [6].

Preprint submitted to Engineering Structures April 16, 2013
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Figure 1: Schematic diagram of the updating method used in this study. It includes the acquisition and analysis of data
(upper-right section), the development of the model and meta model (lower-right corner) and the updating procedure (left
section) that builds on the results of the two previous steps.

Resonance between the train and the bridge can
occur whenever the train passing frequency (i.e. the
ratio between the train speed v and some character-
istic length L such as the boggie distance or the car-
riage length) coincides with a natural frequency fn
of the bridge. Clearly, the modes of vibration with
the lowest frequencies will be more sensitive to this
phenomenon because they will be excited by lower
train speeds, but also because they are not as ef-
ficiently attenuated as higher order modes. There-
fore, accurate estimates of the natural frequencies
are very important and overestimated frequencies
may lead to unsafe decisions as the critical train
speeds are then also overestimated. It is a well
known fact that for linearly elastic, lightly damped
structures, the natural frequencies and their cor-
responding mode shapes essentially depend on the
spatial distribution of stiffness and inertia. The in-
ertial properties of the structure can typically be
fairly well estimated using the design drawings, al-
though some variability in the amount of ballast
and in the density of the ballast is expected due to
track maintenance operations.

The goal of this study is to infer some stiffness

properties of the ballast and subsoil from measure-
ments carried out on the bridge, taking seasonal
effects in consideration. However, as will be shown,
other mechanisms may be relevant in describing the
theoretical modes of vibration of the structure in a
sufficiently accurate way. Bayesian updating of a
3D finite element (FE) model with Markov-Chain
Monte Carlo (MCMC) sampling is applied to de-
termine posterior distributions of the uncertain pa-
rameters in the warm and cold states of the bridge.
The process used to obtain the distributions of the
chosen uncertain parameters/mechanisms can be
divided in the following steps:

1. Data collected for over one year of monitor-
ing was analyzed. The eigenfrequencies for the
first vertical bending mode and the first tor-
sional mode were extracted from the data and
studied.

2. A FE model of the structure was devised.
The model was parameterized so that the pa-
rameters representing the uncertain parame-
ters/mechanisms could be treated as unknown
variables. The FE model thus represents a
function that takes the uncertain stiffness pa-
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rameters as arguments and returns the eigen-
frequencies corresponding to the studied modes
of vibration.

3. A large number of inputs (uncertain param-
eter sets) were evaluated in the model and
the sought eigenfrequencies obtained by solv-
ing the corresponding eigenvalue problem. The
parameter ranges were chosen to cover all the
values that can be expected within reasonable
limits. From this result a meta model was con-
structed by fitting a Gaussian Process. The
purpose of the meta model was to bypass the
computationally expensive model in the follow-
ing step.

4. A Bayesian updating scheme was used to up-
date the distribution of the chosen stiffness
properties, using the meta model to calculate
the likelihood of any given input.

The result of this process (graphically depicted in
figure 1) is an estimation of the distributions of the
uncertain parameters, which result in a frequency
distribution in the theoretical model that matches
the observed one. In section 3, we describe the
structure, its instrumentation and an analysis of
the estimated natural frequencies. The Bayesian
updating scheme is described in detail in section
4 and the finite element model used to define our
theoretical model is described in section 5. The
results of the model updating are presented in sec-
tion 6 and its implications are discussed in section
7, which also presents a summary of the conclusions
drawn from the study and suggestions for future re-
search.

2. Background

Studies of this kind are not very common in the
literature. However, some references do treat the
issue and related questions.

Xia et al. [10] presented a review of temper-
ature effects in the context of vibrations of civil
structures, but the temperature span mainly cov-
ered temperatures above the freezing point.

Yang et al. [11] reported variations in the nat-
ural frequencies of the first transversal modes of
vibration of a road bridge of several spans due to
seasonal variations. The frost in the ground was
found to be a likely cause. Similarly, [12] observed
large variations in the first three modes of vibration
in a steel-concrete composite road bridge during a
9 month period and suggested that the freezing of

the supports could give a reasonable explanation to
these observations.

Simonsen et al. [8] presented results of laboratory
tests on the resilient modulus of soil materials rang-
ing from marine clay to gravelly coarse sand. The
resilient modulus was found to increase by 1-2 or-
ders as the temperature was decreased from 0◦C to
-10◦C and the most considerable increase appeared
in the temperature interval (−5, 0)◦C. The resilient
modulus in the unfrozen state, after one freeze-thaw
cycle, was found to decrease by approximately 20 %
for the gravelly sand and as much as 60 % for some
of the other tested soils. One must therefore con-
clude that these relations are more complicated in
an in-situ soil, being subjected to repeated freeze-
thaw cycles. Nevertheless, the results presented by
Simonsen et al. serves well to illustrate the vari-
ability in the elastic properties of soil materials due
to seasonal variations.

Li et al. [9] performed cyclic triaxial tests on dif-
ferent sand specimens and found that the dynamic
modulus of elasticity increased with decreasing tem-
perature, much in the same way as in [8], and that
the material damping ratio decreased by a factor
2 or more as the temperature decreased form 0 to
−10◦C.

Ice is a highly complicated material, the mechan-
ical properties of which depends on the way it was
formed, temperature and variations in temperature,
air humidity and several other factors [13]. Due to
the complexity of this material, there are not many
tabulated values of its properties, but there are
many publications which discuss the topic. Here,
we simply state that many sources imply that the
elastic modulus of ice is in the order of 1–10 GPa,
which indicates that the observations made in the
above cited references regarding the elastic proper-
ties of soil materials in a frozen state are reasonable.

3. The bridge

In this section, the bridge, its instrumentation
and an analysis of the measured data are presented.
The studied bridge is situated in the northern parts
of Sweden and has its longitudinal axis in the north-
south direction. A photo of the bridge is shown in
figure 2. It has a horizontal skew of 30◦, a span
length of 36 m and carries one ballasted track. The
thickness of the reinforced concrete deck varies be-
tween 320–350 mm and its total width is 6.7 m. The
cross section of the two main steel beams varies
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Figure 2: The bridge at Skidträsk.

along the bridge and have an average height of ap-
proximately 1.7 m. The main beams are connected
with transverse braces at 4 sections along the beam
as well as at the beam ends. One of the supports
is fixed, but free to rotate over the transversal axis
and the other end is supported on roller bearings
to relieve constraints essentially caused by annual
temperature variations. The bridge is founded on
shallow foundations on an approximately 5 m thick
layer of silty moraine. The geotechnical survey es-
timated the modulus of elasticity of the subsoil to
be approximately 30 MPa and its density was deter-
mined as 1700 and 2000 kg/m3 for the drained and
undrained state, respectively. This estimate of the
elastic modulus of the subsoils is intended for calcu-
lations of long-term settlements and is therefore a
lower bound, characteristic value. The foundation
plates have the width W = 9.2 m and the length
B = 5.8 m and are placed with a skew of 30◦ with
respect to the bridge center line.

3.1. Instrumentation

The instrumentation used in the current study
consisted of three accelerometers and a tempera-
ture gauge. The data acquisition system consisted
of a Spider8 data logger from HBM1 and a lap-
top PC. The accelerometers are of the MEMS-type,
manufactured by Colibrys2 and encased by the lab-
oratory personnel at KTH, Department of Struc-
tural Design and Bridges. These were placed under

1http://www.hbm.com
2http://www.colibrys.ch

the top flanges inside the bridge, one on each main
beam at mid span and one on one of the main beams
at the quarter point. The temperature gauge was
placed so as to measure the outdoor air tempera-
ture.

The accelerometers could thereby be used to
identify the first vertical bending mode by tak-
ing the mean value of the response at mid span
and the first torsional mode by taking the differ-
ence between the responses at mid span. However,
there should be a transversal mode within the range
of frequencies where the first vertical bending and
the first torsional mode reside. The instrumenta-
tion did not include any device measuring in the
transversal direction and therefore, it could not be
identified from the measurements. The accelerom-
eter at the quarter point could be used to identify
the second vertical bending and torsional modes,
but they were generally not well excited in the free
vibrations.

3.2. Estimation of natural frequencies

The frequencies were determined by peak pick-
ing in Fourier transforms of the windowed free vi-
brations signals. All train passages that could be
clearly identified by an automated procedure from
the approximately 7000 logged train passages were
used. However, the instrumentation was not ini-
tially designed for the current purpose. There-
fore, some of the train passages were truncated
very early in the free vibrations, so that the av-
erage time of free vibrations was sometimes only
10 seconds or even less. Complete train passages
show that the free vibrations last for approximately
30 seconds, so even if the trigger system would
have been able to correctly capture the free vibra-
tions, the frequency resolution would still only be
∆f = 1/30 = 0.033 Hz. The studied natural fre-
quencies lie in the range 3.5–8 Hz so an absolute
error of 1/10 = 0.1 Hz is not acceptable. To over-
come this problem, we used zero padding so that
each signal was 500 seconds long.

Another issue lies in the fact that the natural fre-
quencies are dependent on the amplitude of vibra-
tion during free vibrations [7]. Therefore, the sig-
nals used in the updating procedure were truncated
so that the maximum amplitude of vibration was
0.02m/s2. The analysis presented in [7] was based
on signals from the same bridge during autumn and
showed that the natural frequency f1 (given in Hz)
of the first vertical bending mode is well described

4
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Figure 3: The variation in the estimated frequencies and the
temperature during the periods of measurement.

by the linear function

f1(am) = 3.88− 1.16am (1)

where am ∈ (0, 0.2)m/s2 is the vertical accelera-
tion.

3.3. Estimated natural frequencies

We wish to use the term cold period for the time
of the year when the frost in the ground is per-
manent, i.e. approximately between December and
April at this particular location and the term warm
period for the part of the year when there is no frost
in the ground. The transition periods between the
cold and the warm period are simply referred to as
transition periods.

Figure 3 shows the variation in the natural fre-
quencies and the temperature over the whole period
of measurements. Unfortunately, technical prob-
lems with the data acquisition system caused a few
gaps in the time series, but they still give a good
picture of the annual variation in the natural fre-
quencies. In figure 5, the frequencies of the stud-
ied modes are plotted as functions of temperature.
The frequency estimates have been color coded so
that the transition zones into the warm state (corre-
sponding to the months of March and April) grad-
ually change from black to grey. This clearly shows
how the frequency of the first vertical bending mode
tends towards their warm state values (3.8 Hz), but
it takes weeks of temperatures above 0 ◦C to reach
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Figure 4: The variation in the estimated frequencies and the
temperature during the first 4 weeks of measurement.

it. The frequency of the first torsional mode can be
seen to reach it warm state level much quicker.

A reasonable explanation for this behavior could
be the development of the frost in the ground and
the formation of ice within the track superstructure.
However, since the superstructure is more exposed
to the climate than the soil, the frost in the ground
can be expected to vary slower than in the ballast.
It typically takes in the order of days of tempera-
ture above or below the freezing point to cause rel-
evant variations in the frost front. As can be seen
in figures 3 and 4, the natural frequencies appear to
vary somewhat in a daily basis, but major changes
caused by a few days of temperatures above 0 ◦C
can only be seen in the torsional frequency. This
was consistent with the finding that in the theo-
retical model (described in section 5), the torsional
frequency depended mostly on the ballast stiffness,
while the bending frequency was more affected by
the soil stiffness.

Another possible mechanism which may be in-
volved is the fouling of the ballast, i.e. the emer-
gence of finer materials within the ballast which
appear as a consequence of the deterioration of the
track caused by the traffic loads, but also by main-
tenance operations such as tampering and realign-
ment of the track [14]. Eventually, these finer par-
ticles will fill the voids between the ballast parti-
cles and provide the ballast bed with a hydraulic
conductivity, see [15] and the references therein.
Hence, if the ballast is fouled to a certain degree,
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Figure 5: The variation in the frequency of the first vertical
bending mode (top) and the first torsional mode (bottom)
as function of temperature.

it appears likely that it holds a certain amount of
water which could freeze. When spring begins, the
temperature increases continuously, and the frost
in the subsoil and in the track superstructure grad-
ually disappears, which manifests itself in a more
well-behaved variation in the natural frequencies
of the structure. It should be noted that within
this reasoning, the natural frequencies cannot be
regarded as functions of temperature, but rather as
functions of the freezing index, a quantity used in
the geotechnical community to estimate the depth
of the frost front [16, 17]. Simply put, the freezing
index is the time integral of the temperature (at the
ground surface) below the freezing point from the
beginning of the cold period. Other factors such as
snow cover and the location of the phreatic surface
may also influence the frost depth.

To the authors knowledge, there are no studies
available regarding frozen ballast in railway applica-
tions and thus, the above reasoning is mainly based
on qualified guesses. Nevertheless, these findings
imply that the cold state is more favourable than
the warm state in terms of train-bridge resonance,
since the natural frequencies increase and thereby,
the critical train speeds. Furthermore, these impli-
cations should hold true for railway bridges in gen-
eral and particularly for ballasted railway bridges.
However, in a state of resonance, the structural
damping is the governing parameter and further re-
search is therefore needed.

4. MCMC Bayesian updating

Bayesian updating is a technique to take into
consideration new knowledge (also called evidence)
about stochastic variables. If a certain variable,
due to epistemic or statistic uncertainty, is given
an initial probability distribution, subsequent mea-
surements of that variable can improve the available
knowledge about it and thus lead to a modified and
more accurate probability distribution. This pro-
cess can be performed in a rigorous and systematic
way using Bayes theorem [18]. The initial assigned
probability distribution is called the prior distribu-
tion, while the updated distribution that takes the
new evidence into consideration is called the pos-
terior distribution. Bayes theorem states that the
(posterior) probability Ppost of a certain event x
given a set of observed evidence Yobs equals the
normalized product of the likelihood of the evidence
given the event, and the probability of the event
disregarding the evidence

Ppost(x|Yobs) =
Pprior(x)L(Yobs|x)

∫∞
x
Pprior(x)L(Yobs|x)dx

(2)

This normalizing constant given in the denominator
of equation (2), called Bayes integral, is the likeli-
hood of the evidence disregarding the event (i.e.
the integral over all possible events). Bayes inte-
gral is expensive to evaluate, because it generally
involves multidimensional numeric integration, but
there are methods to obtain the posterior distribu-
tion without having to evaluate this integral [19].
In this study, Markov-chain Monte Carlo (MCMC)
sampling was used [20].

A drawback of using MCMC is that the direc-
tion of each computational step is determined by
the Markov-chain and hence, are not known be-
forehand. Therefore, the algorithm cannot be par-
allelized and the computationally expensive eval-
uations of the 3D finite element structural model
must be performed sequentially. However, this can
be improved by means of a meta model (see section
5.4), which can be evaluated very quickly.

In our study we attempt to find the probabil-
ity distribution of the stochastic properties of our
model given our evidence (i.e. the measured eigen-
frequencies). The variables considered stochastic
in our model were the modulus of elasticity of the
ballast, the subsoil and the concrete, the longitu-
dinal track stiffness and the mechanism controlling
the longitudinal motion of the roller bearings. All
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the variables were updated together, resulting in a
multivariate distribution that considers the inter-
dependence of the variables.

In other words, we want to determine the multi-
variate distribution of the properties of the bridge,
that we chose to update, that will result in a the-
oretical frequency distribution that approximates
the observed one. The observed frequency distribu-
tion is bivariate, since two eigenfrequencies are con-
sidered. Naturally, when the first eigenfrequency is
high it is expected to be due to high stiffness pa-
rameters, which should lead to a high value of the
second eigenfrequency also, so the distribution for
the two first eigenfrequencies is obtained consider-
ing their interconnection.

4.1. Markov-chain Monte Carlo sampling

As mentioned above there are methods for updat-
ing a distribution according to Bayes theorem with-
out having to compute Bayes integral. One well-
established family of such methods is the Markov-
chain Monte Carlo sampling methods. As the name
indicates, in these algorithms a Markov Chain is
generated which, asymptotically, can be shown to
behave as the sought distribution. MCMC meth-
ods are designed to sample from distributions with
a known algorithmic expression, but that are diffi-
cult to sample from analytically.

The modified version of the Metropolis-Hasting
sampling algorithm [21, 22] used in this study was
first suggested by Tarantola [23]. The algorithm
starts from an initial point Xi in the space to ex-
plore. This Xi can be set manually or chosen at
random from the prior distribution and it consti-
tutes the first sample of the collections of samples
to generate. Xlast denotes the last X generated.
Initially Xlast is Xi. The theoretical (meta) model
M is evaluated with input Xlast and the eigenfre-
quencies Flast are obtained. Two likelihoods are
then obtained L1

last which is the likelihood of the
input Xlast with respect to the prior distributions

L1
last = P (Xlast) (3)

and L2
last which is the likelihood of the output

M(Xlast) and is computed from the known distri-
bution of eigenfrequencies

L2
last = P (Flast) = P (M(Xlast)) (4)

A candidate Xcan is picked from a distribution that
depends only in the previous sample Xlast. Typi-

cally a normal distribution centered in Xlast is used
to generate the candidate Xcan.

Xcan = Xlast +N(0, σ) (5)

where σ is some predefined variance. Then, the
likelihoods L1

can and L2
can of Xcan are computed

as above, the first with respect to the prior distri-
butions and the second as

L2
can = P (Fcan) = P (M(Xcan)) (6)

and their ratios a and b are computed

a = L1
can/L

1
last (7)

b = L2
can/L

2
last (8)

The candidate Xcan is accepted with certainty if
a > 1 and b > 1 (i.e. if the likelihood of the candi-
date is larger than that of the latest accepted sam-
ple) and, if a ≤ 1 and/or b ≤ 1 Xcan is accepted
with respect to the prior distribution with proba-
bility a and with respect to the known distribution
of eigenfrequencies with probability b. For this, a
random number between 0 and 1 is generated from
a uniform distribution. If this random number is
less than a (or b) then Xcan is accepted with re-
spect to the prior distribution (or with respect to
the known distribution of eigenfrequencies). If not,
Xcan is rejected. It is necessary that Xcan passes
both tests in order to be accepted. If Xcan is ac-
cepted it is added to the list of samples and Xlast
is updated as

Xlast = Xcan (9)

and the process is repeated. If the candidate is
rejected a new candidate is generated and the pro-
cess is repeated. The two acceptance/rejection tests
are done in sequential order. The test with re-
spect to the known distribution of eigenfrequencies
is computationally more expensive since it requires
an evaluation of the meta model and is therefore
performed only if the test with respect to the prior
distribution has been successfully passed.

Each new sample X requires at least one call to
the model (more if some candidates are rejected).
Any sample X will be directly dependent on the
previous sample. Thus, the process cannot be par-
allelized. This justifies the use of a meta model
to avoid evaluating the computationally expensive
FE model. The MCMC algorithm requires a larger
number of evaluations of the theoretical model than
the determination of a reliable meta model. More
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importantly, when computing the meta model each
evaluation of the theoretical model is independent
and can thereby be parallelized, rendering the com-
putation much faster. Both the theoretical finite
element model and the meta model are described
in section 5.

There is a certain transient period before the
samples converge to the desired distribution, so the
first N samples obtained in this way are discarded.
The discarded samples are called the burning pe-
riod. The number of iterations required for the al-
gorithm to converge, the burning period and the
distribution from which the candidates are sampled
are open parameters that the user must set, but
there exist convergence monitoring algorithms [24].

4.2. Prior distributions

The prior distributions where chosen to be uni-
form for the elastic modulus of the ballast and the
soil, reflecting our lack of knowledge regarding their
variation over the seasons. For the concrete stiff-
ness the prior was chosen to be normal with mean
38 GPa and standard deviation 2.5 GPa. The char-
acteristic elastic modulus of the concrete quality
used in the bridge deck was 32 GPa and the coef-
ficient of variation for this parameter is approxi-
mately 0.1. The mean value was chosen assuming
that the concrete is un-cracked and that the dy-
namic nature of the loads motivates an increase in
the modulus of elasticity with a factor 1.2 (corre-
sponding to a dynamic modulus of elasticity). The
mechanisms of the roller bearings were set to be
fixed, following the conclusion from the 2n facto-
rial design used to determine which parameters to
study and their ranges (see section 5.1). Finally,
the longitudinal track stiffness was found to have
very little influence and therefore it was ignored in
the updating scheme.

5. Finite element modelling

The commercial finite element code ABAQUS3

was used to model the structure and the abut-
ments. Combinations of beam, shell and solid el-
ements were used where appropriate. Different el-
ement types and geometrical entities were coupled
together using constraint equations and a type of
elements referred to as connector elements. The
connector elements are used to couple two nodes in

3http://www.3ds.com

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

first vertical bending mode [Hz]

fir
st

 to
rs

io
na

l m
od

e 
[H

z]

  cold: + (white)
warm: + (black)Ballast: 

Soil: 
Roller bearing: 

Concrete: 

low        high
grey       black

not filled    filled
    small      large
  square    circle

Model parameters Empirical frequencies 

Figure 6: The result of the final 2n factorial design, together
with a the natural frequencies (+) of the bridge for the cold
(white) and warm (black) states, as estimated from the mea-
sured free vibrations (the transition zone frequencies have
been left out for clarity).

quite arbitrary ways; they can be used to define con-
straints, but the constitutive relation between the
two nodes can include stiffness, viscous damping,
friction, stop and lock elements in various combina-
tions. Thus, connector elements are highly useful
for modelling mechanisms such as roller bearings.

5.1. Relevant parameters and mechanisms

It goes without saying that in order to obtain a
well-posed inverse problem, the theoretical model
must describe the underlying physics in an appro-
priate manner. The so called 2n factorial design
(see for example [25] for details) provided an ef-
ficient method to determine which parameters to
study in detail. In the present context, where a
numerical model is studied with a factorial design,
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Figure 7: Views of the 3D finite element model

the errors (model error and numerical errors) are
deterministic. Thus, the method simply consists in
choosing a number n of parameters to vary and then
to compute the model response, assigning these val-
ues a high or a low value. Hence, one performs 2n

tests and then use some convenient method to vi-
sualize the results. An example is given in figure 6,
which shows the final factorial design used to define
the meta model on which the Bayesian updating
procedure was based, together with the natural fre-
quencies estimated from the measurements during
the warm and the cold states, i.e. the transition
periods have been left out for clarity.

A few different versions of the model was studied
in order to determine a final set of parameters and
mechanisms to include, namely

i. The modulus of elasticity of the subsoil and
embankments Es

ii. The modulus of elasticity of the ballast Eb
iii. The modulus of elasticity of the concrete Ec
iv. The fixation of the roller bearings

v. The longitudinal track stiffness

As can be seen in figure 6, this set of model param-
eters spans the domain of frequencies defined by
the frequencies estimated from the measurements.
Thus, it was assumed that this model is represen-
tative for the bridge during all seasons, under small
amplitudes of vibration. The longitudinal track
stiffness did not have any significant influence on

Foundation point

Bearing points

Figure 8: Description of constraint definitions at the sup-
ports.

the theoretical frequencies, but was kept as it did
not increase the computational work. It can be seen
from the figure that it is the large markers (corre-
sponding to fixed boundary conditions at the roller
bearings) that enclose all the measured frequencies.
It was therefore concluded that the translation of
the bearing mechanisms at the roller bearings must
be fixed for such small amplitudes. Further, it was
observed that the main factor affecting the first tor-
sional frequency was the ballast stiffness and that,
conversely, the soil stiffness was the parameter than
more directly affected the first vertical bending fre-
quency. This is consistent with the results shown
in figure 4 where the torsional frequency is more af-
fected by short periods of high temperatures. The
ballast (on which the torsional frequency primarily
depends) is more exposed to the environment that
the soil and was expected to respond more rapidly
to change in temperatures than the soil, which af-
fects mainly the first vertical bending mode.

5.2. Modelling of the bridge

Assuming very small amplitudes of vibration, the
steel and concrete was assumed to be linearly elas-
tic. Effects of cracks in the concrete deck was ig-
nored and attributed to the variability of the elas-
tic modulus of the concrete. The mechanical prop-
erties of constructional steel are well known and
the modulus of elasticity Esteel = 210 GPa, the
Poisson’s ratio νsteel = 0.3 and density ρsteel =
7850 kg/m3 was assumed.
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Table 1: Comparison between static foundation stiffness coefficients for Esoil = 50 MPa.

kx ky kz krx kry krz
[GN/m] [GN/m] [GN/m] [GNm/rad] [GNm/rad] [GNm/rad]

Handbook [26] 0.694 0.668 0.832 13.7 6.47 15.3
FE-model 0.774 0.731 1.292 15.0 7.97 16.3
ratio FE/handbook 1.12 1.09 1.55 1.09 1.23 1.07

As shown in figure 7, all relevant structural
details were included in the model. The plates
were modelled using quadratic shell elements and
the cross-bracings were modelled using Timoshenko
beam elements. The concrete deck as well as the
edge beams were modelled with quadratic shell ele-
ments. Hence, it was assumed that the edge beams
contribute not only with their mass, but also with
their stiffness. The ballast was modelled using
quadratic solid elements. The track was modelled
with Timoshenko beam elements, which were per-
fectly coupled with the ballast by means of con-
straint equations.

A number of more complicated constraints were
defined in order to capture the effects of the eccen-
tricities at the supports of the main beams. The
support points on the main beams were coupled
to ”bearing points” in order to define appropriate
models of the bearing mechanisms. The bearing
points were then rigidly connected with a point at
the center of the bearings at each support to enable
the introduction of the foundation stiffness there,
see figure 8. The support points at support 1 were
defined so that all the translations there were fixed
while the rotations over the y-axis were free, while
the support points at support 2 were defined with
an elastic constraint in the longitudinal direction.
This elastic constraint was then used to simulate
free or fixed rolling of those two bearings by assign-
ing either a very low or a very high value to it.

The track ends were connected to fix points with
longitudinal spring elements to model the continu-
ity of the track. The stiffness of these spring ele-
ments was modelled as a bar, resting on a longi-
tudinal Winkler bed, stretching towards infinity in
one direction

k =
√
cEA (10)

where c is the longitudinal stiffness of the Winkler
bed and E and A are the modulus of elasticity and
cross-sectional area of the bar, i.e. the two rails

Figure 9: View of the finite element model of one of the
abutments

(UIC60). Furthermore, the ballast ends were con-
nected to a longitudinal spring to model the stiff-
ness of the embankment. The stiffness of this spring
was computed from the model of the abutments de-
scribed in section 5.3.

5.3. Modelling of the foundations/abutments

It is well known that the dynamic stiffness of shal-
low foundations, for small soil strains in a linearly
elastic homogeneous material, are dependent on the
frequency of vibration. However, in the present
context, where the elastic modulus of the soil is
treated as a stochastic variable and only a limited
range of low frequencies are of interest, the varia-
tion in the foundation stiffness due to its frequency
dependency is likely to drown in the uncertainty
of the elastic modulus of the soil. Therefore, in
modelling the foundation stiffness, the relation be-
tween the stiffness coefficients are of greater concern
than the absolute value of the soil material param-
eters. In order to obtain a reasonable approxima-
tion of this relation, a further assumption was intro-
duced, namely that the embankment material had
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the same elastic properties as the subsoil. Then, a
model of the entire abutment could be defined (see
figure 9), from which the static stiffness matrix of
the support points could be approximated, assum-
ing also that the soil-structure interface is perfectly
coupled. The use of only one soil elastic modulus
simplifies the analysis much since then, as a conse-
quence of assuming the soil to be linearly elastic,
the stiffness coefficients can be scaled with the soil
elastic modulus in a straightforward manner. Thus
we performed only one evaluation of the abutment
model using a reference value of 50 MPa for the soil
modulus of elasticity.

It should also be mentioned that there is a cou-
pling between the various degrees of freedom of the
abutment (seen as a rigid body, since the concrete
structure is much stiffer than the surrounding soil),
but it is typically one order smaller than the diag-
onal components and is therefore neglected.

The FE model of the abutments was meshed with
linear tetrahedrons. The bottom surface was con-
strained in all translations while the sides were con-
strained so that only the translations perpendicu-
lar to each side was constrained. A twice as large
model was used to verify that a sufficient volume
of the surrounding soil was included. The assump-
tion that the static stiffness coefficients would suf-
fice simplified this analysis greatly in that we did
not need to fulfill the radiation condition, i.e. the
propagation of elastic waves away from the source
(the abutment).

Table 1 shows a comparison between the stiffness
coefficients thus obtained and those determined
from handbook [26] formulas. Naturally, the static
stiffness of all degrees of freedom are increased by
introducing the abutment and the embankment.

5.4. The meta model

Having determined a suitable numerical model
for describing the free vibrations of the bridge at
amplitudes of vibration less than 0.02m/s2, a meta
model was calculated in order to apply the MCMC
updating scheme in an efficient manner. The meta
model was created based on the computation of the
eigenfrequencies and eigenmodes of the model us-
ing 5000 randomly chosen parameter combinations.
The elastic modulus of the ballast and the soil were
chosen from exponential distributions, i.e. a cumu-
lative distribution function of the form

P (x, λ) = (1− e−λx)H(x) (11)

Table 2: Parameters of the updated distribution functions.
The subscripts b, s and c on the elastic moduli E correspond
to ballast, soil and concrete, respectively.

warm cold

µ σ
µ µ σ

µ

Eb [MPa] 177.0 14.4 1450 0.22
Es [MPa] 74.7 3.80 107.6 17.7
Ec [GPa] 37.6 2.50 38.1 3.20

with a 1 % probability of exceeding 5 GPa and
9 GPa, respectively. In equation (11), H(x) is Heav-
iside’s function. This corresponds to the parame-
ters λballast = 9.1 · 10−10 and λsoil = 5.1 · 10−10.
The longitudinal track stiffness c at the transition
zones between the bridge and the embankments was
also chosen from an exponential distribution with
1 % probability of exceeding 500 MN/m2. The mod-
ulus of elasticity of the concrete was chosen from
a uniform distribution with values in the range of
28–48 GPa and finally, the mechanism of the roller
bearings was chosen from a uniform distribution of
the integers 0 (free) and 1 (fixed).

The distinction between different mode shapes
was made by studying the modal participation fac-
tors. For some parameter combinations, a transver-
sal bending mode appeared in between the first ver-
tical bending mode and the first torsional mode.

The data obtained from the FE simulations was
divided into a training set and a validation set. The
meta model was created by fitting a Gaussian Pro-
cess to the input-output pairs (matching stiffness
parameters to eigenfrequencies) from the training
set. This was achieved with the algorithms de-
scribed and implemented in [27]. The meta model
was validated by comparing its output with the out-
put of the FE model in the validation set.

6. Result

Figure 10 shows the marginal distributions func-
tions computed in the warm state for each of the
most influential parameters (panels in the diago-
nal subplots), i.e. Eballast, Esoil and Econcrete,
together with the pairwise relations between them,
shown in scatter plots in the non diagonal subplots.
The corresponding data for the cold state is plot-
ted in figure 11. In the warm state, three distinct
unconnected groups of parameter combinations can
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20 30 40 50
E

concrete
 [GPa]

0

100

200

300

E
so

il [M
Pa

]

0 1 2 3 4
20

30

40

50

E
ballast

 [GPa]

E
co

nc
re

te
 [G

Pa
]

0 100 200 300
E

soil
 [MPa]
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and a zoom (right) on the warm state, where the three different groups of theoretical parameter combinations are more clearly
shown. The measured eigenfrequencies are shown as contours, computed using kernel density estimation.

be seen. In figure 10, they have been marked with
different shades of grey, where the darkest shade
represents the group which, in the authors opin-
ion, appears to describe the real physical bridge,
while the others seems to be artifacts of the method.
The groups are ordered in ascending numbers so
that the most realistic group is given the number
1 and so on. There are several arguments that in-
dicate that group 1 is the one really describing the
structure. Firstly it is the one with highest like-
lihood. Further, group 1 clearly covers the entire
range of measured frequencies, as shown in figure 12
(where the measured frequencies have been plotted
as contours using kernel density estimation) while
the other groups only cover it partially. Another
reason to believe that group 1 is the correct is that
there, the distribution describing the stiffness of the
concrete is practically the same as that obtained in
the cold conditions, and the concrete stiffness can
be expected to vary relatively little with tempera-
ture. Furthermore the mean values for soil and bal-
last stiffness are closer to what previous experiences
indicate. In the cold state, the updating algorithm
resulted in a more straight-forward distribution of
the parameters, although the shape of the bar plot

for the modulus of elasticity of the concrete is rather
jagged. Clearly, higher values are obtained for the
soil materials. The modulus of elasticity of the bal-
last increased with one order of magnitude and the
modulus of elasticity of the soil increased by a fac-
tor 1.4. The modulus of elasticity of the concrete
increased slightly as compared to that of group 1 in
the warm state.

7. Conclusions

A study of the seasonal effects on the stiffness
properties of a ballasted railway bridge has been
performed. The resulting distribution of the stud-
ied stiffness parameters for the cold and warm sea-
son was determined using Bayesian model updat-
ing.

Based on our findings, and those of the references
given in section 2, we conclude that the observed
variations in the stiffness of the structure are likely
to have been caused by the frost in the ground and
the development of ice within the track superstruc-
ture.

During the cold period of the year, the natu-
ral frequencies of the bridge increase by 15 % and
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35 % for the first vertical bending and first torsional
modes, respectively.

The first vertical bending mode is more sensitive
to variations in the elastic modulus of the soil while
the first torsional mode is more sensitive to varia-
tions in the elastic modulus of the ballast.

The torsional mode is more sensitive to variations
in temperature than the bending mode.

Negligence in considering the above stated con-
clusions for bridges in this type of climate will lead
to erroneous decisions for example when calculating
the resonance speeds for high-speed railway bridges
or to SHM systems which would then give false pos-
itives.

The variation in the modal damping ratios due
to the seasonal effects must be studied in order to
give a more complete picture of the structural be-
havior. It has been concluded herein that an anal-
ysis using frequencies from the cold season lead to
overestimated critical train speeds. If the damp-
ing ratios also increase during the cold period, such
data could be highly misleading. A study of the
modal damping ratios is currently being prepared
by the authors.
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It is well known that the dynamic properties of civil engineering structures have a more or
less pronounced amplitude dependency. However, it is rather difficult to quantify this both
experimentally and theoretically. This paper describes an attempt to identify the sources of
the amplitude dependent variation of the natural frequency and the modal damping ratio of
the first vertical bending mode of a simply supported, ballasted steel-concrete composite
railway bridge. It is proposed that the most likely sources to the non-linear properties of this
mode of vibration are the ballasted track, the foundations and the roller bearings used
mainly to relive constraint forces due to changes in temperature. The non-linear influence
of the suggested sources were modelled in a 2D finite element model using the classical
univariate Bouc–Wen model which was implemented as a user-defined element in
ABAQUS. The results suggest that the roller bearings alone can give account for the
variation in the dynamic properties observed in experimental data from the bridge and that
the combination with a simple model of the track superstructure gives the most realistic
result. A tremendous increase in the dissipation of energy was found as the amplitude of
vibration was increased beyond that available in the experimental data, thus motivating
further research within this field.

Keywords: railway bridges; non-linear dynamics; soil–structure interaction; ballast;
roller bearing; Bouc–Wen models

1. Introduction

In a previous publication [1], the authors have shown that the dynamic properties, i.e. the
natural frequency and the modal damping ratio of a particular simply supported
steel-concrete composite bridge have a certain amplitude dependency. The natural fre-
quencies of the first vertical bending and the first torsional mode were found to decrease
with increasing amplitude of vibration, while the corresponding damping ratios were
found to increase. These results were obtained by analyzing the free vibrations of the
bridge after a train passage by means of the continuous wavelet transform (CWT). Clearly,
the reduction of the eigenfrequency may lead to non-conservative conclusions in terms of
critical train speeds for high-speed railway bridges. However, the increasing damping
ratio may very well compensate for this effect.

A simplified analysis based on a single degree-of-freedom system of the bridge was
later performed [2] which confirmed the above stated suggestions. However, the nature of
these non-linear effects is still unknown, although it was suggested that they may originate
in soil–structure interaction since it is a well-established fact that soil materials have a
similar qualitative behaviour. Other sources are also possible, such as the hysteretic
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behaviour of the roller bearings, the non-linear material properties of the concrete bridge
deck and the interface between steel and concrete. However, in the author's opinion, the
three most likely sources of the observed non-linear effects are

(1) Foundations
(2) Track superstructure
(3) Roller bearings

These all fall in the category of rate-independent hysteretic systems, as will be discussed
in subsequent sections.

The present study aims at determining the extent to which the above listed phenomena
contribute to the observed non-linear behaviour during the free vibrations of the bridge
after a train passage. A 2D finite element (FE) approach incorporating macro-elements
based on the Bouc–Wen (BW) model was used to study the first vertical bending mode of
the bridge. Thus, a phenomenological approach to the modelling of the hysteretic com-
ponents was used, which is essential considering the level of complexity that a continuum
approach would comprise. Experimental data available in the literature was used, as far as
possible, to choose appropriate backbone curves for the hysteretic components. The
results indicate that the main contribution to the observed non-linearity originates from
the roller bearings and that the track superstructure has a significant but much smaller
influence.

The main scientific contribution of this paper consists in the quantification of the
influence of different hysteretic components of a typical railway bridge. The use of the
BW-model in the context of roller bearings and the track superstructure is, as will be
shown, a natural extension of previous work based on this theory.

Section 2 gives a short description of the modelling of rate-independent hysteresis by
BW-models. In Section 3.1, the bridge is shortly described and the main findings of [1] is
summarised for reference. The hysteretic nature of shallow foundations, the track super-
structure and the roller bearings is described in Sections 3.2, 3.2 and 3.4, respectively.
Finally, the results of our analysis are presented in Section 4 and the conclusions drawn
from them are discussed in Section 5, followed by some suggestions regarding the
continued work in this field in Section 6.

2. BW-model for rate-independent hysteresis

In a univariate (single degree of freedom) system, rate-independent hysteresis is char-
acterised by a backbone curve and a set of rules which define how the system behaves at
load reversals. There are many different approaches to modelling hysteresis in discrete
systems. One way is to use Maxwell (bi-linear, ideally elasto-plastic) elements with
varying stiffness and plastic limit in parallel [3]. Thereby, a piece-wise linear approxima-
tion to any backbone curve can be modelled. Another approach lies in the so called
Preisach type models (see for example [4]), where a memory stack is used to keep track
on all the reversals in the hysteretic element and the classical theory of plasticity could
also be used. Here, the univariate BW-model was used to model the hysteretic behaviour.
In structural mechanics, this class of models relate the force and relative displacement
between two points.

The classical BW-model was first introduced by Bouc [5] and later refined by Wen
[6]. It consists of an elastic spring and a hysteretic element in parallel (see Figure 1). The
force F in the BW-element can be written in the following way:
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FðtÞ ¼ ak0uðtÞ þ ð1� aÞDk0zðtÞ (1)

with a, a model parameter relating the initial stiffness k0 to the stiffness in the fully
plasticised system kp ¼ ak0, D > 0 is referred to as the plastic limit and the so called
hysteretic variable, zðtÞ, an internal variable, governed by the non-linear differential
equation

_z ¼ _u

D
1� ðβ þ sgnð _uzÞγÞjzjn½ � (2)

where β þ γ � 0 and n > 0 are model parameters. The sign function sgnðxÞ is defined as

sgnðxÞ ¼
�1 x< 0
0 x ¼ 0
1 x > 0

8<
: (3)

The plastic limit displacement D and the exponent n determine the shape of the backbone
curves of the BW-model while β and γ determine the shape of the hysteresis loops. The
basic loop shapes and the corresponding relations between β and γ are shown in Figure 2.
If γ ¼ β ¼ 1=2, the force/displacement relation will follow a straight line on unloading.
As long as γ � β, the loops will be rounded whilst if γ< β they will be s-shaped.

The mathematical formulation of the classical BW-model described above has been
thoroughly examined by Ikhouane and Rodellar [7]. A very useful analysis of the BW-

F

uD

Fp

k0

kp = ak0

F, u

kpa, D, n, β, γ

Figure 1. The classical BW-model.

β = γ = 0.5 β < γ

β > γ β = 0, γ = 1

Figure 2. Loop shapes of the classical BW-model.
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model, from a computational point of view but also in terms of comprehension, was given
by Charalampakis and Koumousis [8]. They provided analytical solutions to the differ-
ential equation (2) for n = 1,2 and a scheme for the numerical evaluation of Equation (2)
for arbitrary values of n. However, the BW-model in its classical form does fall short in a
few aspects; if the BW-model is subjected to short unloading–reloading cycles, it exhibits
displacement drift, force relaxation and unloading–reloading paths which are not properly
closed. These shortcomings of the BW-model do not directly affect the analysis presented
herein, but deserves mentioning as it limits the applicability of the BW-model in the more
general context where simulations of passing trains are performed, a situation where short
unloading–reloading paths cannot be ruled out. In a later publication [9], Charalampakis
and Koumousis used their analytical solution to define a modified version of the
BW-model, where the above-mentioned shortcomings are remedied.

In its classical form, the BW-model has been used in many civil engineering applications.
Here we mention a few interesting examples. In the present context, the macro-element
developed by Gerolymos and Gazetas [10,11] is a highly relevant, although much more
complex example. Gerolymos and Gazetas created a macro-element for caisson foundations,
which includes both contact conditions and soil plasticity. Hence it can be used to study
foundations subjected to large displacements, such as those arising during an earthquake. The
hysteretic behaviour of piles were studied by Soneji and Rangid [12], Assimaki [13] and others.
Guggenberger and Grundmann [14] defined a beam element based on BW-hysteresis for an
application in stochastic response analysis of space frames. Foliente [15] used BW-elements to
study the influence of wood joint hysteresis on the structural response of wood frames.

2.1. Implementation in ABAQUS

A six degree of freedom FE for small displacements, i.e. no geometric nonlinear
behaviour, with uncoupled univariate BW-elements, was implemented as a user-defined
element in the commercial FEM code ABAQUS1 which was used for the FE-analyses
throughout this study. A linear viscous dashpot was added in order to obtain a general
spring/dashpot element with the possibility of activating the hysteretic behaviour. Thus,
the FE has three translational degrees of freedom, three rotational degrees of freedom and
six internal variables, one for each degree of freedom. The increments of the internal
variables are solved for using Newton–Raphson’s method.

2.2. Evaluation of the results

Amuch more efficient alternative to the wavelet-based analysis used in [1] is provided by the
Hilbert transform (see for example Huang et al. [16]) which gives the amplitude AðtÞ and
phase fðtÞ as functions of time in a straightforward manner for the class of signals analysed
here. The instantaneous frequency is then given by the time derivative of the phase

ωðtÞ ¼ _fðtÞ: (4)

In [1], the authors used the notion of an equivalent viscous damping ratio �eq in order to
quantify the variation in the modal damping ratio during free vibrations, caused by the non-
linear behaviour of the structure. The developments in the current study enables an increase
in the amplitude of vibration, which was not available in the measured free vibrations. The
frictional nature of the hysteretic models studied here leads to a very important remark
regarding this equivalent viscous damping ratio. Now, the idea behind �eq was the
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assumption that the instantaneous decay of the signal can be represented by a linearly
viscous damper. The equivalent instantaneous viscous damping ratio was then defined as

�eqðtÞ ¼ �
_AðtÞ

ωðtÞAðtÞ (5)

where AðtÞ is the amplitude envelope and ωðtÞ is the instantaneous circular frequency of the
mode of vibration in question. The problem with this choice of measure for the dissipation
of energy in a given mode of vibration is that if the mechanisms which dissipates the energy
are frictional, the exponential decay will not provide accurate results for all amplitudes of
vibration. Consider the logarithmic decrement for a weakly damped system

δ ¼ ln
Ai

Aiþ1
(6)

For a freely vibrating system with purely frictional damping, the amplitude is given by

A ¼ A0 �
ΔA
T

t (7)

where A0 is the initial amplitude, t is time and ΔA is the constant decay during one period
T. The logarithmic decrement can then be written

δ ¼ ln
A0 � iΔA

A0 � iΔA� ΔA
(8)

which clearly tends towards infinity when A0 � iΔA! ΔA. Furthermore, during the last
cycle, the denominator in the logarithmic decrement is zero, so the equivalent viscous
damping ratio is infinite there.

To illustrate this effect, a single-degree-of-freedom BW-model with similar properties
as the bridge was studied using both a simulated forced excitation test and a free vibration
test. The forced excitation test consisted in varying the frequency between 2 and 5 Hz in
suitable steps with the force amplitudes 15, 30, 45 and 60 kN. In the forced vibration test,
the damping ratio was computed using the definition

� ¼ Eh

4πEel
(9)

where Eh is the energy dissipated during one cycle, i.e. the area of the hysteresis loop, and
Eel ¼ Fmax � umax=2 is the maximum elastic energy stored during the cycle. The result is
shown in Figure 3, which clearly shows that the equivalent viscous damping ratio over-
estimates the damping in an intermediate range of amplitudes. In the comparative study
presented here, the errors in the equivalent instantaneous damping ratio do not impose any
serious harm as the same procedure is used in both cases.

3. Modelling of the bridge

3.1. Description of the studied bridge

The studied bridge is situated in the northern parts of Sweden and has its longitudinal axis
in the north-south direction. A photo of the bridge is shown in Figure 4(a), and the natural
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frequency and equivalent viscous damping ratio, as estimated from measurements of free
vibrations [1], are shown in Figure 5. The bridge has a horizontal skew of 30°, a span
length of 36 m and carries one ballasted track. The thickness of the reinforced concrete
deck varies between 320–350 mm and its total width is 6.7 m. The cross section of the
two main steel beams varies along the bridge, see Figure 4(b). The main beams are
connected with transverse braces at four sections along the beam as well as at the beam
ends. One of the supports is fixed, but free to rotate over the transversal axis and the other
end is supported on roller bearings to relieve constraints essentially caused by temperature
variations. The bridge is founded on shallow foundations on an approximately 5 m thick
layer of silty moraine. The geotechnical survey estimated the modulus of elasticity of the
subsoil to be approximately 30 MPa and its density was determined as 1700 and
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Figure 3. Comparison between natural frequency (top) and damping ratio (bottom) as estimated
from simulations of free vibration and forced vibration tests on a single-degree-of-freedom BW-
system.
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Fixed bearings (support 1)
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Figure 4. A photograph of the bridge at Skidträsk (a) and a sketch of its cross section (b).
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2000 kg/m3 for the drained and undrained state, respectively. The estimate of the elastic
modulus of the subsoil is a lower bound characteristic value, intended for calculations of
long-term settlements. The foundation plates have the width W ¼ 9:2 m and the length
B ¼ 5:8 m and are placed with a skew of 30° with respect to the bridge centre line.

3.2. Modelling of the foundations

Shallow foundations resting on, or embedded in a linearly elastic, isotropic, homogeneous
half space or infinite disc are quite well understood. They are typically characterised by a
dynamic stiffness function, which is a complex function of frequency where the real part
corresponds to the stiffness and the imaginary part corresponds to an equivalent viscous
damping. This equivalent viscous damping, which should not be confused with that
described in Section 2.2, consists of two parts: radiation damping caused by elastic
waves propagating away from the foundation and soil material damping. In general, soil
materials have an essentially rate-independent hysteretic nature, see for example [17,18].
The rate-independent non-linear soil material behaviour is expected to lead to a certain
amount of hysteresis in such foundations [19–22]. However, these effects should only be
relevant for loads approaching the bearing capacity of the foundation. This was concluded
in both [20] and [21] in the context of machine foundations, but similar arguments should
hold true also for bridge supports. Otherwise, excessive settlements would result from the
serviceability limit state loads. The behaviour of shallow foundations subjected to large
loads has been much studied in the field of earthquake engineering. Especially interesting,
in the present context, is the development of various forms of macro-elements.
Chatzigogos et al. [23] provided a nice literature review of the developments in that field.

Early developments in the field of macro-elements for shallow foundations provided
by Nova and Montrasio [24] indicate that a model function suitable for the backbone
curve for the vertical degree of freedom of a shallow foundation is available in an
exponential function of the form
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Figure 5. The estimated [1] natural frequency and modal damping ratio of the first vertical bending
mode of the bridge at Skidträsk (train nr. 3 excited the first torsional mode).
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FV

FV ;u
¼ 1� exp � kV u

FV ;u

� �
(10)

where FV is the vertical force, FV ;u is the ultimate vertical load, kV is the initial vertical
stiffness and u is the vertical displacement.

The initial vertical stiffness can be approximated by means of handbook formulas [25].
The initial vertical stiffness was assumed to vary between 1–3 GN/m. A lower bound of
15MN for the ultimate load was provided by the design calculations. A family of conceivable
backbone curves for the vertical foundation stiffness is shown in Figure 6. Previous
experience with soil–structure interaction problems of this kind indicate that the vertical
displacements of the foundations are ~1/10 of the vertical displacement at mid span, which
reaches ~10 mm during the passage of the heaviest trains on the Skidträsk bridge. Thus, one
can conclude that none of the backbone curves shown in Figure 6 would give any substantial
hysteretic effects. In the proceeding, it will therefore be assumed that the foundations behave
in a linearly elastic manner and that their only contribution to the damping of the structure is
in the form of radiation damping. The parameters used in the analysis are given in Table 1.
The frequency dependency of the foundation stiffness was ignored.

3.3. Modelling of the track

Typically, the track is included in numerical models of railway bridges when train-bridge
interaction is considered, see for example Zhai et al. [26]. However, the longitudinal
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Figure 6. A family of approximated backbone curves according to Equation (10) for the vertical
stiffness of the shallow foundations.

Table 1. Parameter values for foundation spring and dash-pot elements used in the FE model.

k (GN/m) c (MNs/m)

Foundation (horizontal) 1.55 1.00
Foundation (vertical) 2.58 1.50
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track-bridge interaction is very important for so called continuously welded rails (CWR),
where large constraint forces can appear between the rail and the underlying structure.
Naturally, these effects are most pronounced for temperature loads and trains braking or
accelerating, causing longitudinal forces in the track/bridge system, see for example the
study by Ruge and Birk [27] or the textbook by Esveld [28]. For that purpose, a
bi-linear, ideally plastic model of the longitudinal track resistance has been developed
[29], based on tests performed by the European Rail Research Institute (ERRI) in
research programme D202. Several tests were performed by various railway institutes
in Europe and two of them studied the longitudinal track resistances, namely TU Delft
[30] and MAV2 [31].

Figure 7 shows one of the models recommended by UIC (ballasted, unloaded track)
together with typical outcomes of the experiments by TU Delft and MAV. The higher
resistance of the UIC model, together with its non-smooth transition to the plastic regime
at a relative displacement of 2 mm, makes it more conservative than the experimental
force–displacement relationships, in the quasi-static analysis involving temperature loads
and train traction. In the present context however, the bi-linear model is not satisfactory as
very large relative displacements between the rails and the bridge deck are needed in order
to leave the linear regime of the model.

MAV performed their tests on an old track, which had been replaced whereas TU
Delft performed their tests in a laboratory environment. Only MAV performed cyclic tests
on the track. A typical outcome of such results is shown in Figure 8, which clearly shows
the hysteretic nature of the longitudinal track resistance. One can also see that some
stiffness degradation occurs when the displacement exceeds approximately 2 mm. Thus, a
classical BW-model should be able to represent this type of hysteresis well for the small
displacements (<1 mm) expected during a train passage over the Skidträsk bridge. It was
decided to use the test results from TU Delft in the current analysis as the ballast grading
used in those tests seemed to better match the Swedish requirements in operating tracks.

The vertical stiffness of the track was taken as 0.2 GN/m, based on the results
presented in [32,33]. The longitudinal track model parameters used in the study are
summarised in Table 3 and the backbone curve is shown in Figure 9.
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Figure 7. Longitudinal track resistance as measured by TU Delft [30] (solid line) and MAV [31]
(dash-dotted line), compared with the Eurocode/UIC model. Note that the measured track resis-
tances are given in force per sleeper and the Eurocode/UIC model has been recalculated to comply
with the measurements assuming a sleeper distance of 650 mm.
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3.4. Modelling of the roller bearings

In the mechanical engineering sciences, much effort has been made to understand the
behaviour of rolling contacts, mainly with the aim of designing roller and ball bearings
and in studies of the wheel–rail contact for railways. These historical developments are
well described in textbooks such as [34,35], and will not be further elucidated here.
However, in later years, an interest for the so called micro-slip and pre-rolling resistance
has been given some attention. The basic concepts of sliding friction based on the
distinction between static and kinematic friction are well known. The transition between
static and kinematic friction, is governed by micro-slip, which is basically the result of
tangential deformations of the highest asperities in the contact region and slip on the
lowest asperities [36,37]. This phenomenon results in a hysteretic behaviour with a
smooth backbone curve. In rolling contacts, a similar behaviour arises in the transition
between static and dynamic equilibrium, and this is referred to as pre-rolling resistance.
The hysteretic nature of the pre-rolling resistance of various rolling contacts has been well
described by Al-Bender and Symens [38]. The pre-rolling resistance is very similar to
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Figure 9. The backbone curve of the track longitudinal stiffness model used in the analysis.
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micro-slip in that it produces a hysteretic behaviour and it is related to the case where the
applied force does not overcome the initial resistance to rolling. However, the mechanism
is somewhat more complicated as it involves the rolling resistance and not only the
contact of two flat surfaces. Al-Bender and De Moerlooze [39] presented a numerical
technique to model the pre-rolling behaviour of balls in various configurations. In
reference [40] the same authors provide an experimental validation of their modelling,
which shows that an exponential curve of the same form as Equation (10) can be fitted to
their experimental hysteresis loops. Although their analysis was limited to a ball rolling in
a V-grooved track, it has been assumed that the exponential backbone curve should give a
reasonable first approximation for our purposes.

The bearing geometry is shown in Figure 10. On the Skidträsk bridge, the rollers are
steel cylinders of length 600 mm and radius 146 mm. Each roller is guided by two rulers,
one on each side and a groove and notch along the centres of the rollers. In the initial
configuration, ideally, the guiding devices are not in contact with their counterparts, but in
a general case, such contacts must be expected. It is beyond the scope of the present study
to include such effects, which would combine pre-rolling with sliding friction. Instead, the
purpose of this section is to choose an approximate backbone curve for a BW bearing
model, which can illustrate the effects of the bearings on the global bridge behaviour.
Based on the above reasoning, a model for the bearing rolling resistance was chosen as

FðxÞ
Fτ
¼ 1� exp � k0x

Fτ

� �
(11)

with Fτ and k0 being the rolling resistance and the initial stiffness, respectively, and x is
the longitudinal displacement over the bearing.

The rolling resistance Fτ depends primarily on the distribution of tractive (shear) stress
in the contact although several other phenomena may influence the rolling resistance of a
given contact pair. Especially if large loads are applied, so that plastic deformations occur
in the contact patch. However, here we only consider elastic deformations. The elastic
contact patch can be divided in two regions, referred to as the “stick” and “slip” regions.
In the stick region, the traction does not overcome the friction and no sliding occurs
whereas in the slip region, the contacting surfaces slide against each other.

When the rolling surface passes through the contact patch, it is compressed so that
both the normal and the tangential strain there is compressive. The compressive tangential
strain gives rise to a phenomenon referred to as creepage, which in this case causes the
roller to move a slightly shorter distance than that represented by its undeformed

Figure 10. 3D view of the roller bearing geometry.
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circumference. For a cylinder on a flat plate one can define the creep ratio �x, i.e. the ratio
of the relative velocity between the contact surfaces and the velocity of the cylinder _x, as

�x ¼
_x� ωR

_x
(12)

where ω is the angular velocity of the cylinder and R is its radius.
To estimate the rolling resistance at steady rolling Fτ we used the relation [35]

Fτ ¼ �μLFn 1� 1� R�x
μa

� �2
" #

(13)

where μ is the coefficient of friction, L ¼ 600 mm is the length of cylinder, a is half the
length of the Hertzian contact area

a ¼
ffiffiffiffiffiffiffiffiffiffiffi
4FnR

πE�

r
(14)

and E� ¼ E=ð2ð1� ν2ÞÞ, i.e. the contact surfaces have the same material properties with
the modulus of elasticity E and the Poisson ratio ν. The creep ratio was assumed to be
�x ¼ 0:0005, a value appropriate as an approximation for the wheel–rail contact, [41] the
Hertzian contact length was found to be a ¼ 2 mm and the normal force Fn was taken as
one-quarter of the dead weight of the bridge, i.e. 1.5 MN. With these values, a rolling
resistance of 104 kN was calculated, neglecting all influences of the guiding devices.

The paper by Spiegelberg et al. [42] provides an estimate of the initial stiffness

k0 ¼ 2Lakt (15)

where kt is given by

kt ¼ 0:85
E�

a
: (16)

A family of backbone curves with different values of the parameter n in the BW-model is
shown in Figure 11.

3.5. The FE-model

Given the non-linearity of the problem and the uncertainties involved, a study such as the
current one should be performed in a very simple FE model. The computational time
should not be prohibiting and the accuracy of the model should be adapted to the available
experimental data. Since we basically only have empirical knowledge about the first
vertical bending mode, the numerical model only needs to represent that mode in a
satisfactory way. Thus, a 2D model is sufficient and has been devised as described in
this section.

The FE models used in this study were based on a 2D Euler–Bernoulli beam with elastic
supports and are illustrated in Figures 12 and 13. To obtain the correct constraints at the
beam ends, rigid links were used to define the distance between the neutral axis of the beam
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and the support points. The elastic supports were modelled using linear springs and dash-
pots as described in Section 3.2. Three different model alternatives were used in the study:

(1) Model 1: No track
(2) Model 2: Linear track
(3) Model 3: Non-linear track
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Figure 11. Backbone curves for the exponential rolling resistance model (top) and stiffness
(bottom) with k0 ¼ 10 GN/m, a ¼ 1 � 10�12, D ¼ 1 � 10�5 and different values of n.

Bearing rolling
resistance

Rigid linkRigid link

Support 1 Support 2

Figure 12. Sketch of model 1.

Rigid link

[E, I, A, m, ξ]rails

Support 1 Support 2

Bearing rolling
resistance

Bridge–track coupling nodes
with rigid links to the bridge

Rigid link[E, I, A, m, ξ]bridge

Figure 13. Sketch of models 2 and 3. The BW-element was used to model the longitudinal track
resistance in model 3.
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The mass of the ballast was weighted into the mass of the beam in model 1 and placed at
the bridge–track coupling nodes in models 2 and 3 (see Figure 13). Thus, the only
difference in mass between the models was the additional mass of the rails in models 2
and 3, which is essentially negligible. The support points were given some inertia to
represent the soil mass on top of the foundation plates and the mass of the abutments
(162,000 kg on each foundation) and a small rotatory inertia for numerical stability. In the
real structure, the cross section varies along its length, but in the model used here, this was
neglected and a mean value of the cross-sectional properties was used to determine an
equivalent constant cross section. Timoshenko beam elements were used to model the
rails (UIC60). The rails were connected to the bridge beam by means of linear spring
elements (model 2) and BW elements (model 3). These elements were connected to the
bridge with rigid links in order to correctly model the eccentricity between the top of the
bridge deck and the neutral axis of the bridge beam, see Figure 13. Structural damping
was included using Rayleigh damping. All parameter values used in modelling the bridge
and the foundations are summarised in Tables 1 and 2 whereas the Bouc–Wen model
parameters are summarised in Table 3. The trapezoidal rule was used to integrate the
equations of motion with no additional numerical damping. Typically, the time steps
required varied between 10�5�10�3 s, depending on the degree of non-linearity intro-
duced by the hysteretic mechanisms. Generally, the smaller time steps dominated at very
small amplitudes of vibration, where the roller bearing is constantly trying to overcome
the rolling resistance.

4. Computational results

4.1. General results

In this section, we present some general results from the simulations. In Figure 14, the
acceleration and displacement of the bridge beam at mid-span are shown for the
BW-model parameters in Table 3. Clearly, the free vibrations can be divided into two
parts. In the beginning of the free vibrations, the amplitude function is linear, signifying
that the damping is dominated by friction-like forces and in the end a completely different

Table 2. Parameter values for beam elements used in the FE model. The beam section properties
are an equivalent steel section, including the concrete.

Rayleigh damping coefficients

A (m2) I (m4) E (GPa) ρ (kg/m3) αR (–) βR (–)

Beam
Model 1 0.8 0.51 210 13500 0.038 3.8 � 10�4
Models 2 & 3 0.8 0.51 210 7850 0.038 3.8 � 10�4
Rails 0.015 6.08 � 10�5 210 7850 0.038 3.8 � 10�4

Table 3. Parameter values for Bouc–Wen elements used in the FE models.

a (–) k0 (GN/m) D (m) β (–) γ (–) n (–)

Bearing model 1 1 � 10�12 60 1:0 � 10�6 0.5 0.5 1/16
Bearing model 2 1 � 10�12 60 7:5 � 10�7 0.5 0.5 1/16
Track 2:4 � 10�2 0.014 6:3 � 10�4 0.5 0.5 1
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slope is seen, which is dominated by viscous damping forces. The transition between the
two parts of the free vibrations occurs at approximately 2.5 s. The cause of the signifi-
cantly different characteristics of them is well illustrated by Figure 15, in which the
reaction forces at the supports are shown for model 3 and bearing model 2. Clearly, at
around 2.5 s the horizontal force over the bearing no longer overcomes the pre-rolling
resistance and the horizontal translation there begins to be significantly more restrained.
The friction-like component of the overall damping becomes less dominating and the
viscous damping sources dominate. The vertical bridge deck acceleration in this part of
the free vibrations is bounded by approximately 0.5 m/s2.

This behaviour is also reflected by the horizontal displacements at the support points,
as shown in Figure 16. The horizontal displacements at the foundations are always
bounded by ~0.1 mm, whilst the displacement at the top plate of the roller bearing is

Model 1 – bearing 1
Model 1 – bearing 2
Model 2 – bearing 1
Model 2 – bearing 2
Model 3 – bearing 1
Model 3 – bearing 2
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Figure 14. Vertical displacement and acceleration at mid-span.
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Figure 15. The horizontal reaction forces computed for model 3 with bearing model 2.
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one order of magnitude larger in the first part of the free vibrations and then similar to the
displacement of the foundations in the end.

The hysteresis loops of the bearing response are shown in Figure 17, which again
reflects the two different mechanisms (rolling and fixed) represented by the bearing. In the
first part, the loops essentially follow the backbone curve of the bearing and towards the
end, the loops are affected by the interaction with the foundation.

4.2. Roller bearing hysteresis

The plastic limit D and the shape parameter n of the roller bearing model were found to
have the largest influence on the bridge response. Figures 18 and 19 show the backbone
curves and the result of a family of roller bearing models, based on the parameters shown
in Table 3 and described in Section 3.4.
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Figure 16. The horizontal displacements of the foundations and the top plate of the roller bearings
for model 3 with bearing model 2.
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Figure 17. The bearing hysteresis loops for the whole free vibration period (a) and the end of the
free vibration period (b) for model 3 with bearing model 2.
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These results show that the roller bearing has two major influences on the dynamic
properties of the structure: (1) it introduces a mechanism which makes the bearing behave
as a fixed bearing for very small amplitudes of vibration and as a roller bearing for larger
amplitudes of vibration; (2) it introduces a significant amount of friction damping in the
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Figure 18. Roller bearing backbone curves with k0 ¼ 10 GN/m, a ¼ 1 � 10�12, n ¼ 1=6,
β ¼ γ ¼ 0:5 and different values of the plastic limit D. The thick black line is the initial bearing
model defined in Section 3.4.
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Figure 19. Frequency and equivalent viscous damping calculated using the bridge mid-point
acceleration with the roller bearing backbone curves shown in Figure 18.
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system. This friction damping has a peak value at a certain amplitude of vibration and
then decreases towards some asymptotic value at larger amplitudes of vibration.

It should be noted that the initial model defined in Section 3.4 had to be adjusted
somewhat in order to obtain a correct behaviour in a qualitative sense. These adjustments
consisted mainly in varying the parameter n. Clearly, one should have to determine the
shape of the bearing backbone curve from experiments on an isolated bearing in order to
remove this uncertainty from the analysis.

4.3. The combination of the roller bearing and track hysteresis

Figure 20 shows the natural frequency and equivalent viscous damping ratio of models 1,
2 and 3 with the two bearing models, together with the results from [1] which are shown
as black broken lines (see also Figure 5). Clearly, model 1 gives a lower frequency than
the two other models when the bearing is fully rolling. The “bump” in the damping ratio is
also higher for model 1 than for the two other models. The linear track model appears to
reduce the hysteretic effects of the bearing by the constraints it imposes at the beam ends.
The non-linear track model hardly has any influence at all on the stiffness, but does
provide a small contribution to the overall damping. The variation in frequency and
damping is obviously dominated by the bearing mechanism and by neglecting the track
superstructure, these effects are overestimated.

5. Discussion and conclusion

The qualitative agreement between the presented theoretical model and experimental data
has led to the conclusion that the non-linear effects observed in the free vibrations of the
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Figure 20. Frequency and equivalent viscous damping calculated using the bridge mid-point
acceleration for models 1–3 with the two different bearing models given in Table 3. The results
from [1] are shown with black, broken lines (see also Figure 5).
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first vertical bending mode of this bridge are mainly caused by the hysteretic effects
induced by the rolling resistance of its roller bearings. However, as experimental data for
the backbone curve of the bearing was not available, a mismatch between the theoretical
results and measured reality remains. It is clear that the observed non-linear behaviour is
affected by the interaction of at least two different sources, i.e. the track and the bearings,
and the modelling of them is afflicted with some degree of uncertainty. Therefore, further
attempt to remove the remaining mismatch was judged unnecessary as it could still not be
validated for accelerations beyond those available from the measurements of free vibrations.

The damping ratios obtained in this study are very high compared to those specified by
the Eurocode [43] for design calculations. For this bridge, the design value would be 0.5%
in all modes of vibration whilst the presented results indicate that in a state of resonance
dominated by the first vertical bending mode of vibration, a conservative choice would be
in the range of 2–4%, judging by the asymptotic behaviour of the damping ratio as the
amplitude of vibration increases. The Eurocode recommendations are essentially lower
bounds of the results presented in the report by ERRI [44], which includes numerous
estimates of damping ratios from existing bridges, determined mainly from free vibrations.

6. Further research

In the author's opinion, the continued work in this field has two major concerns:

(1) The amplitude dependency should be studied using forced excitation tests at
different environmental conditions. This would enable a validation of the work
done so far, but more importantly, a robust identification and analysis of other
modes of vibration than the first vertical bending mode.

(2) A range of bridges need to be tested in order to draw general conclusions
regarding the amplitude dependency of railway bridges.

In the Swedish common practice today, roller bearings of this type are quite uncommon
and typically, sliding bearings are used instead. Hence, in addition to studying the back-
bone curves of the roller bearings in laboratory conditions, some common types and
dimensions of sliding bearings should also be studied. By reducing the uncertainty in the
modelling of the bearings, more detailed bridge models can be motivated and thereby,
studies of train–bridge resonance.

There are some numerical issues associated with the BW-models used in this study.
The displacement over the bearing at the onset of rolling is very small, in the order of
<10�5 m, and this led to very small time steps (,10�4 s and even less). This made the
computations very time consuming and this can probably be much improved.

A generalisation of the Bouc–Wen model to simulate the dependency of the rolling
resistance on the normal force could be implemented with little effort, but again, input for
such a development in terms of laboratory tests on the bearing type is needed. The same
generalisation could also be used to improve the accuracy of the track model for use in
simulations of passing trains.
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Notes
1. http://www.3ds.com/products/simulia
2. The Hungarian railway administration.
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