

Secure, scalable and component-
based Webshop using Struts and

Hibernate

L U C A S D Í E Z

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-96

Secure, scalable and component-
based Webshop using Struts and

Hibernate

L U C A S D Í E Z

Master of Science Thesis
Stockholm, Sweden 2006

ICT/ECS-2006-96

I n d u s t r y s u p e r v i s o r
V i k t o r L e w i n D u r a n

(G e n X H a n d e s b o l a g)

E x a m i n e r
A s s o c . P r o f . V l a d i m i r V l a s s o v

(E C S / I C T / K T H)

Dedicated to
my Father, for educating me as an Engineer

Abstract

This Master Thesis project concerns the design and implementation of a
Webshop following the architecture and patterns of enterprise applications.
The main idea was to create a scalable, internationalized, secure, fault toler-
ance and component-based application.

The application was developed following the Model-View-Controller (MVC)
design pattern. This was accomplished by using Struts, a framework designed
for developing J2EE web applications. The Model component was developed
following the Hibernate technology. It offers an easy to use framework for
mapping an object-oriented domain model to a traditional relational database.
The Webshop can be accessed not only by human interface via web pages, the
application supports interoperable machine-machine interaction over Internet
through Web Services. The Webshop prototype has been tested against use
cases, evaluated and profiled.

Keywords: Webshop, Struts, Hibernate, WebServices, MVC, J2EE, JSP.

Declaration

The work in this thesis is based on research carried out at GenX Handesbo-
lag, Stockholm and at KTH (Kungliga Tekniska högskolan - Royal Institute of
Technology), Stockholm. No part of this thesis has been submitted elsewhere
for any other degree or qualification and it all my own work unless referenced
to the contrary in the text.

Copyright c© 2006 by LUCAS DÍEZ.
“The copyright of this thesis rests with the author. No quotations from it
should be published without the author’s prior written consent and information
derived from it should be acknowledged”.

viii

Acknowledgements

This Master’s Thesis is a result of my studies as a double degree student in
Sweden (Royal Institute of Technology, Stockholm) and in Spain (Universidad
Politécnica de Madrid). Many people supported me in those studies, most of
them friends and family.

I would also like to express my sincere gratitude to my KTH Supervi-
sor, Associate Professor Vladimir Vlassov at the Department of Electronic,
Computer and Software Systems (ECS), Royal Institute of Technology, for his
support and guidance through the whole thesis process.

Words alone cannot describe how much I thank Viktor Lewin Duran, my
Industry Supervisor at GenX Handelsbolag in Stockholm, for all support and
for coming up with the idea that led to this Master’s Thesis.

Regardless of being far away my second year in Stockholm, I would like to
thank, with all my heart, Paula, who has encouraged me in the bad moments,
and shared with me all the good ones.

ix

Contents

Abstract vii

Declaration viii

Acknowledgements ix

1 Introduction 1
1.1 Motivation of the project . 1
1.2 Problem statement . 2

1.2.1 Goal . 3
1.2.2 Expected results . 3

1.3 Shop requirements . 4
1.3.1 Scalability . 4
1.3.2 Security . 4
1.3.3 Fault tolerance . 5
1.3.4 Component based . 5
1.3.5 Internationalization . 5

1.4 Structure of the Thesis . 6

2 Background 7
2.1 Related work . 7
2.2 Existing approaches . 8
2.3 Related technologies . 8
2.4 MVC - Struts . 9

2.4.1 MVC design pattern 9
2.5 Database technology - Hibernate 10
2.6 Web Services . 13

x

CONTENTS xi

3 Method 14
3.1 Positioning . 14

3.1.1 Business Opportunity 14
3.1.2 Problem Statement . 15
3.1.3 Product Position Statement 15

3.2 Stakeholder and User Descriptions 16
3.2.1 Market Demographics 16
3.2.2 Stakeholder Summary 16
3.2.3 User Summary . 16
3.2.4 User Environment . 17
3.2.5 Stakeholder Profiles . 17

3.2.5.1 Customer . 17
3.2.5.2 Employee . 18
3.2.5.3 Administrator 18
3.2.5.4 Bank . 19

3.2.6 User Profiles . 19
3.2.7 Key Stakeholder or User Needs 19

3.3 Product Overview . 20
3.3.1 Product Perspective 20
3.3.2 Summary of Capabilities 20
3.3.3 Assumptions and Dependencies 21

3.4 Constraints . 21
3.4.1 Security . 21
3.4.2 Responsiveness . 21

3.5 Overview of the system prototype 21
3.5.1 Administrator interface (Store back) 21
3.5.2 Customer interface (Store front) 22

4 System design 24
4.1 The MVC pattern . 24
4.2 Struts Framework . 25
4.3 Hibernate technology . 25
4.4 High level Web Services architecture 27
4.5 Struts, Hibernate and Web Services: Our Webshop 28

xii CONTENTS

4.5.1 Controller . 28
4.5.2 View . 29
4.5.3 Model . 29
4.5.4 WSController . 30
4.5.5 Provider . 30
4.5.6 Subscriber . 30
4.5.7 Authentication and authorization 30
4.5.8 Error Handling . 31

5 Implementation 32
5.1 Development platform . 32
5.2 Struts . 32

5.2.1 Errors . 34
5.2.2 Tiles . 34
5.2.3 Security . 35
5.2.4 Internationalization . 36

5.3 Database . 37
5.4 Hibernate . 38
5.5 Web services . 40
5.6 Flow dynamics . 41
5.7 User interface design . 45
5.8 Deployment strategy . 46

6 Analysis 47
6.1 Validation . 47

6.1.1 Implemented use cases 47
6.1.2 Tested use cases . 48

6.2 Performance . 48
6.2.1 Test-bed . 48
6.2.2 Worst case . 48
6.2.3 Performance scenario 49

6.3 Profiling . 51
6.3.1 Profiling scenario . 51

7 Conclusions and future work 54

CONTENTS xiii

Bibliography 57

Appendix 59

A Abbreviations 60

B Use cases 62
B.1 Project description . 62
B.2 List of use cases . 62
B.3 Actors . 63
B.4 Use case Diagrams . 63
B.5 Use cases details . 66

List of Figures

2.1 Centralized database organization 11
2.2 Distributed database organization 12
2.3 Web Services . 13

3.1 Store-back screenshot . 22
3.2 Store-front screenshot . 23

4.1 Simple Model-View-Controller (MVC) pattern. 25
4.2 Struts Framework architecture. 26
4.3 A medium level Hibernate architecture. 27
4.4 High level Web Services architecture. 27
4.5 Struts, Hibernate and Web Services. 28

5.1 Database design . 37
5.2 Store-front, Log-in screenshot 42
5.3 Store-front, Welcome screenshot 44
5.4 Store-front, Error Log-in screenshot 44
5.5 Layout screenshot . 45

6.1 System Entrypoint Module Percentage Breakdown 50
6.2 CPU profiler output - Sampler / Methods (pie chart) 52

B.1 Application Diagram . 64
B.2 Users diagram 1 . 64
B.3 Users diagram 2 . 64
B.4 Role diagram . 65
B.5 Search diagram . 65
B.6 Order diagram . 65

xiv

List of Tables

2.1 A comparison between JDBC and Hibernate 12

6.1 System Module Percentage Use. 49
6.2 System Entrypoint Module Percentage Breakdown 50
6.3 CPU profiler output - Sampler / Methods 51
6.4 Current heap of attached application 52
6.5 Methods allocating instances of char[] 53

B.2 Use case Installation of the system. 66
B.4 Use case Start up . 67
B.6 Use case Shutdown the shop 67
B.7 Use case Create default configuration 68
B.8 Use case Modify configuration 68
B.9 Use case Add Administrator 68
B.10 Use case Edit Administrator 69
B.11 Use case Remove Administrator 69
B.12 Use case Log in . 69
B.13 Use case Log out . 70
B.14 Use case Add Employee . 70
B.15 Use case Edit Employee . 70
B.16 Use case Remove Employee 71
B.17 Use case Add Customer . 71
B.18 Use case Edit Customer . 71
B.19 Use case Remove Customer 72
B.20 Use case Add Role . 72
B.21 Use case Edit Role . 72

xv

xvi LIST OF TABLES

B.22 Use case Remove Role . 72
B.23 Use case Search products by employee 73
B.24 Use case Search products by customer 73
B.25 Use case Make order by employee 73
B.26 Use case View order by employee 73
B.27 Use case Edit order by employee 74
B.28 Use case Cancel order by employee 74
B.29 Use case Make order by customer 74
B.30 Use case View order by customer 74
B.31 Use case Cancel order by customer 75

Chapter 1

Introduction

GenX is a small company which has some customers with the need of an
electronic commerce system. Putting together all of their requirements, this
company figured out that it can be done as a Master Thesis where it could be
created a web shop following the architecture and patterns of enterprise appli-
cations. The goal of this project is not to create an ordinary web shop since
that it is too simple, during this introduction we will motivate the different
technologies we have chosen and the work amount invest on the shop.

1.1 Motivation of the project

Today there are thousands of web shops but few of them are easy scalable,
the internationalization is hard and the development time is too big. To mo-
tivate this thesis we are going to work on the following properties of the shop:
scalable, internationalized, secure, fault tolerance and component based.

Concerning scalability, we mean that the application must handle growing
amounts of work in a graceful manner. The idea of this project is adding more
and more features and this can be only achieved through a scalable application.
The application should also be available for different languages in an easy way
due to it will be destined to sell product to people from different countries
at the same time. Because the sales are going to be using real money, the
application must be secure with the purpose of avoiding illegal actions. It also
has to trace and log the errors, and then report them to the administrator, so
that it will be fault tolerance. The last main requirement of the project is the

1

2 CHAPTER 1. INTRODUCTION

necessity of developing a component based application in order to minimal the
impact to the other components if a change in one of them is made.

This implies that the application has to be separated into several layers,
and the code can not have any hard coded information, otherwise the amount
of work for the developer would be increased exponentially. Since we use
components in the application each of them must implement some kind of
interface.

One important part is the presentation layer; this component presents the
data to the customer. To make it free from the code we are going to use tags
that make the JSP files able to change the design without affecting the java
code. This involves more work for the developing part because now we have to
create tags to solve every task such as the presentation of the products where
several products are presented though an iteration of tags. Nevertheless this
amount of work is minimum compares to adding and updating java code in
the JSP files.

The next part will be the validation of the data sent by the user. To avoid
faults or make the system unstable all the processed data must be validated in
the server. The reason we eliminate the validation at the client is that there
are several ways of shutdown the validation such as deactivate the java script
for example.

Concerning the logic of the program, we have used java classes with Hiber-
nate capabilities to communicate with the database. The reason of choosing
Hibernate instead Enterprise Java Beans are several and explained in detail in
section 2.5, now the main reason is the caching possibilities of Hibernate and
the transaction support. Another reason is that Hibernate does not need any
special web server in contrast to J2EE and besides, Hibernate is open source
that is distributed under the GNU, which decreases the price of the project
and helps to offer a cheaper product.

1.2 Problem statement

The main problem for this application is to keep all of the above requirements
in each component of the application, so in case the shop is sold to another
company, the only thing to do is to reconfigure the components instead of

1.2. PROBLEM STATEMENT 3

rewriting the code of the application.

Another goal is if the customer wants new functionalities or components for
the application, it is only necessary to add or integrate with other component
without changing any of them thanks to the different interfaces for the objects.

We are also concern about the different clients to the shop, one is already
mentioned which is the human interface through web pages; the other is a Web
Service where the information is exchanged through messages passing. Several
Web Services have been created for improve the webshop such as consulting
the shipping rates. We will explain it with more details later.

Nowadays all commerce in the World Wide Web has to implement a high
security. The application has several features regarding security and is pre-
pared for adding SSL in order to assure the privacy of all transactions inside
the shop.

1.2.1 Goal

There were two main goals for this Master Thesis. The first one was to de-
sign and implement the Webshop application which follows the requirements
exposed in Section 1.3. Secondly, to state some conclusions and reflections
about how appropriate the use of Hibernate and Struts technologies are for
the development of the Webshop.

1.2.2 Expected results

The application fulfills the requirements exposed in Section 1.3, and it may be
happened that the customer changes the requirements or needs more features,
but the main requirements have been maintained during the whole project, so
the web shop kernel is assured. The expected results of this project are also
the survey of different approaches, the uses cases attached in the Appendix
B, the Vision of the project which the Chapter 3 is based on, the study of
different database technologies, the architecture design of the database and the
application, a prototype of the application and finally an analysis process which
validates the application against the use cases, measures the performance and
profiles the prototype.

4 CHAPTER 1. INTRODUCTION

1.3 Shop requirements

1.3.1 Scalability

When we talk about scalability it can be many things, it is difficult to define.
We can say that the scalability is the property of the application which specifies
its ability to either handle increasing amounts of work in a graceful way, or to
be readily enlarged [1, 2].

In terms of hardware scalability, the main idea is to build the shop scalable
in both vertical and horizontal ways. To scale vertically means to add resources
to a single node in a system, such as adding more or faster hardware. To
scale horizontally means to connect multiple entities so that they work as a
single logical unit. The vertical scalability is solved by increasing computing
resources within a server in case that the shop becomes popular. When loads
grow beyond the capacity of a single server, multiple servers can be added in
order to increase the horizontal scalability.

In terms of software scalability, the application is based on Struts frame-
work [3]. Struts is a robust and powerful framework which promises scalability,
reusability and separation of responsibility. This framework encourages a lay-
ered design for applications. This design helps make applications both scalable
and robust [4]. Struts uses the Servlet API, which runs multithreaded for per-
formance due to Java supports intrinsically threads. Using threads we increase
performance and scalability.

1.3.2 Security

The security is one of the main points in this application since the transactions
are going to be with real money. The first security feature is authentication,
which only allows buying things to persons that are registered as customers.
The second one is authorization. After the login process, there are different
roles and each of them has different permissions and restrictions, this is for
avoiding customers from making errors or faults in the systems.

Traceability. Every transaction and action will be logged into the system
both into the application container and into the internal log of the application,

1.3. SHOP REQUIREMENTS 5

so in case a bug or a lack of security allows a customer or hacker to perform
undesired activity, it can be traced back. With this feature the shop can be
updated faster than if the developer has to search into the code for bug or
errors.

1.3.3 Fault tolerance

The shop will implement different mechanisms to trace and log the errors, each
error will be graded. Depending on the serious of the error the administrator
or the shop manager will be informed in the case that the problem could not
be solve by the application.

The fault tolerance is important to accomplish the different tasks of the
shop, if a customer can not purchase an order which can be only fixed by the
administrator, it will immediately report by email or SMS so he can solve the
problem.

1.3.4 Component based

The shop will implement many functions; each of these functionalities will
be implemented as a component so that in case of a functionality is old or
no needed anymore, it can be removed or added without affecting the other
application parts.

1.3.5 Internationalization

Another important characteristic supported by the Struts framework is the
internationalization of applications. Using this feature the application is avail-
able in different languages depending on the country the request came from.
This could be happened since the browsers send information about the lan-
guage and the dialect within the request. We also concern about the format
that the different languages are presented in the webpage.

6 CHAPTER 1. INTRODUCTION

1.4 Structure of the Thesis

This report is based on seven chapters. The Chapter one introduces the the-
sis exposing the motives of this thesis as well as the problem statement, the
expected results and the shop requirements. The Chapter two gives some back-
ground with the intention of understanding the concepts shown in this report
and to show what others have already done, including related work, exist-
ing approaches, related technologies, the MVC patter, Struts framework, the
database technology using Hibernate, Web Services and a brief presentation
of the system prototype including some screenshots. The Chapter three offers
a Vision of the Project and presents the main functionalities of the system
prototype. The Chapter four describes the design of the MVC (Model-View-
Controller) pattern, following by an example for developing Java enterprise
applications, Struts. We continue giving details about our connection to the
database using Hibernate framework. Then, we introduce some knowledge
about Web Services architecture and finish putting together all the technolo-
gies in order to describe the design of the whole application in Section 4.5.
The Chapter five illustrates important details about the implementation. The
Chapter six analyses the application with performance and profiling. In the
end, the Chapter seven provides some conclusions and future work.

Chapter 2

Background

This Chapter gives some background with the intention of understanding the
concepts shown in this report and to show what others have already done, in-
cluding related work, existing approaches, related technologies, the MVC pat-
ter, Struts framework, the database technology using Hibernate, Web Services
and a brief presentation of the system prototype including some screenshots.

2.1 Related work

Nowadays there are many different kinds of webshops using all possible tech-
nologies. We have tried to develop a web shop with all the good properties
from the most used on-line shops. If we take a look at existing approaches,
there are several open source webshops [5, 6, 7, 8, 9], these approaches are
interesting from the develop perspective, since the business idea is to sell the
service, so if the code is published anybody can copy and offer the same service.

Putting together our researches in webshops like Amazon or eBay and
the customer necessities, that gave us a reference point to write the webshop
requirements in Section 1.3.

We have also found searching trought Internet an open-source webshop
project using Struts framework called eSarine [9]. This project is specially
designed for small enterprises, which is different to our expectations; we will
try to develop a more scalable application. This webshop uses like our project
the MVC (Model-View-Controller) pattern which gave us at the beginning a
good example to design the application. Finally, we decided not to focus on

7

8 CHAPTER 2. BACKGROUND

that project since the Model component is completely different because we are
using Hibernate technology and managing persistent objects instead of using
JDBC to carry out the connection to the database. We also concern about the
security and e-Sarine uses Container-Managed security i.e. roles for Actions.
We not only use those techniques, but we use Application-Managed Security,
i.e. using Struts’ Request Processing, Cookies and security inside the JSP
files.

One of the advantages of using MVC is that it is extensible in different ways.
For example, if we want to export this project to other platforms such as mobile
devices, we only have to adapt the presentation layer according to the mobile
standard. Related to this point there is a Master Thesis "Adaptation of a
Webshop for Mobile Devices" [10] which explains how an existing webshop can
be optimized for mobile devices. This point of view is very interesting because
it presents a solution for our webshop to be prepared for future presentation
formats, just changing the View Layer.

2.2 Existing approaches

The idea of the webshop, also called on-line shop, Internet shop or on line store,
has been started since around 1994 when Pizza Hut began to offer pizza order-
ing on its Web page [2]. During the same year Netscape 1.0 introduced SSL
encryption that reinforced the security in the transactions through Internet.
In 1995 and 1996 two of the most popular webshops nowadays "Amazon.com"
and "eBay" were launched to the World Wide Web. Since then, thousands
of webshops have been developed and nowadays almost every company which
sells something has a webshop in order to make their sales easy.

2.3 Related technologies

There are many webshops designs using different technologies, but few of them
are open source. If you try to look for them in Internet you can find very
quickly osCommerce [5], PHPay webshop [6], PhPepperShop [7], phpShop
Project [8] and eSarine [9]. Most of these solutions have been developed using
PHP technology. Using PHP carries several disadvantages for some points

2.4. MVC - STRUTS 9

of views. The most important could be the logic and presentation layers are
combined in the same file which does not represent a good solution for future
updates. To solve this problem, we have selected the MVC architecture which
is provided using Struts [3]. The whole application will be developed in Java
object-oriented programming language focused on the MVC architecture.

2.4 MVC - Struts

The Apache Struts project is an open-source framework [3] sponsored by the
Apache Software Foundation. It was designed for developing J2EE web ap-
plications following the Model-View-Controller (MVC) design pattern. It was
originally created by Craig McClanahan and in May 2000 donated to be taken
over by the open-source community.

This framework provides an easy way to separate the presentation layer and
allows it to be abstracted from the data layers and the transactions. Other
features are the internationalization (i18n), a great custom tag library, tiled
displays and form validation among others [11].

2.4.1 MVC design pattern

Struts framework is based on the MVC pattern which is a software architec-
ture that divides the data model, user interface, and control logic from the
application into three different parts. Changes to one component can be made
with smallest impact to the rest.

The Model represents the data objects of the Struts application. These ob-
jects are what are going to be manipulated and presented to the user.
They can be implemented as objects representations of data stored in a
relational database. At this point is when Hibernate comes into action.
Hibernate is an object-relational mapping (ORM) solution which per-
mits to manipulate a database tables as Java classes. This technology is
explained with more details in Section 2.5.

The View presents to the user the information of the Model. The View
components are mapped to a JSP file that contains Struts custom tags,

10 CHAPTER 2. BACKGROUND

HTML and JSP. All the JSP files are controlled by the Tile framework.
Using tiles allows us to develop reusable presentation components and
we can classify our presentation tier to perform greater reuse of layouts,
HTML, and other visual components like images and multimedia files.

The Controller defines the way that the UI responds to the user input. This
component is the one in charge of manipulate the Model.

Benefits of using MVC pattern are [11]:

Reliability. We are able to change the appearance of the application with-
out recompiling the code of the Model or the Controller components due to
they are visibly separated from the presentation and transaction layers.

High reuse and adaptability. The MVC pattern allows us to present our
application in different formats, all of them connecting to the same Model and
Controller parts. I.e. Web browsers through HTTP protocol or mobile devices
through WAP protocol.

Very low development and lifecycle costs. We can distribute develop-
ment effort, with the intention that implementation changes in one module of
the application do not involve changes to another.

Rapid deployment. Deployment time can be significantly reduced, because
programmers focused on the Controller module can work independently of the
developers responsible for the View or Model components.

Maintainability. The clearly separation of presentation and business logic
become easier to maintain and modify the application.

2.5 Database technology - Hibernate

A foremost element in the project is the database. All the information is stored
in this component and must be available in an effective way. The product data,
images, prices, offers, payments and the rest of the information in a webshop

2.5. DATABASE TECHNOLOGY - HIBERNATE 11

should be display almost immediately to the final customers in order to gain
their trust. Therefore the database fulfills a vital component.

The database will be designed in accordance with the relational database
model using a normalization process which eliminates duplicated data in the
relational database.

The election of the Database Management System (DBMS), we decided
to use MySQL [12] for many reasons. MySQL is a multithreaded, multi-user,
SQL Database Management System. One of the advantages is that MySQL
is available as free software under the GNU General Public License (GPL),
decreasing the cost of the final product. MySQL supports transactions, pro-
cedures and SSL which provides secure communications, an essential feature
in e-Commerce.

The application was designed to use a centralized database organization
showed in Figure 2.1. In this design all the webshops will use the same
database, a version to interconnect all the information in the different fu-
ture shops. The central database stores all the information from the different
shops. If a shop requires information from other shop, it has to consult it in
the same database.

Figure 2.1: Centralized database organization

This Centralized structure is based on a centralized database that has
a drawback; the database can get overloaded and become a bottleneck, as
the number of client increases. To solve this problem, the project could be
structured in a distributed system as the Figure 2.2 shows. Every shop has
its own webshop which connects to its database looking for a data, if it is
necessary to consult the other shops, the webshop will connect to the other

12 CHAPTER 2. BACKGROUND

webshop and ask for the information. This implementation will be developed
in future work.

Figure 2.2: Distributed database organization

The Model layer of the application was developed by using Hibernate tech-
nology [13] instead of Java Database Connectivity (JDBC) to access to the
database for many reasons exposed in the Table 2.1 - [14]. Hibernate is an
Object-relational mapping (ORM) solution for Java. It is open source software
that is distributed under the LGPL (Lesser General Public License). It offers
an easy to use framework for mapping an object-oriented domain model to a
traditional relational database. Hibernate allows us to query and persist data
in a relational database through object manipulation instead of through SQL
queries like JDBC.

JDBC Hibernate
Most of well-known developers
know it.

Easy and fast to learn.

Designed for small systems. Good performance.
Hard coding effort. Safe up to 95% of common data

persistence related programming
tasks.

Stored procedure usage. Reduce common data persistence
related programming tasks.

Table 2.1: A comparison between JDBC and Hibernate

2.6. WEB SERVICES 13

2.6 Web Services

In order to improve the webshop we have increased the functionalities adding
Web Services to the application. This means that not only the web shop can
be accessed by a human interface through web pages, the application supports
interoperable machine-machine interaction over Internet.

Figure 2.3 depicts the main roles and operations in a service-oriented ar-
chitecture which contains three roles: a service requestor, a service provider,
and a service broker/registry. The Web Services [15] can be described using
a WSDL (Web Services Description Language), published to a registry of ser-
vices using UDDI protocol, discovered between the Service Requestor and the
Service Provider, invoked using a declared API or composed with other Web
Services.

Figure 2.3: Web Services

In this web shop application we focused on the Service Provider and the
Service Requestor. Service Requestor can be compared as the client side of
a client-server relationship between the Service Requestor and the Service
Provider. This relationship is symbolized by the Bind operation.

The web shop performs several roles. It acts as a service provider supplying
several Web Services such as giving a list of all the products or products by
category. It can also work as a service requestor and gather information from a
shipping company which offers a Web Services with its rates depending on the
distance between the origin and the destination, and the weight of the order.

Chapter 3

Method

This Chapter presents a Vision of the whole Project and presents the main
functionalities of the system prototype at Section 3.5. The Vision of the
Project has been written following the Rational Unified Process-specific docu-
ment templates [16]. The Rational Unified Process (RUP) [17] is an iterative
software development process created by the Rational Software Corporation,
currently a division of IBM. RUP describes how to develop software effec-
tively using proven techniques. The prototype is base on two main interfaces.
The store-back which goal is to manage the webshop by the administrators or
the employees, and the store-front which objective is to present the available
products in the shop to the final user.

3.1 Positioning

3.1.1 Business Opportunity

This application will allow to the company the possibility of selling its products
through Internet, which will suppose a fast and easy way to access to the
data thanks to a user-friendly web interface. The application also permits the
customers access directly to the company services without any middlemen.

14

3.1. POSITIONING 15

3.1.2 Problem Statement

The problem of Taking control of the existent stock at several stores, so
that they may serve orders that receive those stores.
Managing the purchase orders from the customers.
Managing the accomplished orders to the suppliers.

affects Store managers, persons in charge of freight and Invoicing
department.

the impact of
which is

Gather and manage all the information related to the
stores and orders from the customers.

a successful
solution would
be

Computerizing the process using a database which is ac-
cessible from different nodes and generate a friendly and
intelligent user interface.

3.1.3 Product Position Statement
For Middle income homeowner.
Who Feel the need for buying products in their

houses saving time and money because of
there are no middlemen.

“Secure, scalable and
component-based
Webshop using Struts
and Hibernate”

Is a software product.

That Sells products using a user-friendly web in-
terface.

Unlike The ordinary Webshops in the World Wide
Web since they are too simple and have
so many mistake in the end-user point
of view, scalability, internationalization,
security, fault tolerance and components
based architecture.

Our product Gives the possibility to sell products using
web interface in internet, besides allows to
the employee to manage the Webshop.

16 CHAPTER 3. METHOD

3.2 Stakeholder and User Descriptions

It is required to recognize and involve all of the stakeholders as part of the
Requirements Modeling process in order to effectively provide products and
services that meet our stakeholders’ and users’ real desires.

3.2.1 Market Demographics

The target market segment includes all kind of citizens who has an Internet
connection and is interested in buying articles through Internet.

3.2.2 Stakeholder Summary

Hereinbellow we can find a summary list of all the identified stakeholders.

Name Description Responsibilities

Customer The person who will search
and buy the products.

Keep updated his
information in the database.

Employee This is a stakeholder that
will work in the shop.

The person who is in charge
of the shop, product stock,
managing the orders and
reporting possible errors to
the Administrator.

Administrator This is a stakeholder that
knows the details about the
application and how to solve
problems.

The person who is in charge
of creating and modifying
the configuration for the
system and maintaining the
database.

Bank This is the intermediate en-
tity.

This entity ensures that the
transaction is done without
any problems.

3.2.3 User Summary

Hereinbellow we can find a summary list of all the identified users for the ap-
plication.

3.2. STAKEHOLDER AND USER DESCRIPTIONS 17

Name Description Stakeholder

Customer End user of the system self
Employee End user of the system self
Administrator End user of the system self

3.2.4 User Environment

The environment of the target user will be a Web interface displayed in a web
browser which supports HTTP protocol.

3.2.5 Stakeholder Profiles

The following lists describes each stakeholder in the system.

3.2.5.1 Customer

Representative

Description The person who will search and buy
the products.

Type This is an end user.
Responsibilities Keep updated his information in

the database.
Success Criteria The success is completely defined

by buying products.
Involvement The application will store opinions

from the customers in order to im-
prove and fix the application

Comments Nothing.

18 CHAPTER 3. METHOD

3.2.5.2 Employee

Representative

Description This is a stakeholder that will work
in the shop.

Type This is the end user.
Responsibilities The person who is in charge of the

shop, product stock, managing the
orders and reporting possible errors
to the Administrator.

Success Criteria The success is completely defined
by the ability to maintain the shop.

Involvement There is no employee in this phase.
Comments Nothing.

3.2.5.3 Administrator

Representative

Description This is a stakeholder that knows the
details about the application and
how to solve problems.

Type This is an expert user which will
configure and fix errors in the ap-
plication.

Responsibilities The person who is in charge of cre-
ating and modifying the configura-
tion for the system and maintaining
the database.

Success Criteria The success is completely defined
by the ability to maintain the ap-
plication.

Involvement We will have sample of administra-
tors to improve our vision in this
project.

Comments Nothing.

3.2. STAKEHOLDER AND USER DESCRIPTIONS 19

3.2.5.4 Bank

Representative

Description This is the intermediate entity.
Type This is a casual user, which will check the payment

system.
Responsibilities This entity ensures that the transaction is done

without any problems.
Success Criteria The success is completely defined by the transac-

tion payment.
Involvement We will have contact with some payment compa-

nies.
Comments Nothing.

3.2.6 User Profiles

See previous Section 3.2.5.

3.2.7 Key Stakeholder or User Needs

The follow lists the main problems with existing solutions as perceived by the
stakeholder.

Need Priority Concerns Current Solution Proposed
Solutions

Secured
access

High Sales and user
information

Roles and logic se-
curity in JSP files.

Encryption
and SSL.

Easy to
use

High Ability to
provide intuitive
navigation in the
web interface

User friendly and
an intuitive naviga-
tion in the web in-
terface.

-

Internatio-
nalization

Moderate Ability to
provide the user
interface in the
user’s language.

Show the applica-
tion in the request
language.

-

20 CHAPTER 3. METHOD

Scalable Moderate None Possibility of ample
number of end users
to connect to the
application at the
same time.

-

3.3 Product Overview

This section gives a high level view of the application capabilities.

3.3.1 Product Perspective

Using Struts we can divide the application in several layers. Struts follows the
Model-View-Controller (MVC) pattern, sometimes called Model 2, MVC2 or
Web MVC.

Using MVC architecture involves defining three classes of modules, the
controller, the model and the view of a system. The controller manages the
application flow. The model uses hibernate to access to the database and to
carry out the business logic encapsulating the application state. The view
consists of Java Server Pages (JSP) and custom tags in order to present the
result.

3.3.2 Summary of Capabilities

Customer Benefit Supporting Features

Secure sales and access to
the system

Encription and authentication

Struts framework supports
Internationalization

Flexible access to the system. Due
to the web interface the application
can be accessed by internet.

3.4. CONSTRAINTS 21

3.3.3 Assumptions and Dependencies

Correct version of J2SE 1.5 or higher must be installed and MySQL database
must be reachable. Environment variables must be also correct. An applica-
tion server (such as JBoss or Tomcat) must be installed and running.

3.4 Constraints

3.4.1 Security

Due to transactions are going to be done with real money, security is one of
the most important points in this application. The first security feature is
authentication, which only allows buying things to customers already logged
in. The second one is authorization, after the login process, there are different
roles and each of them has different permissions and restrictions, this avoids
customers from making errors or faults in the systems.

3.4.2 Responsiveness

The application responds quickly to the end-user, not only to assure a short
response time, the system must be also scalable, therefore this response time
does not depend very much on the number of users connected at the same
time.

3.5 Overview of the system prototype

The system prototype has two parts, the administrator interface where the
application can be administrated, e.g., adding new products to the webshop,
modifying the product description in different languages. The other interface
is the real webshop published in Internet where the customers can register
themselves, search and buy products among other things.

3.5.1 Administrator interface (Store back)

The store-back is the administrator interface of the application where only the
administrators and employees can enter to manage the customers, employees,

22 CHAPTER 3. METHOD

administrators, roles, orders, products and its categories. Below these lines we
can see a screenshot of the store-back prototype.

Figure 3.1: Store-back screenshot

3.5.2 Customer interface (Store front)

The store-front is the public part of the application where the customers can
browse products and buy them. In this interface the customers can also man-
age their shopping cart, search for products by category or list all of them,
get registered to themselves, always mandatory before buying, and for logged
customers the interface gives the possibility to show the customers’ orders.
Under these lines we can find a screenshot of the store-front prototype.

3.5. OVERVIEW OF THE SYSTEM PROTOTYPE 23

Figure 3.2: Store-front screenshot

Chapter 4

System design

It is well known the advantages of using MVC pattern, i.e. the roles of pro-
grammers and designers are well defined, and this means the designers can
concentrate more on the presentation layer as well as the developers in the
business logic of the applications. We chose a solid MVC-based framework for
developing the application, Struts.

Struts framework [3] integrates with other technologies to provide the
Model, in our case with Hibernate, and the View components (JSP files).

Hibernate maps from database tables to Java classes, and also provides
data query in an easy way similar to SQL language, Hibernate Query Language
(HQL). It offers retrieval facilities instead of using manual data handling in
SQL and JDBC.

To be able to be compatible with old applications or simply increase the
functionalities, we can put everything together and integrates it with Web
Services technology.

In this chapter we are going to review every concept concerning the archi-
tecture of the application [18] and finally put together all the concepts with
the purpose of presenting the architecture of our Webshop at Section 4.5.

4.1 The MVC pattern

The goal for the MVC software architecture is to minimal the impact to the
other components if a change in one of them is made. With this design our
project is easy to maintain and good to sell to different shops, since the big

24

4.2. STRUTS FRAMEWORK 25

changes are only in the View module. Every module is explained in Section
2.4.1.

Figure 4.1: Simple Model-View-Controller (MVC) pattern.

4.2 Struts Framework

The Figure 4.2 shows in a high level the Struts Framework. As we can see
Struts architecture is based on the Model-View-Controller pattern.

Struts coexists with other technologies in order to integrate the Model and
View components but it has its own Controller element, the Action Classes,
also called ActionController in previous versions. In our application the
Model technology is Hibernate and for the View, Struts uses the JSP environ-
ment.

One of the features from Struts Framework is the internationalization, also
called "i18n". An example of internationalization component is the Message
Class which is administrated by the Controller module and references a re-
source bundle strings stored in the Resorce Properities File.

4.3 Hibernate technology

We can also described Hibernate as an Object-relational mapping (ORM) tool
for Java environments. It is free, open source software that is distributed un-
der the LGPL (GNU Lesser General Public License). It furnishes an easy to
utilize framework for mapping an object-oriented domain model to a tradi-

26 CHAPTER 4. SYSTEM DESIGN

Figure 4.2: Struts Framework architecture.

tional relational database. Hibernate objective is to reduce 95% of common
data persistence related programming tasks.

Hereinbellow there are some definitions of the Figure 4.3 [13]:

SessionFactory It is an immutable thread cache of compiled mappings for a
specific database.

Session A short-lived single threaded object representing the relationship be-
tween the application and the persistent objects. It envelops the JDBC
connection.

Persistent Objects A short-lived single threaded objects storing persistent
situation and business purpose associated with a specific Session. Those
objects will be released in order to use them in other layer when the
Session is closed.

4.4. HIGH LEVEL WEB SERVICES ARCHITECTURE 27

Figure 4.3: A medium level Hibernate architecture.

Transient Objects Persistent Classes which are not presently connected with
a Session.

4.4 High level Web Services architecture

Figure 4.4: High level Web Services architecture.

As shown in Figure 4.4, associating a single function with a single service
is the easiest way to develop a Web Service. These services can either retrieve
data or achieve business logic. But this has several drawbacks such as there is
no defined point for the user or the relation between the provider-subscriber is
not well designed. The final design using MVC pattern (Struts) will improve
this architecture as showed in the next section.

28 CHAPTER 4. SYSTEM DESIGN

4.5 Struts, Hibernate and Web Services: Our

Webshop

Figure 4.5: Struts, Hibernate and Web Services.

As a consequence of using the MVC pattern, Struts framework visibly
differentiates the View, the Controller and the Model. Putting together Struts
with Web Services allow to the Struts application either provide or subscribe
to a Web service.

To be capable of understanding all the technologies working together, the
next sections illustrate the most important components of the whole webshop
design showed in Figure 4.5:

4.5.1 Controller

This is the backbone of the Struts applications. The primary component is
the class ActionServlet. The Controller takes care of collecting requests from

4.5. STRUTS, HIBERNATE AND WEB SERVICES: OUR WEBSHOP 29

the client trough a Web browser, and decides what business logic to execute
depending on the request. After that it delegates control of each request to
a specific Action class, based on the URI of the incoming request. In the
Action class, the Model of the application is gathered or modified, the returns
a key to the ActionServlet in order to decide what View component will
be presented. The WSController are called by the Struts Controller to bring
into play a Web Service. The WSController obtains the required response
and sends it back to the Struts Controller. Notice that the WSController can
also receive a request from a Subscriber and communicate with the Struts
Controller to achieve a particular function. We explain more details about the
Controller implementation in Section 5.2.

4.5.2 View

Each View component in the Struts Framework is based on JSP technology
which can contain any combination of static HTML and dynamic content
that changes depending on the interpretation of special action tags. These
tags are JSP tags or Struts custom tags. We will focus more on the Struts
framework which includes an extensive custom tag library well prepared for
internationalization. The JSP technology carries out two main roles in Struts
application. The first one is to work as a presentation layer for the Controller
component using the Struts custom tags mentioned before. The second one is
to collect information from the user in order to execute a Controller Action.

4.5.3 Model

The Model components represent the data objects of the application as we
explained earlier. It is based on a set of Java classes mapping the database
into objects. Both the Struts Controller and WSController can call the Model
components methods in order to get data in the form of Data Access Objects.
These components can achieve any required business logic and then retrieve
any data from the Persistent Objects. The Model components populate the
Data Access Object, and pass it back to the Struts Controller or WSController
classes. If an error appears, it is propagated back to the Struts Controller or
WSController layer.

30 CHAPTER 4. SYSTEM DESIGN

4.5.4 WSController

The WSController takes care of the incoming SOAP requests and passes on
the business logic of the Model. Therefore the WSController handles requests
and responses and acts as a contact point. It performs security services such
as authentication or authorization. It can also cache the data to evade any
unnecessary query.

4.5.5 Provider

Both the Provider and the Subscriber Web Services must have access to the
same service description. Every WSController method is published through
a WSDL file (Web Services Description Language) based on XML schemas.
This schema can either be published on a public registry or in the same server
if all of their clients are dedicated partners.

4.5.6 Subscriber

The application makes use of a Web Service for getting the shipping rates but
it can subscribe to any other Web Service either in the public registry or in
an enterprise. The WSController has methods for parse the WSDL definition
file and call the procedure. These methods are called by the Struts Controller
in order to execute its own functionalities. Subscribing to an external Web
Services requires a WSDL document, a port number, a server name, a method
name, and the necessary parameters.

4.5.7 Authentication and authorization

This is an important feature that we will improve its security level in feature
work since it is necessary to implement a digital certificate for the subscriber
in the WSController. We have implemented a basic user authentication en-
crypted only in the database.

4.5. STRUTS, HIBERNATE AND WEB SERVICES: OUR WEBSHOP 31

4.5.8 Error Handling

The error handling is managed by the WSController. The WSController can
throw a exception as a SOAPFaultException if it is working as a provider. I.e.
the incoming request throws an exception if any mandatory field is missing.

In the other hand if the Web Service is working as a subscriber, the WSCon-
troller gathers a SOAP exception thrown by the service provider and transform
it into the format needed by the WSController.

Chapter 5

Implementation

A prototype has been built to achieve the requirements specified in Section 1.3.
This Chapter is divided in several sections explaining implementation details
concerning the architecture shown in Figure 4.5.

5.1 Development platform

The operating system was Windows XP SP2 and the prototype code was devel-
oped in Eclipse SDK Version 3.2 [19] using Java EE Version 5 [20], the plug-in
MyEclipse Enterprise Workbench Version 5.0 [21] and the extension Eclipse
Web Tools Platform (WTP) Version 1.5 [22]. The election for the web server
was Apache Tomcat Version 5.5.16 [23] and for the Database Management
System was MySQL Version 5.0 [12].

Notice that all above projects are free software but MyEclipse, which has a
trial period of 30 days and thinking about future work its registration is very
economical.

5.2 Struts

The main component of the Controller part is a Servlet (class ActionServlet),
which is in charge of mapping URI requests to specific actions through an XML
file called Struts-config.xml. This is the backbone of controlling the entire
logical flow of the application. It is easy to read, particularly if the application

32

5.2. STRUTS 33

is large. It holds a list of request URIs and notifies the ActionServlet how it
must dispatch them.

In the View component Struts uses the JSP environment which enables
to use any combination of static HTML and dynamic content that changes
based on the interpretation of special action tags. The JSP Custom tags
have been quickly increasing since their first introduction in the version 1.1
of JSP specification. Struts includes a set of Tag libraries that allow us too
develop the View component without inserting Java code into our JSP pages.
These Struts libraries are: Bean Tags, HTML Tags, Logic Tags, Nested Tags,
Template Tags and Tiles Tags.

One of the main rules for using Struts is that the Model do not have to con-
tain any View code as well as all JSP files do not have to contain any forward
code since the flow of the application is controlled by the Struts-config.xml
file.

Hereinbellow there is a snippet of the Struts-config.xml file:

...

<action path="/LoginEmployee"

type="com.genx.security.action.LoginEmployeeAction"

name="loginForm"

scope="request"

input="storeback.adminlogin"

validate="true">

<forward name="success"

path="storeback.adminwelcome" />

<forward name="error"

path="storeback.adminlogin" />

</action>

...

This entry contains data that will be stored in the ActionMapping which is an
argument of the executed() method of the LoginEmployeeAction. This action
should be called when the URL ends with the path "/LoginEmployee". The
original resource that submitted the request to this Action is a JSP page with
a Tile definition of "storeback.adminlogin". Depending on the returned
value from the ActionForward, the LoginEmployeeAction class will forward

34 CHAPTER 5. IMPLEMENTATION

the flow and the results of its processing to "storeback.adminwelcome" Tile
definition or get back to "storeback.adminlogin" Tile definition.

Concerning the Tile definitions see Section 5.2.2 and for the “validate”

and ”name” field take a look the bellow Section 5.2.1.

5.2.1 Errors

Struts contains a framework used to validate form fields. In the last example
the Form that was going to be validated was "loginForm" and is validated de-
pending on whether the field “validate” is equal to true or not. The Validate
framework has support for internationalization and is extensible. Using this
framework we can validate data such as e-mails, credit cards, dates or write
our own rules in Java.

5.2.2 Tiles

The Tiles framework is bundled with Struts [3] framework but not enabled
by default. This framework is really useful as it allows us to create reusable
presentation components, i.e. layouts, HTML, images and other visual com-
ponents. Using custom tags, <tiles: />, and Java scriptlets we can develop
these visual elements.

The main layout in our application is divided into four regions (Header,
Menu, Body and Footer) which allow us to pass parameters such as the user
name logged into the header region. The complete structure of the presentation
is collected in a XML file, the Tile definition. Here I enclosed a snippet of the
tiles-defs.xml file:

<tiles-definitions>

<definition name="siteLayoutDef"

path="/pages/storeback/common/siteLayout.jsp">

<put name="title" value="GenX - Struts webshop 1.0" />

<put name="header" value="/pages/storeback/common/header.jsp" />

<put name="footer" value="/pages/storeback/common/footer.jsp" />

<put name="menu" value="/pages/storeback/common/menu.jsp" />

5.2. STRUTS 35

<put name="content" value=""/>

<put name="logo" value="images/genx_logo.gif" />

</definition>

<definition name="storeback.adminlogin" extends="siteLayoutDef">

<put name="content" value="/pages/storeback/adminlogin.jsp"/>

</definition>

...

</tiles-definitions>

When we install the Tiles Plug-in, we are installing a custom request processor,
too. This means that in the Struts-config.xml file we can forward to a Tile
definition:

<forward name="error" path="storeback.adminlogin" />

Instead of calling the JSP file “/pages/storeback/adminlogin.jsp”.

5.2.3 Security

The problem of security is a crucial aspect in this project since we are going
to sell real products. In order to introduce security in our Struts application
and after studying carefully the chapter 19: “Securing struts application” in
[24], we have to focus on the following topics:

Authentication and authorization. Authentication is the procedure of
telling to the application that you are who you are saying. This is implemented
by introducing the user name and password. Once you have introduced this
information the Authorization allows you to access to different webpages. This
is carried out by the Role-based access control (RBAC) and the Application-
managed security.

Role-based access control. The Role-based access control (RBAC) is an
alternative approach to Mandatory Access Control (MAC) and Discretionary
Access Control (DAC). The permission of execute an Action can be allowed or
disallowed based on the user role defined in each entry in the Struts-config.xml
file.

36 CHAPTER 5. IMPLEMENTATION

Application-managed security. By extending RequestProcessor we can
use role-based access for authorization. Once the user is authenticated, we
store the user in the Session until he/she logs-out or does not call any Action
through surfing in the webshop in a period of time.

In addition, we use the <logic: > tag to hide or show some information
relevant to security issue in the JSP files.

<logic:equal name="user" property="administrator" value="true">

//security code

</logic:equal>

Cookies. We use Cookies to keep safe all the information relevant to the
last user Session so that if the user close the web browser or the connection
is cut off, next time the user logs into the application, he will be advised if
he wants to keep the last session. I.e. the user can return to a precise step in
his/her shopping without filling all the information again. These cookies have
an expiration period for security reasons.

Secure Communications using SSL. We understand that this is a very
important security issue, but since https protocol of the URL must often be
hard-coded into a page, we will leave this part for future work.

5.2.4 Internationalization

Every Web browser attaches some information in the requests about the coun-
try and the language, i.e. en_US, es_ES, sv_ SE. It is necessary for each
language a Resorce Properities File containing a list of key-value pair. Each
value will be displayed in the JSP page depending on the request.

The two foremost i18n components are the Message Class which is admin-
istrated by the Controller module and references to a resource bundle strings
stored in the Resorce Properities File as we mentioned before. And the sec-
ond one is a Struts custom Tag, <bean:message/>, which is managed by the
Controller part in order to display the actual Strings in the View module.

5.3. DATABASE 37

5.3 Database

The Figure 5.1 describes a database design developed for the prototype. This
database conforms to an E-R diagram and it can be represented by a collection
of tables. Entity types are related to each other using (x,1)-(x,N) mapping,
also known as one-to-many relationship. A many-to-many relationship (using
(x,N)-(x,M) mapping) is represented as a table with columns for the primary
keys of the two participating entity, and any attributes of the relationship. In
our design we can find two many-to-many relationships, “is accessory” and
“includes product”.

Figure 5.1: Database design

38 CHAPTER 5. IMPLEMENTATION

The database was implemented for MySQL. Hereinbellow we can see a
snippet from the script:

DROP DATABASE IF EXISTS webshop; CREATE DATABASE webshop;

...
CREATE TABLE webshop.customer (
username varchar(45) NOT NULL,
password varchar(45) NOT NULL,
role_id int(10) unsigned NOT NULL,
name varchar(45) NOT NULL,
phone varchar(45) NOT NULL,
email varchar(45) NOT NULL,
address_id bigint(20) unsigned NOT NULL,
PRIMARY KEY (username),
KEY FK_customer_1 (address_id),
CONSTRAINT FK_customer_1 FOREIGN KEY (address_id)
REFERENCES address (id)
) ENGINE=InnoDB DEFAULT CHARSET=latin1;

...

This code regenerates the database deleting the old one and creating a new
one. We have to create every table from the design showed in Figure 5.1. As
an example it is shown how to create in SQL language the webshop.customer
table with all its fields. The primary key is the username which is used to
identify uniquely each record in the table. It has a foreign key, address_id,
which matches the primary key column of another table. For security reasons,
the password is stored by the result of the MD5() function in order to be
encrypted, but we store a simple varchar(45).

5.4 Hibernate

Hibernate uses three basic files to provide its services[25]. The configuration
file, the mapping definition file and the primary Hibernate class used to retrieve
and persist java classes. Let’s have a look at these files.

hibernate.cfg.xml Hibernate provides an XML formatted file for configur-
ing the Hibernate service. First, it uses Hibernate-managed JDBC connection
and then, it shows the location of the mapping definition files.

5.4. HIBERNATE 39

<hibernate-configuration>
<session-factory>

<property name="myeclipse.connection.profile">Webshop</property>
<property name="connection.url"> jdbc:mysql://localhost/webshop </property>
<property name="connection.username">root</property>
<property name="connection.password">root</property>
<property name="connection.driver_class"> com.mysql.jdbc.Driver </property>
<property name="dialect"> org.hibernate.dialect.MySQLDialect </property>

...
<mapping resource="com/genx/dbObjects/Address.hbm.xml" />
<mapping resource="com/genx/dbObjects/Customer.hbm.xml" />
<mapping resource="com/genx/dbObjects/Order.hbm.xml"></mapping>

...
</session-factory>
</hibernate-configuration>

Customer.hbm.xml This mapping document is used to provide Hibernate
with information to persist objects to a relational database. The id element
illustrates the primary key for the persistent class in addition to how the key
value is generated. The many-to-one element defines the association to the
Address class.

<class name="Customer" table="customer">
<id name="username" column="username" type="java.lang.String">

<generator class="native"/>
</id>
<property name="password" column="password"

type="java.lang.String" not-null="true" />
<property name="roleId" column="role_id"

type="java.lang.Integer" not-null="true" />
<property name="name" column="name"

type="java.lang.String" not-null="true" />
<property name="phone" column="phone"

type="java.lang.String" not-null="true" />
<property name="email" column="email"

type="java.lang.String" not-null="true" />
<many-to-one name="address" column="address_id"

class="Address" not-null="true" />

</class>

40 CHAPTER 5. IMPLEMENTATION

AbstractCustomer.java Here we create a Customer class with a many-to-one
relationship to Address. Note that Customer object has a location field, which
links it to an Address object as well as a Set of orders who has ordered this
Customer.

public abstract class AbstractCustomer
implements Serializable{
...

/** The composite primary key value. */
private java.lang.String username;
/** The value of the address association. */
private Address address;
/** The value of the order2Set one-to-many association. */
private java.util.Set order2Set;
/** The value of the simple password property. */
private java.lang.String password;
/** The value of the simple roleId property. */
private java.lang.Integer roleId;
/** The value of the simple name property. */
private java.lang.String name;
/** The value of the simple phone property. */
private java.lang.String phone;
/** The value of the simple email property. */
private java.lang.String email;

5.5 Web services

Using Eclipse Web Tools Platform (WTP) Project [22], we can create a simple
Web Service from the Java class. In our case we wanted to publish a Web
Service which offers the following procedures:

getProducts(): Provides the functionality of getting a list of all the products.

getProductsByCategory(): Provides the functionality of getting a list of
products by a specific category.

deliveredOrder(): Set “delivered” in the status field. I.e. it is used by the
shipping company.

orderProducts(): Create an order for a customer with a set of products.

5.6. FLOW DYNAMICS 41

We achieved this publishing a WSDL definition file created by Apache Axis
[26].

The following code shows a snippet from the SuplyChain.wsdl:

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://ws.genx.com"
xmlns:apachesoap="http://xml.apache.org/xml-soap"
xmlns:impl="http://ws.genx.com" xmlns:intf="http://ws.genx.com"
xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<!--WSDL created by Apache Axis version: 1.2.1
Built on Jun 14, 2005 (09:15:57 EDT)-->
<wsdl:types>
<schema elementFormDefault="qualified" targetNamespace="http://ws.genx.com"
xmlns="http://www.w3.org/2001/XMLSchema">
<element name="getProducts">
<complexType/>
</element>
<element name="getProductsResponse">
<complexType>
<sequence>
<element maxOccurs="unbounded" name="getProductsReturn" type="xsd:string"/>
</sequence>
</complexType>
</element>

...

This code shows that the result of the getProducts() function is a sequence of
String, this means that each product was serialized to a String with all of its
fields.

5.6 Flow dynamics

In this section, we will examine the use case log-in by customer detailed in
Table B.12 at Section B.5 and discuss each of the steps performed by Struts
and Hibernate along the way [11]. The purpose is to show with a walkthrough
that ties together all of the earlier assembled components.

42 CHAPTER 5. IMPLEMENTATION

Figure 5.2: Store-front, Log-in screenshot

When we start the application we should see the log-in page in the store-
front interface according to the Figure 5.2. This will be changed in future
work to log-in only when you are going to buy an order.

When this page loads, the following actions take place:
The <html:form> creates the necessary HTML used to represent a form

and then checks for an instance of the com.genx.security.action.Login

CustomerAction in session scope.
If an instance of the LoginCustomerAction is found, then the value stored

in the ActionForm’s username and password data members are mapped to
the input element values on the form and the HTML form is written to the
response.

When we write into the username and password fields, and then press
the Submit button, it causes the browser to call the URL named in the
<html:form/> tag’s action property, which in this situation is LoginCustomer
Action.do. The servlet container receives the request, and it tries to find in
the web.xml file a <servlet-mapping> with a <url-pattern> that ends with
.do. It gets the following entry:

<!-- Standard Action Servlet Mapping --> <servlet-mapping>
<servlet-name>action</servlet-name>
<url-pattern>*.do</url-pattern>
</servlet-mapping>

It notifies the container to send the request to a servlet which has been deployed
with the action <servlet-name>.

5.6. FLOW DYNAMICS 43

The next <servlet> entry with a <servlet-name> of action which points
to the ActionServlet is located by the container. It acts as the Controller
for our Struts application:

<servlet>
<servlet-name>action</servlet-name>
<servlet-class>
org.apache.struts.action.ActionServlet
</servlet-class>
</servlet>

The ActionServlet assume the control and retrieve the created LoginForm,
populates the username and password data members with the values passed
on the request, and finally adds the LookupForm to the session with a key of
loginForm.

The ActionServlet tries to find an <ActionMapping> entry in the struts-
config.xml file with LoginCustomer as a <path>. It discovers the next entry:

It finds the following entry:

<action
path="/sf/LoginCustomer"
type="com.genx.security.action.LoginCustomerAction"
name="loginForm"
scope="request"
input="storefront.customerlogin"
validate="true">

<forward name="success" path="storefront.customerwelcome" />
<forward name="error" path="storefront.customerlogin" />

</action>

At this point, the LoginCustomerAction.execute() method retrieves the
Customer persistent object by his username. This is carried out by Hiber-
nate calling the Session and Transaction interfaces. It recovers the objects
from the database using just the information in the mapping files and making
them persistent.

After doing the logic taks using Hibernate, the LoginCustomerAction.

execute() invokes the ActionMapping.findForward() method with a success
or error String value.

44 CHAPTER 5. IMPLEMENTATION

Figure 5.3: Store-front, Welcome screenshot

The ActionMapping.findForward() method looks for a <forward> el-
ement corresponding to the target value. An ActionForward object is re-
turned to the ActionServlet by the ActionMapping.findForward() depend-
ing on the target value. It can be either storefront.customerwelcome or
storefront.customerlogin as a path attribute used for the View presenta-
tion.

Figure 5.4: Store-front, Error Log-in screenshot

If we insert correctly the username and password, we will be forwarded to

5.7. USER INTERFACE DESIGN 45

storefront.customerwelcome showed in Figure 5.3, but if for some reasons
the introduced username and password do not match the real ones, we will be
sent back to storefront.customerlogin illustrated in Figure 5.4, which is
the error path of the LoginCustomerAction and we will get an error message,
an validation technique provided by the Struts application.

5.7 User interface design

This Section describes the user interface designed for the application prototype.
It was developed as the View component of the Struts application. This was
accomplished using JSP technology that allows us to dynamically generate
HTML. The JSP pages were built by assembling reusable Tiles. Essentially
Tiles are other JSP pages which allow us to compartmentalize our presentation
tier to achieve greater reuse of layouts, HTML, and other visual components.

By using definitions and Tile layouts, we have created reusable display
components. Now, we want to show the layout explained in Section 5.2.2 that
we have used for designing our user interface.

Figure 5.5: Layout screenshot

As the Figure 5.5 illustrates, the layout consists of four regions: Header,

46 CHAPTER 5. IMPLEMENTATION

Footer, Menu and Content. Observe that we can effortlessly redefine reusable
sections of this application just by passing the correct parameters. I.e. al the
pages from the store back might share the same header, menu and footer but
a different content. It also allow us to pass parameters to the regions like the
name of the user logged in the session.

5.8 Deployment strategy

If we wanted to start over the implementation phase, we would begin designing
the database. After that, we could write the script in SQL to implement the
database. After the creation of the database and all its tables, we could map
those tables into the application using Hibernate. This was carried out by
Myeclipse tool [21] automatically. At this point, we have the objects that are
going to be managed and we will begin programming the Model component
to manage those objects.

We can continue with the struts configuration file which describes the whole
flow of the application. It may be a good idea to start with a draft design of
this file. Then, we have to write the Actions in the Controller component in
order to define the way that the UI responds to the user input.

The last step would be to create the View component. This was an easy
task thanks to myeclipse tool which provides a friendly user interface for de-
veloping JSP files. After that, we have to introduce the struts tags in order to
achieve some logic and secure tasks.

Chapter 6

Analysis

6.1 Validation

In this section we explain the number of use cases that have been supported,
this means implemented and then tested.

6.1.1 Implemented use cases

The following use cases have been implemented according to the develop-
ment platform exposed in Section 5.1. The Configuration management (create
default, modify), Administrator management (add, edit, remove), Employee
management (add, edit, remove), Customer management (add, edit, remove),
Roles management (add, edit, remove), Categories management (add, edit,
remove), Products management (add, edit, remove), Management orders by
employee (make order, view, edit, cancel), Management orders by customer
(make order, view). See Section B.5 for further details about the use cases.

The Cancel order by customer use case has been skipped for security rea-
sons. We thought that it is better to cancel an order by the employee and not
by the customer without talking first to a member of staff. We did not have
time to implement the Search products by employee and Search products by
customer use cases.

The Installation of the system, Start up and Shutdown the shop use cases
do not require implementation, since the application is package is a .WAR file
and the only thing to do is execute or shut down the startup.bat file in the

47

48 CHAPTER 6. ANALYSIS

Tomcat folder.

6.1.2 Tested use cases

All the implemented use cases have been tested from different machines and
through different web browsers. All of them have passed those tests without
any significant programming error. This means the following list: The Configu-
ration management (create default, modify), Administrator management (add,
edit, remove), Employee management (add, edit, remove), Customer manage-
ment (add, edit, remove), Roles management (add, edit, remove), Categories
management (add, edit, remove), Products management (add, edit, remove),
Management orders by employee (make order, view, edit, cancel), Management
orders by customer (make order, view).

6.2 Performance

In this Section we test the performance of the system. It is a crucial perfor-
mance factor to give a fast response to the end-users in order to gain their
trust in the reliability of our application.

6.2.1 Test-bed

The computer running the tests is a Toshiba M30-801 laptop with Intel Cen-
trino 1,5 processor, 512MB RAM with Microsoft Windows XP SP 2 operating
system.

The programs used for the tests are Borland Optimizeit Enterprise Suite
2006 for analyzing the requests and Mercury LoadRunner 8.0 for generating
virtual users.

6.2.2 Worst case

We are going to use the worst use case to calculate the performance of the
prototype. The performance measurement is the response times of the requests
and the worst use case is the one which has the maximum number of events.

6.2. PERFORMANCE 49

This use case is “buy product” (or “make an order by customer”) and has the
following events:

1. The user logs in

2. List of products

3. Select the product to buy

4. Select the quantity of the product

5. The application calculates and shows the total cost with shipping charge

6. The user confirm the order

This scenario was recordered using LoadRunner in a web browser and it took
me 6 seconds to achieve all the events (I tried to do it as soon as possible).
Notice that the payment management is not implemented yet.

6.2.3 Performance scenario

The first test scenario was to evaluate the “worst case” described above. In this
scenario 50 virtual users execute the six events explained to buy a product and
repeat them 5 times. The results can be found in tables 6.1, 6.2 and Figure
6.1. The test took 159777.099 ms to handle 2243 requests.

Module Name Module Time

JDBC 2,00 %

Servlet and JSP 24,02 %

WebService 73,99 %

Table 6.1: System Module Percentage Use.

As we can see the Web Service module takes much more time than serving
JSP files and communicating to the database. Observe that the database
server and the WebService are tested in the same machine, far away from a
real situation where we have to add ping times between the end-users and the

50 CHAPTER 6. ANALYSIS

Figure 6.1: System Entrypoint Module Percentage Breakdown

servers. In this supposed scenario the WebServices and the JDBC modules
would take the mayor part of the percentage use.

System Entrypoint JDBC JSP WSVC Avg.time
Servicing URI: BuyProductWS1.do
(class ActionServlet)

0,26 % 3,33 % 73,63 % 495 ms

Servicing URI: BuyProductWS2.do
(class ActionServlet)

0,45 % 9,75 % None 66 ms

Servicing URI: ListProduct.do
(class ActionServlet)

0,76 % 5,84 % None 42 ms

Servicing URI: GetProductWS.do
(class ActionServlet)

0,28 % 1,30 % None 10 ms

Servicing URI: WS_UPS
(class AxisServlet)

None 1,16 % 0,36 % 10 ms

Servicing URI: LoginCustomer.do
(class ActionServlet)

0,24 % 1,13 % None 9 ms

Servicing URI: /webshopSH/
(class JspServlet)

None 0,86 % None 5 ms

Servicing URI: Login.do
(class ActionServlet)

None 0,63 % None 4 ms

Servicing URI: genx_logo.gif
(class DefaultServlet)

None 0,02 % None <1 ms

Table 6.2: System Entrypoint Module Percentage Breakdown

The JSP module acts in all the services in opposition to the WebService

6.3. PROFILING 51

module which takes action only in two of them. Even taking this into account
the WebService module spends almost 75% of the whole time to handle all the
request in only one Action, the one which connects to the UPS WebService
and gathers the shipping rates for the order.

6.3 Profiling

Using Borland Optimizeit profiler tool, we can isolate memory and CPU per-
formance issues in order to generate reports that help us finding out which
methods consume a lot of CPU time and which methods allocate a too much
memory.

6.3.1 Profiling scenario

We have chosen the same worst case scenario mentioned before but in this case
the number of virtual users is 20 and they are going to buy a product only one
time. The results can be found in Tables 6.3, 6.4, 6.5 and Figure 6.2.

Hotspots Time % Time
org.apache.struts.action.ActionServlet.process 32.71 721 ms
org.apache.axis.client.Call.invoke 29.99 661 ms
Java core classes 7.76 171 ms
org.apache.jasper.servlet.JspServlet.service 2.72 60 ms
XML classes 2.72 60 ms
org.apache.axis.i18n.MessageBundle (2).getMessage 2.27 50 ms
org.apache.struts.util.MessageResources.messageKey 1.36 30 ms
org.apache.tomcat.util.log.SystemLogHandler.write 0.91 20 ms
org.apache.catalina.core.ApplicationContext.getRealPath 0.91 20 ms
org.apache.axis.encoding.DeserializationContext (2).startPrefixMapping 0.91 20 ms
org.apache.axis.i18n.MessageBundle (2).getMessage 0.91 20 ms
org.apache.axis.i18n.ProjectResourceBundle (2).handleGetObject 0.91 20 ms
org.apache.struts.taglib.tiles.InsertTag$InsertHandler.doEndTag 0.50 11 ms
org.apache.axis.message.MessageElement (2).MessageElement (2) 0.45 10 ms
org.apache.catalina.session.ManagerBase.createSession 0.45 10 ms
...

com.genx.dbUtils.ProductDataHiber.getProductsHiber 0.24 10 ms

Table 6.3: CPU profiler output - Sampler / Methods

52 CHAPTER 6. ANALYSIS

Figure 6.2: CPU profiler output - Sampler / Methods (pie chart)

The first method from the application code does not require almost nothing
CPU, this means that there is no a method with important programming
errors.

Class name Instance
count

Difference Size Size
difference

char[] 95589 + 52624 13150 KB + 7368 KB
java.lang.String 68842 + 23090 1613 KB + 541 KB
Object[] 35995 + 10652 2363 KB + 755 KB
java.lang.StringBuffer 9292 + 9171 145 KB + 143 KB
java.util.HashMap$Entry 22931 + 5057 537 KB + 118 KB

Table 6.4: Current heap of attached application

After call the Java’s garbage collector, we run the scenario mentioned and
we can observe that the big difference either in number of instance or size is
in “char[]”, therefore the table 6.5 shows the methods allocating instances of
char[].

6.3. PROFILING 53

Allocation locations Count Count
%

Java core classes 7366 16.07%
com.mysql.jdbc.ResultSet.getStringInternal() 6360 13.87%
XML classes 4182 9.12%
org.apache.catalina.util.StringManager.StringManager() 2155 4.70%
org.apache.axis.utils.JavaUtils class initialization 1973 4.30%
org.apache.axis.i18n.ProjectResourceBundle$Context.loadBundle() 1789 3.90%
org.apache.axis.i18n.ProjectResourceBundle$Context (2).loadBundle() 1788 3.90%
org.apache.tomcat.util.digester.Digester.endElement() 1628 3.55%
org.apache.jasper.compiler.Localizer class initialization 1367 2.98%
org.apache.naming.resources.FileDirContext.normalize() 904 1.97%
org.apache.catalina.loader.WebappClassLoader.findClassInternal() 855 1.86%
org.apache.naming.resources.FileDirContext.file() 832 1.81%
com.mysql.jdbc.Messages class initialization 762 1.66%
org.apache.tomcat.util.IntrospectionUtils.findMethods() 582 1.27%
...

com.genx.dbObjects.Product$$EnhancerByCGLIB$$
92b8d4e1$$FastClassByCGLIB$$3231e1d3.getIndex()

30 0.07%

Table 6.5: Methods allocating instances of char[]

What we can be aware of is that at this workload the first method from
the application code requires little memory. No errors managing memory can
be found.

Chapter 7

Conclusions and future work

In this report we have present a solution for a webshop following the archi-
tecture and patterns of enterprise applications. The main idea was to create
a scalable, internationalized, secure, fault tolerance and components based
application.

Using Struts framework provides us an easy way to separate the presenta-
tion layer and allows it to be abstracted from the data layers and the transac-
tions. Other features are the internationalization, a great custom tag library,
tiled displays and form validation among others.

A foremost element in the project is the database. All the information
is stored in this component and must be available in an effective way. In
the Model layer of the application we use Hibernate. It offers an easy to use
framework for mapping an object-oriented domain model to a traditional rela-
tional database. Hibernate allows us to query and persist data in a relational
database through object manipulation instead of through SQL queries like
JDBC.

In order to improve the webshop we have increased the functionalities
adding Web Services to the application. This means that not only the web
shop can be accessed by a human interface through web pages, the application
supports interoperable machine-machine interaction over Internet.

When running tests, we saw that 74% of this time is taken by the Web
Services, but this happens only in one Action. The rest Actions requires only
serving JSP files and connecting to the database which works very fast, around
100 ms more or less for every use case except the one using Web Services which

54

55

it takes 650 ms for carrying out the task.
After this master thesis I have learnt very well how the Struts framework

works and quite well how we can persist objects using Hibernate technology.
The development time were significantly reduced since the MVC pattern let us
focus on different components in the implementation phase. An advantage of
using Hibernate, having some knowledge before about SQL and database de-
signs, is that it is very easy to learn, and also a lot of common data persistence
related to programming tasks could be saved.

Through the development of this application, I have improved a wide range
of knowledges, which include J2EE, MVC pattern, more precisely Struts, JSP,
Hibernate, Web Services and for writing this report I have learnt LATEX and
used the LYX tool [27], very useful for the presentation and for avoiding errors
in this report.

There are two different kinds of future work for this Thesis. The first one
is to improve the security by adding SSL encryption and develop the payment
section. The second one concerns enhancing the database design with more
knowledge about invoicing.

56 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[1] A. B. Bondi, “Characteristics of scalability and their impact on perfor-
mance,” ser. Proceedings of the 2nd international workshop on Software
and performance, Ottawa, Ontario, Canada, 2000, vol. ISBN 1-58113-
195-X, pp. 195–203. 4

[2] (2006) The Wikipedia Website. [Online]. Available: http://en.wikipedia.
org/ 4, 8

[3] (2006) The Apache Struts Project. [Online]. Available: http://struts.
apache.org/ 4, 9, 24, 34

[4] T. N. Husted, C. Dumoulin, G. Franciscus, and D. Winterfeldt, Struts
in Action - Building web applications with the leading Java framework.
Manning Publications, 2002, vol. ISBN 1930110502. 4

[5] (2006) osCommerce, Open Source Online Shop E-Commerce Solutions.
[Online]. Available: http://www.oscommerce.com/ 7, 8

[6] (2006) phPay, webshop or catalog based on SQL and PHP. [Online].
Available: http://phpay.sourceforge.net/ 7, 8

[7] (2006) PhPepperShop Webshop-System . [Online]. Available: http:
//www.phpeppershop.com/ 7, 8

[8] (2006) phpShop. [Online]. Available: http://www.phpshop.org/ 7, 8

[9] N. Werro, H. Stormer, D. Frauchiger, and A. Meier, “eSarine - A Struts-
based Webshop for Small and Medium-sized Enterprises,” EMISA Con-
ference - Information Systems in E-Business and E-Government, Luxem-
bourg, October 2004. 7, 8

57

http://en.wikipedia.org/
http://en.wikipedia.org/
http://struts.apache.org/
http://struts.apache.org/
http://www.oscommerce.com/
http://phpay.sourceforge.net/
http://www.phpeppershop.com/
http://www.phpeppershop.com/
http://www.phpshop.org/

58 BIBLIOGRAPHY

[10] M. Bowie, “Adaptation of a Webshop for Mobile Devices,” Master’s thesis,
University Of Fribourg, Switzerland, October 2005. 8

[11] J. Goodwill and R. Hightower, Professional Jakarta Struts. Wrox, 2003,
vol. ISBN 0764544373. 9, 10, 41

[12] (2006) MySQL AB. [Online]. Available: http://www.mysql.com/ 11, 32

[13] (2006) Hibernate Reference Documentation Version: 3.1.1. [Online].
Available: http://www.hibernate.org/ 12, 26

[14] H. Oak, “How to decide which persistence technology to use?. JDBC
/ CMP Entity Beans / Hibernate / JDO ,” 2004. [Online]. Available:
http://www.indicthreads.com/blogs/view/101/ 12

[15] S. Graham, D. Davis, S. Simeonov, G. Daniels, P. Brittenham, Y. Naka-
mura, P. Fremantle, D. König, and C. Zentner, Building Web Services
with Java, 2nd ed. Sams Publishing, 2005, vol. ISBN 0-672-32641-8. 13

[16] “Rational Unified Process-specific Requirements document template,”
2003. [Online]. Available: http://lehre.ike.uni-stuttgart.de/wn/musoft/
rup-manual/webtmpl/req/ 14

[17] “IBM Rational Unified Process, RUP,” 2006. [Online]. Available:
http://www-306.ibm.com/software/awdtools/rup/ 14, 62

[18] J. Josephraj, “Architect Struts applications for Web services,”
IBM.com, April 2003. [Online]. Available: http://www-128.ibm.com/
developerworks/webservices/library/ws-arcstruts/ 24

[19] (2006) Eclipse Foundation. [Online]. Available: http://www.eclipse.org/
32

[20] (2006) Java Platform, Enterprise Edition (Java EE). [Online]. Available:
http://java.sun.com/javaee/ 32

[21] (2006) MyEclipse Enterprise Workbench. [Online]. Available: http:
//www.myeclipseide.com/ 32, 46

http://www.mysql.com/
http://www.hibernate.org/
http://www.indicthreads.com/blogs/view/101/
http://lehre.ike.uni-stuttgart.de/wn/musoft/rup-manual/webtmpl/req/
http://lehre.ike.uni-stuttgart.de/wn/musoft/rup-manual/webtmpl/req/
http://www-306.ibm.com/software/awdtools/rup/
http://www-128.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www-128.ibm.com/developerworks/webservices/library/ws-arcstruts/
http://www.eclipse.org/
http://java.sun.com/javaee/
http://www.myeclipseide.com/
http://www.myeclipseide.com/

BIBLIOGRAPHY 59

[22] (2006) Eclipse Web Tools Platform (WTP) Project. [Online]. Available:
http://www.eclipse.org/webtools/ 32, 40

[23] (2006) The Apache Software Foundation, Apache Tomcat. [Online].
Available: http://tomcat.apache.org/ 32

[24] J. Holmes, Struts: The Complete Reference. McGraw-Hill/Osborne,
2004, vol. ISBN 0072231319. 35

[25] P. Peak and N. Heudecker, Hibernate Quickly. Manning Publications,
2006, vol. ISBN 1932394419. 38

[26] (2006) Apache Axis. [Online]. Available: http://ws.apache.org/axis/ 41

[27] (2006) LyX document processing software, version 1.4.1. [Online].
Available: http://wiki.lyx.org/ 55

http://www.eclipse.org/webtools/
http://tomcat.apache.org/
http://ws.apache.org/axis/
http://wiki.lyx.org/

Appendix A

Abbreviations

API Application Programming Interface

CPU Central Processing Unit

DAC Discretionary Access Control

DBMS Database Management System

EJB Enterprise JavaBeans

GUI Graphical User Interface

GNU GNU’s Not Unix

GPL General Public Licence

HQL Hibernate Query Language

HTML Hyper Text Markup Language

HTTP Hyper Text Transfer Protocol

i18n Internationalization

J2EE Java 2 Platform, Enterprise Edition

J2SE Java 2 Platform, Standard Edition

JDBC Java Database Connectivity

60

61

JDK Java Development Kit

OMR Object Relational Mapping

MAC Mandatory Access Control

MVC Model-View-Controller

PHP PHP Hypertext Preprocessor

RAM Random Access Memory

RBAC Role-based access control

SDK Software Development Kit

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

UDDI Universal Description Discovery and Integration

URL Uniform Resource Locator

URI Uniform Resource Identifier

XML eXtensible Markup Language

WAP Wireless Application Protocol

WSDL Web Services Description Language

WTP eclipse Web Tools Platform

WWW World Wide Web

Appendix B

Use cases

B.1 Project description

The goal for this project is to create a web shop following the architecture
and patterns of enterprise applications. We do not intend to create a common
web shop since that it is too simple. Today there are thousands of web shops
but few of them are easy scalable, the internationalization is hard and the
development time is too big. To motivate this project we are going to work on
the following properties of the shop: Scalable, Internationalized, Secure, Fault
tolerance and Components based.

B.2 List of use cases

Using the Rational Unified Process [17] (RUP)1 we have written here in bellow
the list of use cases.

1. Installation of the system.

2. Start up.

3. Shutdown the shop

4. Configuration management (create default, modify)
1The Rational Unified Process (RUP) is an iterative software development process cre-

ated by the Rational Software Corporation. RUP describes how to develop software effec-
tively using proven techniques.

62

B.3. ACTORS 63

5. Administrator management (add, edit, remove)

6. Employee management (add, edit, remove)

7. Customer management (add, edit, remove)

8. Roles management (add, edit, remove)

9. Categories management (add, edit, remove)

10. Products management (add, edit, remove)

11. Search products by employee

12. Search products by customer

13. Management orders by employee (make order, view, edit, cancel)

14. Management orders by customer (make order, view, cancel)

B.3 Actors

Each scenario describes a sequence of events. Entities that initiate sequences
are called actors and we have found three types.

Administrator The person who is in charge of creating and modifying the
configuration for the system and maintaining the database.

Employee The person who is in charge of the shop, the product stock, man-
aging the orders and reporting possible errors to the Administrator.

Customer The person who will search and buy the products.

B.4 Use case Diagrams

The following Figures show the diagrams for the use cases.

64 APPENDIX B. USE CASES

Figure B.1: Application Diagram

Figure B.2: Users diagram 1

Figure B.3: Users diagram 2

B.4. USE CASE DIAGRAMS 65

Figure B.4: Role diagram

Figure B.5: Search diagram

Figure B.6: Order diagram

66 APPENDIX B. USE CASES

B.5 Use cases details

The following Tables show the details for each use case.

Brief description The application is installed and properly con-
nected to the database

Actors Administrator
Preconditions Correct version of J2SE 1.5 must be installed

and MySQL database must be reachable. En-
vironment variables must be also correct. An
application server (such a JBoss or Tomcat)
must be installed and running.

Postconditions The program is ready to be started. The root
administrator is created.

Main Success Scenario The program starts unpackage the directo-
ries and moving them inside the application
server.The application server detects that a
new application has been add.The application
server deploys the EAR file.The application
asks to input the details of the administrator
username and password.The application cre-
ates the admin role, and fills the username
and password.The Web Shop is ready to be
used.

Alternative 1 Flow There is not any applications server in the
computer.The MySQL is not properly config-
ured.

Alternative 2 Flow There must be enough RAM for the program
to execute. Technology Variations List.

Table B.2: Use case Installation of the system.

B.5. USE CASES DETAILS 67

Preconditions Correct version of J2SE 1.5 must be installed and
MySQL database must be reachable. Environ-
ment variables must be also correct. An appli-
cation server (such a Jboss or Tomcat) must be
installed and running. The application is inside
the application server and has been deployed pre-
viously.

Brief description The application is installed and properly con-
nected to the database

Actors Administrator
Postconditions Program is started, Login page shows.
Main Success Scenario The program connects to the database.The admin

starts the web browser and input the address for
the application.The login web page is displayed.

Alternative 1 Flow There is not any administrator in the database; a
window shows up asking for create an administra-
tor.

Alternative 2 Flow The database is down; an error message shows in
the console window.

Special Requirements There must be enough RAM for the program to
execute. Technology Variations List.

Table B.4: Use case Start up

Brief description The application is shut downed properly, and all
the information is going to save in the database

Actors Administrator
Preconditions The application is running and the database is up.
Postconditions The program log out from the database. The ap-

plication is stopped
Main Success Scenario The administrator logs in the application. All the

information is saved in the database. The pro-
gram log out from the database. Stop the appli-
cation

Alternative 1 Flow A customer is still connected to the shop trying to
do an operation; the application save the customer
session and send him a message explaining that
the application is shut downed

Table B.6: Use case Shutdown the shop

68 APPENDIX B. USE CASES

Brief description This use case creates the first configuration during the
installation

Actors Administrator
Preconditions The database is up.
Postconditions A new configuration has been filled and the system

changes to the new configuration
Main Success Scenario The application is configured with the default data for

Basic configuration, Welcome page configuration, Mail
server configuration, Language configuration, Transla-
tion configuration.

Table B.7: Use case Create default configuration

Brief description This use case modifies the configuration of the applica-
tion

Actors Administrator
Preconditions The application is running and the database is up.
Postconditions A new configuration has been filled and the system

changes to the new configuration
Main Success Scenario The administrator logs in the application.The adminis-

trator configures the application modifying any of the
following data: Basic configuration, Welcome page con-
figuration, Mail server configuration, Language configu-
ration, Translation configuration. The administrator logs
out the application.

Table B.8: Use case Modify configuration

Brief description This use case adds to the application a new administrator
Actors Administrator
Preconditions The application is running and the database is up.
Postconditions New administrator is added to the database
Main Success Scenario The administrator introduces the new administrator

name and password.
Alternative 1 Flow The new administrator name is already added; a win-

dow shows up explaining the error and asks for a new
administrator name.

Table B.9: Use case Add Administrator

B.5. USE CASES DETAILS 69

Brief description This use case edits the information about an administra-
tor

Actors Administrator
Preconditions The application is running and the database is up.
Postconditions New administrator is edited. The database is uploaded.
Main Success Scenario The administrator introduces the new password for a spe-

cific administrator.
Alternative 1 Flow The administrator name does not exist; a window shows

up explaining the error and asks for the administrator
name.

Table B.10: Use case Edit Administrator

Brief description This use case removes to the application an administrator
Actors Administrator
Preconditions The application is running and the database is up.
Postconditions New employee is added.
Main Success Scenario The specified administrator is selected and removed.
Alternative 1 Flow The system updates with the carried out changes
Alternative 2 Flow The administrator name does not exist; a window shows

up explaining the error and asks for the administrator
name.

Table B.11: Use case Remove Administrator

Brief description This use case logs in an user.
Actors Administrator, Employee and Customer.
Preconditions The application is running and the database is up.
Postconditions The user is logged in into the session.
Main Success Scenario The user is logged in into the session and the application

gives the possibility of getting back to the last session if
the user could not log out.

Alternative 1 Flow The username and password do not match; a window
shows up explaining the error and asks again.

Table B.12: Use case Log in

70 APPENDIX B. USE CASES

Brief description This use case logs out an user.
Actors Administrator, Employee and Customer.
Preconditions The application is running.
Postconditions The user is logged out from the session.
Main Success Scenario The user is logged out from the session and save the user’s

information for the next session.

Table B.13: Use case Log out

Brief description This use case adds to the application a new employee
Actors Administrator
Preconditions The application is running, the database is up and there

is at least one Administrator
Postconditions New employee is added to the database
Main Success Scenario The administrator starts creating the new employee pro-

file including the employee name and password. The pro-
file is updated in the database.

Alternative 1 Flow The new employee name is already added; a window
shows up explaining the error and asks for a new em-
ployee name.

Table B.14: Use case Add Employee

Brief description This use case edits to the application a new employee
Actors Administrator
Preconditions The application is running, the database is up and there

is at least one Administrator
Postconditions New employee is edited and the database is updated
Main Success Scenario The administrator edits the employee profile. The profile

is updated in the database.
Alternative 1 Flow The employee name does not exist; a window shows up

explaining the error and asks for the employee name.

Table B.15: Use case Edit Employee

B.5. USE CASES DETAILS 71

Brief description This use case removes to the application a new employee
Actors Administrator
Preconditions The application is running, the database is up and there

is at least one Administrator and employee
Postconditions New employee is added.
Main Success Scenario The specified employee is selected and removed. The

system updates with the carried out changes.
Alternative 1 Flow The employee name does not exist; a window shows up

explaining the error and asks for the employee name.

Table B.16: Use case Remove Employee

Brief description This use case adds to the application a new customer
Actors Employee or customer
Preconditions The application is running and the database is up.
Postconditions New customer is added.
Main Success Scenario The customer or the employee starts filling the new cus-

tomer profile. The profile is updated in the database.
Alternative 1 Flow The new customer name is already added; a window

shows up explaining the error and asks for a new cus-
tomer name.

Table B.17: Use case Add Customer

Brief description This use case edits to the application a new customer
Actors Employee or customer
Preconditions The application is running and the database is up. The

Administrator is logged in, customer exits.
Postconditions New customer is edited.
Main Success Scenario The employee or customer edits the customer profile.

The profile is updated in the database.
Alternative 1 Flow The customer name does not exist; a window shows up

explaining the error and asks for the customer name.

Table B.18: Use case Edit Customer

72 APPENDIX B. USE CASES

Brief description This use case removes to the application a new customer
Actors Employee or customer
Preconditions The application is running, the database is up and there

is at least one customer
Postconditions New customer is added.
Main Success Scenario The specified customer is selected and removed. The

system updates with the carried out changes.
Alternative 1 Flow The customer name does not exist; a window shows up

explaining the error and asks for the customer name.

Table B.19: Use case Remove Customer

Brief description This use case adds to the application a new role
Actors Administrator
Preconditions The application is running and the database is up. There

is no other role with the same name.
Postconditions A new role is added to the database
Main Success Scenario The administrator adds a role to the application specify-

ing the privileges for the role.

Table B.20: Use case Add Role

Brief description This use case edits to the application a specific role
Actors Administrator
Preconditions The application is running and the database is up. There

is no other role with the same name than the new name.
Postconditions The administrator edits the role profile. The role is up-

dated in the database.
Main Success Scenario The administrator edits a role to the application specify-

ing the privileges for the role.

Table B.21: Use case Edit Role

Brief description This use case removes to the application a specific role
Actors Administrator
Preconditions The application is running and the database is up.
Postconditions The role has been removed from the database.
Main Success Scenario The administrator removes a role from the application.

Table B.22: Use case Remove Role

B.5. USE CASES DETAILS 73

Brief description This use case shows the information about products to
the employee. The product can be searched by code or
by keywords.

Actors Employee
Preconditions The application is running and the database is up.
Postconditions The result of the search is showed.
Main Success Scenario The employee searches by code or keywords. The result

of the search is showed.
Alternative 1 Flow There is no result; the application shows this information.

Table B.23: Use case Search products by employee

Brief description This use case shows the information about products rel-
evant to the customer

Actors Customer
Preconditions The application is running and the database is up.
Postconditions The result of the search is showed.
Main Success Scenario The customer searches by code or name. The result of

the search is showed.
Alternative 1 Flow There is no result; the application shows this information.

Table B.24: Use case Search products by customer

Brief description This use case adds to the application a new order
Actors Employee
Preconditions The application is running and the database is up.
Postconditions New order is added to the database.
Main Success Scenario The employee starts filling the information for the new

order. The order is updated in the database.

Table B.25: Use case Make order by employee

Brief description This use case shows the information about a specific order
Actors Employee
Preconditions The application is running and the database is up.
Postconditions The information about the order is showed
Main Success Scenario The employee finds the order by reference number or

choosing the order list from a customer. The informa-
tion is showed.

Alternative 1 Flow There is no order; the application shows this information.

Table B.26: Use case View order by employee

74 APPENDIX B. USE CASES

Brief description This use case edits in the application a specific order
Actors Employee
Preconditions The application is running and the database is up.
Postconditions An order is edited and saved in the database.
Main Success Scenario The employee edits the order information. The order is

updated in the database.
Alternative 1 Flow The order code does not exist; a window shows up ex-

plaining the error and asks for a new one.

Table B.27: Use case Edit order by employee

Brief description This use case removes from the application an order
Actors Employee
Preconditions The application is running and the database is up.
Postconditions The order is removed from the database.
Main Success Scenario The specified order is selected and removed. The system

updates with the carried out changes.
Alternative 1 Flow The order does not exist; a window shows up explaining

the error and asks for the customer name.

Table B.28: Use case Cancel order by employee

Brief description This use case adds to the application a new order
Actors Customer
Preconditions The application is running and the database is up.
Postconditions New order is added to the database.
Main Success Scenario The customer starts filling the information of the new

order. If the client is no logged the system asks for infor-
mation needed for the payment. The order is updated in
the database.

Alternative 1 Flow The payment system is not active; The system stores the
order information for future sessions.

Table B.29: Use case Make order by customer

Brief description This use case shows the information about a specific order
Actors Customer
Preconditions The application is running and the database is up.
Postconditions The information about the order is showed
Main Success Scenario The customer finds the order by reference number. The

information is showed.
Alternative 1 Flow There is no order; the application shows this information.

Table B.30: Use case View order by customer

B.5. USE CASES DETAILS 75

Brief description This use case removes from the application an order
Actors Customer
Preconditions The application is running and the database is up.
Postconditions The order is removed from the database.
Main Success Scenario The specified order is selected and removed. The system

updates with the carried out changes.
Alternative 1 Flow The order does not exist; a window shows up explaining

the error and asks for the customer name.

Table B.31: Use case Cancel order by customer

	cover.pdf
	1.pdf
	Abstract
	Declaration
	Acknowledgements
	Introduction
	Motivation of the project
	Problem statement
	Goal
	Expected results

	Shop requirements
	Scalability
	Security
	Fault tolerance
	Component based
	Internationalization

	Structure of the Thesis

	Background
	Related work
	Existing approaches
	Related technologies
	MVC - Struts
	MVC design pattern

	Database technology - Hibernate
	Web Services

	Method
	Positioning
	Business Opportunity
	Problem Statement
	Product Position Statement

	Stakeholder and User Descriptions
	Market Demographics
	Stakeholder Summary
	User Summary
	User Environment
	Stakeholder Profiles
	Customer
	Employee
	Administrator
	Bank

	User Profiles
	Key Stakeholder or User Needs

	Product Overview
	Product Perspective
	Summary of Capabilities
	Assumptions and Dependencies

	Constraints
	Security
	Responsiveness

	Overview of the system prototype
	Administrator interface (Store back)
	Customer interface (Store front)

	System design
	The MVC pattern
	Struts Framework
	Hibernate technology
	High level Web Services architecture
	Struts, Hibernate and Web Services: Our Webshop
	Controller
	View
	Model
	WSController
	Provider
	Subscriber
	Authentication and authorization
	Error Handling

	Implementation
	Development platform
	Struts
	Errors
	Tiles
	Security
	Internationalization

	Database
	Hibernate
	Web services
	Flow dynamics
	User interface design
	Deployment strategy

	Analysis
	Validation
	Implemented use cases
	Tested use cases

	Performance
	Test-bed
	Worst case
	Performance scenario

	Profiling
	Profiling scenario

	Conclusions and future work
	Bibliography
	Appendix
	Abbreviations
	Use cases
	Project description
	List of use cases
	Actors
	Use case Diagrams
	Use cases details

