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Abstract 
TCP has some properties that make it inefficient when used as a transport protocol for 
wireless links. It has been the subject of many research projects and a number of solutions 
have been suggested. Most of these proposed solutions are trying to improve TCP’s 
performance in general without looking at a specific technology. 

UMTS, the universal mobile telecommunication system, is a new standard for mobile 
networks. The UMTS radio access network is called UTRAN, UMTS radio access 
network, and it uses WCDMA, wideband code division multiple access, as its radio access 
method. When constructing the radio network it would be beneficial if a high error rate 
could be used for packet-based services. However, such a high error rate would affect the 
performance of TCP. 

The introduction of retransmission mechanisms in the radio link control layer reduces the 
error rates of UMTS. An ensuing problem however is that the delay will vary. The delay or 
reordering of data due to the retransmissions may cause TCP to underutilize the radio link. 

TCP’s design is based on the assumption that transmission errors occur rarely. Hence, 
TCP assumes that all packet losses are due to congestion and it cannot tell congestion 
from loss due to error. When packet loss or packet reordering occurs due to errors on the 
wireless link, TCP interprets this as congestion and limits the sending rate.  This leads to 
an underutilization of the radio link. 

This thesis reviews and investigates a few suggested solutions to the underutilization 
problem. The solutions are of different character: TCP can be changed to handle wireless 
communication better, but it is not the only way to mitigate the problem. The RLC, radio 
link control, could be configured to deal better with the problem, and improved radio links 
can also be a used. 

The most important proposals are: Eifel, TCP Westwood, Split TCP and RLC 
configurations. They are examined and simulated using a model of the UMTS RLC, 
implemented in NS2. In-sequence and out-of-sequence delivery in the RLC are tested, and 
the effect of different radio block sizes is examined. We also gauge how well the suggested 
solutions handle spurious timeouts and fast retransmissions. For small file transfers the 
improvement in performance is measured when the initial window is increased. The aim 
when conducting these simulations is to find the most suitable solutions for reducing the 
underutilization. 

The main result from this study is that there is a severe underutilization for small IP 
packets in combination with high transfer speeds. The utilization is even lower when small 
radio blocks are used and some solution is clearly needed. Generally, the in-sequence 
delivery option of the radio link should be used to deal with the problems. However, when 
small radio blocks are used an additional solution is needed. Split TCP is found the best in 
terms of performance but Eifel is also worth considering. 
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1 Introduction 
The Internet has mainly been interconnecting stationary computers connected by wired 
links. This is about to change since increasingly more communication is done from mobile 
clients requiring wireless communication. This will generate new possibilities both for 
business and the technology development. One way of accessing the Internet wirelessly is 
to use UMTS, the universal mobile telecommunication system. UMTS is a third generation 
mobile system and allows packet-based IP communication between hosts connected to the 
Internet. 

Since large geographical areas must be covered with UMTS radio access points, the price 
of the network will be extremely important for the success of the system. This implies that 
the operator would like to use as few access points (base stations) as possible without 
suffering reduced quality or capacity. Hence, maximization of the utilization of an access 
point is of greatest importance. Sparsely distributed access points may yield high bit error 
rate, BER, which in turn might have implications for the performance of connections 
using TCP. This problem has been described in [8], [9] and [11]. Although it has been 
studied earlier, no one has investigated and compared the solutions examined here to any 
wider extent. 

TCP, the transport control protocol, is the most commonly used protocol for reliable data 
transfers over the Internet. TCP provides a reliable connection-oriented service that many 
popular applications utilize. TCP has undergone a few changes since its introduction, 
mostly related to performance. The underlying media has been assumed to be reliable with 
low error rate, which is not valid for wireless links. 

Unreliable radio links that connect the mobile host to the base station can cause TCP to 
perform unnecessary retransmissions. TCP can also reduce its transmission speed due to 
impairments in the radio link. Short file transfers also present a problem since the TCP 
connection does not utilize all of the available bandwidth in the start-up period of a 
connection. UMTS will worsen the problems by its large round trip time, RTT, since TCP 
then takes more time to recover from loss. Furthermore, TCP will have problems due to 
handovers and connectivity loss, but those two issues are beyond the scope of this study. 

It is vital for the industry to find ways to increase TCP performance for wireless links. 
Quite a few proposals are available but some are of experimental character and will not 
fulfill the requirements of the industry. The solutions considered in this thesis are TCP 
Westwood, Eifel and Split TCP. TCP Westwood estimates the available bandwidth and 
with that information as a basis, it does not reduce the transfer rate more then necessary. 
Eifel provides functionality for detecting spurious retransmissions to avoid reductions in 
sending rate. Split TCP divides the connection into two parts, one over the wireless part 
and one over the wired part. For small files, the impact of increasing the initial window is 
also studied. The aim of this thesis is to investigate the aforementioned solutions and 
quantify how well they mitigate the problems. 

To achieve this, we implement a model of the UMTS RLC in NS2 and carry out 
simulations with large and small files. In the simulations the RLC will be working in out-
of-sequence or in in-sequence delivery mode. We consider both small and large IP packets 
as well as small and large radio blocks. TCP Westwood, Eifel and Split TCP are included 
in the simulations and their ability to improve the performance is measured. 
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We summarize TCP and describe its features that are related to congestion control in 
Section 2.1. The general characteristics of the wireless media that are relevant for transport 
protocols are described in Section 2.2, and more specific aspects for running TCP over 
UMTS are described in Sections 2.3 and 2.4. This study also introduces some other 
solutions to the problems in Section 3.1 and we discuss their effects and applicability in 
section 4. Section 5 presents how the work was done and simulation results can be found 
in Section 5.3 to 5.5. A short analysis of the results is given in Section 6 with conclusions 
in Section 7. An appendix gives a description of the important parts for this work of NS2, 
network simulator 2, is given. It also describes the implementation of the system. 
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2 Background 
2.1 TCP Overview 

2.1.1 Introduction 
TCP has been available since the mid 1970’s; it was used in combination with IP in the 
ARPA-net. The properties that made TCP successful were its speed, its simplicity and the 
fact that it was easy to implement. It is also the most used protocol on the Internet 
nowadays with well over 90 % of the total amount of traffic carried [13]. 

The sender side of TCP divides the data into segments and sends each segment separately. 
The receiver side of the connection controls that the segments are assembled in the right 
order. The size of the segments are important, as we will see later, and the sender generally 
wants to use as large segments as possible. The receiver announces the maximum segment 
size, MSS that it is willing to accept; the sender will try to use segments of that size. 
Unfortunately there might be limits in the maximum size of segments that can be sent to 
the receiver, and intermediate routers may fragment the segments. Usage of MTU path 
discovery is recommended to find out how big segments that the network can handle [23]. 
If it is not used, TCP will have to rely on the minimum size that is guaranteed (536 bytes) 
in order to avoid fragmentation. In general, TCP benefits from having as large segments as 
possible, and if Ethernet is used the maximum segment size is usually 1460 bytes. 

TCP is in its basic form a rather simple protocol that provides reliability over a non-
reliable network, e.g. the Internet. To accomplish this it relies on acknowledgment of data; 
i.e., the receiver acknowledges data that are received properly. The basic technique that 
TCP is based on for sending data in an efficient way is a sliding window. The sliding 
window provides maximal usage of the link by allowing segments of data to be sent before 
receiving acknowledgments. As illustrated in Figure 1, datagrams are always in transit. 

 
Figure 1 Data is always in transit. 

Since TCP is widely used in large networks, it is a major contributor to the total amount of 
traffic. Due to this fact it is important that TCP does not flood the network with more 
traffic than the network can handle. That would not only be a problem for the network, 
but it would also limit the performance of each individual connection. To avoid this 
problem, congestion control mechanisms are included in TCP [1]. 

Since the receiver is not able to handle an unlimited amount of data in a short time, it 
needs to inform the sender know much data it can handle at the moment. This is done by 
window announcements: the receiver simply tells the sender how many bytes of data it can 
handle for the time being. This is called the advertised window and it may change over 
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time, since the receiver may at one time have a full buffer and at another time an empty 
buffer. The sender may not send more data than the receiver has announced. 

An RTT, round trip time, measurement is taken by the sender to monitor the state of the 
network in form of delay. The RTT is used to calculate for how long it is reasonable to 
wait for an acknowledgment from the receiver. The receiver can save bandwidth by 
sending an acknowledgment together with a data segment. This is called piggybacking and 
acknowledgments are sometimes delayed until there is data to send. TCP is required to 
send an acknowledgment for every other segment received even if there is no data to send. 
But in order for TCP to exchange data, the connection first needs to be set up. This is 
done in the connection establishment. 

2.1.2 Connection Establishment 
In order for two processes to communicate using TCP, they first need to negotiate the 
starting parameters of the connection. The first step in the procedure of setting up a TCP 
connection between two processes is the three-way-handshake, seen in Figure 2. 

 
Figure 2 The three-way-handshake 

The initiator first sends a SYN, synchronize, with a value of the MSS and a window size 
advertisement. The other party responds with an acknowledgment, ACK, and a window 
size advertisement. This is usually sent in the same message by using piggybacking. 
Attached to the SYN is also information about the MSS. When the initiator receives this 
information it sends an acknowledgment as an answer, the acknowledgment is received 
and the processes are then ready to communicate. 



Improving 3G performance for Mobile Internet  Erik Lundsten 
_____________________________________________________________________ 

5 

2.1.3 Slow Start 
TCP is required to start sending the data slowly in order to prevent congestion. Thus, TCP 
starts out with sending only one segment of data sent. A state variable in TCP keeps track 
of the amount of data that can be sent without receiving acknowledgments. The variable is 
called congestion window and it has a central role in TCP’s functionality. The congestion 
window is used to control the transfer rate of the sender including the slow start. The 
advertised window from the receiver can of course not be exceeded even if the congestion 
window is larger. The maximum of the congestion window and the advertised window is 
called the send window, and it determines how many segments the sender may send before 
receiving an acknowledgment. 

TCP starts out by setting the congestion window to an initial size, usually one segment1. 
However, as soon as TCP receives the ACK for the first segment, the congestion window 
is increased by one segment. Now two segments can be sent, and when the corresponding 
acknowledgments arrive the congestion window is incremented by two segments. For 
every packet acknowledged the congestion window is increased by one segment. This will 
result in an exponential growth of the congestion window and it is called slow start. The 
slow start continues until the advertised window or the slow start threshold is reached. 
Congestion will also stop the slow start, as we will describe later. 

2.1.4 Congestion Control 
Congestion control is an important function in TCP. By this, TCP can detect congestion 
in the network by examining the received acknowledgments. When congestion occurs in 
the network, TCP can find out about it in two different ways. First the retransmission 
timer, RTO, can timeout and thereby signal lost packets. Second, the sender may receive a 
number of acknowledgments for the same packet. It is an indication of congestion, since 
every TCP implementation must send duplicate acknowledgments as soon as it receives 
packets out of order or if one or several packets are lost but the subsequent packets are 
correctly received. The reason for packets to arrive out of order is often packet loss: one 
packet is lost but the subsequent packets arrive correctly. However, reordering could also 
be the result of packets being routed different ways from the sender to the receiver. 

A TCP-connection might encounter congestion and TCP responds by decreasing the 
transfer rate when this happens. How much TCP backs off is dependent on the way the 
congestion is discovered. If there was a RTO timeout, TCP sets the congestion window to 
size one and re-enters slow start. A threshold is used in order to know for how long to 
continue with the slow start. TCP will continue in the slow start phase until the congestion 
window reaches that threshold. It is set to half the size of the congestion window’s former 
value after a timeout. This is a rather drastic way to limit the amount of data and another 
method, called fast recovery, is used when acknowledgments are received in duplicate. 

2.1.5 Fast Retransmit 
Fast retransmit is used to reduce the recovery time after a packet loss. When TCP receives 
a number of duplicate acknowledgments, DUPACKS, it responds by retransmitting the 
segment that followed the last acknowledged one, i.e., the last packet that was received 
correctly in sequence. The congestion window is halved when the acknowledgment for the 

                                                
1 The standard [1] allows an initial window size of maximum two segments. 
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retransmitted segment is received. After halving the window, the window is increased 
according to congestion avoidance. The data flow will recover faster, due to the window 
management, and thereby decrease the recovery time. More details about the fast 
retransmit can be found in [1]. 

 
Figure 3 The size of the send window for TCP in slow start 

 
Figure 4 The size of the send window when TCP is doing a fast recovery 

In Figure 3, we can see that the congestion window is set to size one after a timeout 
occurred. This can be compared to a fast recovery as seen in Figure 4, where the window 
is halved. The cost in time for recovering from congestion, by either slow start or fast 
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recovery, is substantial since the time in the figures is measured in RTTs. If the RTT is 
large, the effect seen in Figure 3 and Figure 4 will have a greater impact on performance. 
For more information about TCP refer to [12] and [15]. 

2.2 Wireless Links 

Wireless communication use many of the protocols designed for wired links, e.g. TCP. 
TCP will not perform as well in wireless environments where the bit error rate is much 
higher. Different wireless technologies have different characteristics, but a few properties 
are common and they will have an impact on TCP’s performance. 

High bit error rate is maybe the most important factor that can limit the utilization of the 
link. When high enough, it can cause all communication to fail. One big challenge in 
wireless communication is to minimize the bit error rate, BER. However, it is expensive to 
build networks with low BER and therefore it is important to find a way to make the 
upper layers unaware of the data loss that the high BER cause. This is where 
retransmission over the wireless link can be of use. 

Retransmission on link level can hide the losses but at the cost of increase in delay 
variation. If the link encounters an error during the transmission, it may try to resend the 
data and thereby causing delay. The delay will vary since retransmissions only happen 
occasionally, due to random loss. This may have an impact on the overlying protocols if 
those are dependent on the delay of the link. One might argue that it would be sufficient 
only to do end-to-end retransmissions. But it turns out that a simple retransmission on the 
link level will in general lead to improvement in efficiency. 

In order to do the retransmission, the sender-side of the link will have to buffer the 
outgoing data until it can determine that the data has been received correctly. 
Furthermore, the receiver will obviously need processing capacity for detecting errors and 
order retransmissions. This introduces extra complexity, which in turn leads to extra cost. 

Variable bandwidth in the connection between sender and receiver is another important 
factor. Bandwidth variation can occur due to a few different reasons. The most common 
reason in ordinary wireless communication is reduced quality in the radio environment. 
This could happen due to interference or other circumstances that makes the conditions 
for receiving signals worse. Generally speaking: the longer the range, the lower the 
bandwidth. Bandwidth can also vary in systems that implements priorities, one user with 
low priority may have to wait for another user with higher priority. Furthermore, users in 
wireless networks often share an access point with other users through a shared channel. 
This may result in additional delays and short periods without connectivity due to the fact 
that several users cannot access the network simultaneously. Depending on the application 
being used, this may become a problem. 

Asymmetric bandwidth is often used when providing Internet access for the end-user. It is 
based on the assumption that end-users often download more than they upload. Some 
transport protocols may have trouble handling this when the asymmetry is too big but 
TCP will not have trouble as long as the asymmetry is in the range of 3 to 6 times [3]. 
Asymmetric bandwidth is used in many other environments then the wireless, e.g. ADSL, 
but it nevertheless presents a potential problem. 

 

2.3 UMTS Overview 
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2.3.1 Introduction 
UMTS, the universal mobile telecommunication system, is defined by 3GPP, 3rd 
generation partnership project agreement, and defines a set of systems for providing many 
communication services. The standard specifies services from ordinary telephone calls, and 
associated services, as well as packet based data communication and connectivity to the 
Internet. The packet-based communication is the main difference from older mobile 
networks, such as GSM. UMTS has been updated since its first definition and the 
standardization has led to several releases. The main difference with newer releases 
compared to older ones, is the number of features and services provided. The available 
releases are R99, R4 and R5 while R6 is still under development. For more information 
about the UMTS refer to [14]. 

UMTS makes use of a radio access system to provide connectivity for the users. The radio 
access system is called UTRAN, which stands for UMTS terrestrial radio access network. 
The access network makes use of WCDMA, wideband code-division multiple access, as its 
radio interface. 

Quality of service, QoS, is also provided by UMTS. Support for different needs of QoS is 
available, since there are different needs in different applications. UMTS realizes this and 
defines several classes for QoS traffic: Background, Interactive, Real-Time Streaming and 
Real-time Conversational. These are used in different situation to enable the applications 
to get the most out of the UMTS transport. Real-time classes are defined in UMTS to 
serve time-critical applications, which require small delay and delay variations. In other 
situations the need for reliability (correct data) makes the real-time class infeasible to use, 
and instead data transfer that incorporate radio link retransmissions should be used. 

Besides QoS, best effort service is also provided. When providing best effort, there exist 
several modes in which the radio link can be used. They are the transparent, the 
acknowledged and the unacknowledged mode. The acknowledged mode is used for TCP 
traffic to provide a reliable link, but at the cost of retransmissions. (See Section 2.2.1) The 
use of the acknowledge mode is possible since most applications using TCP are not time 
critical. 

2.3.2 Radio Protocols 
The radio protocols of UMTS have to provide different services for different users and 
applications. Therefore, the radio protocols have to be designed in such way that they can 
be used with great flexibility. 

UMTS radio protocols are designed in a three-layer model. Layer one and two are mainly 
used for the data transfer while layer three, the radio resource control, contributes by 
providing utilities for connection establishment, configuration of the lower interfaces etc. 

As previously mentioned, UMTS makes use of WCDMA as its radio interface. The main 
advantage of WDCMA over the radio interfaces used today is the speed. It increases the 
speed up to 2 megabits per second in local area access mode and 384 kilobits per second in 
wide area access mode. The idea is to differentiate the capacity so that higher speeds can 
be used where the access points are capable of handling it, i.e., where the radio conditions 
are good. 

Level two protocols are PDCP, BMC, RLC and MAC. The RLC, radio link control, 
handles the control of one logical channel. The link layer control also handles the 
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retransmission if the channel operates in acknowledged mode, which is the case for traffic 
like TCP. Retransmission on the link level is activated when bit errors cause a radio frame 
to be discarded. More about UMTS and the RLC can be found in Section 5.1. 

2.4 TCP over UMTS 

2.4.1 Known Problems 
The main problem with applying TCP as the transport protocol over wireless links is that 
TCP does not have the capability to discover that packet losses are caused by transmission 
errors. TCP treats all losses as an indication of congestion, since it is designed to be used 
in an environment with low error rate. TCP would benefit from being able to tell the 
difference between losses caused by congestion and transmission losses. 

Another problem is when data arrives out of order and thereby triggers TCP to activate 
the fast retransmission algorithm. If the reordering of packets is caused by retransmission 
on link level, it is a spurious TCP retransmission. If only the receiver had waited a little 
longer the packet would have arrived, due to the retransmission provided by the link layer. 
This leads to that unnecessary TCP retransmissions are issued causing a waste of capacity. 
The scenario is described in [11]. 

Wireless networks such as UMTS and GPRS can be characterized as so-called long thin 
networks, which means that they have moderate bandwidth in combination with high 
delays. The bandwidth delay product, BDP, is a way to characterize the topology in terms 
of how much data the pipe can hold and how long delays it introduces.  BDP is defined as 
the bandwidth multiplied with the end-to-end delay. It can be defined both for networks 
as well as for single links and it is of rather high value in UMTS. A high bandwidth delay 
product will cause much information to stay in the network for some time during the 
transfer. This will have effects on the communication between the sender and the receiver 
since signaling is delayed. This can therefore limit the performance of communication that 
relies on such signaling. In [4], much of these effects are described. 

For TCP, high RTT causes a high retransmission cost, since more time is wasted during 
the slow start and the congestion avoidance phase. It takes longer for the window size to 
reach its normal level again, and when the congestion window is small not all of the 
available capacity is used. 

Mobile clients who are using wireless access to some network may not only experience 
reduced capacity, they may even become temporarily disconnected. This is the nature of 
wireless communication and must be considered when design choices are made. Although 
disconnection is unwanted it may not be possible to avoid and it is good if the time 
without connectivity does not introduce problems for TCP. Moreover, handovers can 
cause similar performance degradation. However, these problems will not be considered 
here. 

Since TCP does not use all of the available bandwidth in the slow start phase, small files 
can cause the utilization of the link to become very low. If the TCP connection experience 
problems, e.g. reordering of packets or packet loss, during the slow start the utilization will 
be even worse. Moreover, UMTS has a rather high RTT and it increases with high 
retransmission rate. Hence, transferring small files with TCP over UMTS will be extra 
sensitive. In [8] an analytical model for TCP transfers is constructed. The author realizes 
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that TCP’s slow start is a vital part of the total time when small files are being transferred 
and takes that into account when constructing the model. 

TCP uses the sliding window approach as described in Section 2.1.1. However, in order to 
fully utilize the available network capacity, the send window needs to be larger than the 
BDP. If the receiver has a limited amount of buffer space, it cannot advertise as big 
window as needed to fully utilize the capacity provided by the network. This will also lead 
to underutilization. 

We have in this section pointed out and described a few problems and they can be 
summarized in the following list: 

• The inability to differentiate between congestion and radio loss 

• Reordering of packets 

• Long delays 

• Limited bandwidth 

• Small file transfers  

• Congestion handling 

• Bandwidth variation 

• Limited buffer size 

• Handle time without connectivity 

• Handovers 

In this report we focus on high radio block error rates that introduce packet reordering 
and high delay variations. Also, the performance for small file transfers is studied. 

2.4.2 Traffic to Mobile Clients 
How much the wireless environment affects TCP is mostly dependent on the traffic that 
traverses the wireless link. The behavior of the users of the new mobile terminals will 
decide what the traffic pattern will look like, and thereby also implicitly affect the 
utilization of the wireless media. We choose not to study any specific traffic pattern but 
instead we look at large file transfers. Moreover, small files of different sizes are also used 
in the simulations. 



Improving 3G performance for Mobile Internet  Erik Lundsten 
_____________________________________________________________________ 

11 

3 Proposed Solutions 
3.1 The Solutions 

3.1.1 Introduction 
There are quite a few things that could be done to improve the performance of TCP over 
wireless media. The remedies can be categorized into sections according to the procedure 
they use to solve the problem. The solutions are all trying to improve the throughput of 
TCP on wireless links but some also improve TCP’s performance in general. 

First, we have the ones that suggest modifications to the parameters of TCP. One of the 
most obvious is the increase of the initial congestion window. This will lead to that TCP 
will start up faster and thereby less time is wasted in the start up phase in which the link is 
not fully utilized. There are several other modifications of this kind, but often TCP’s 
performance is increased for wired links as well; they are not specific for the wireless area. 

Secondly, we have the solutions that try to change the topology. One way of changing the 
topology is to split the TCP connection into two parts; this approach is called Split-TCP 
and one implementation is I-TCP [7]. Another way is to analyze the traffic at the boundary 
between the wired and wireless segment, and from that information modify the traffic to 
increase performance as Snoop [2] does. Since these solutions are specialized, they will not 
improve TCP’s performance in general and they also increase the complexity. 

Finally, we have the approaches that propose modifications to TCP itself. These solutions 
change the TCP algorithm in different ways, in order to improve performance over 
wireless links. Often they also improve performance in wired environments. They can 
make TCP substantially more complex depending on how TCP is changed. Eifel and TCP 
Westwood falls under this category. 

Besides these, the radio link will also have a major impact on how well TCP performs. 
HSDPA is a new radio link that has not yet reached the market but it looks promising in 
mitigating some of the problems associated with wireless communication. Moreover, the 
configuration of the present radio links affects the performance of TCP. 
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3.1.2 Split TCP and I-TCP 
Split TCP is based on the fact that different parts of the path from the sender to the 
receiver have different characteristics, and by dividing the path into two sections each 
section can be optimized. Split TCP is illustrated in Figure 5, and in the wireless context 
the TCP connection is usually split at the base station. Splitting at the base station will 
result in having different TCP-sessions over the wireless link and the wired part of the 
network. 

 
Figure 5 The idea behind Split TCP 

I-TCP [7] is one design and implementation of the split TCP semantics. Besides defining 
how the splitting should be implemented, I-TCP also describes how to handle handovers. 
Handovers is beyond the scope of this report, but they also have an effect on TCP’s 
performance. The main advantage of Split TCP is that retransmissions and errors on the 
wireless link will not cause TCP to issue end-to-end retransmission. Since the TCP 
connection is divided into two parts, the two connections can be highly optimized for the 
environment present at each part of the connection. Prominent in this context is the fact 
that each part will have a lower RTT, which implies that the TCP transfer rate recovers 
faster after congestion handling. 

3.1.3 Snoop 

Snoop [2] introduces extra functionality to a node right before the wireless link and to the 
mobile client. Snoops works by examining the TCP header and can thereby be considered 
as a proxy technology since the underlying layers are not transparent. It inspects traffic 
that flows through the base station and by looking at the TCP packets and applying a set 
of rules for handling retransmissions and other events, Snoop improves the performance 
of TCP. The improvement is the result of the fact that Snoop is preventing TCP from 
doing unnecessary end-to-end retransmissions, but instead retransmits IP packets only 
over the wireless link. This differs from the link-level retransmission described in Section 
2.2 where the retransmission is independent if TCP. Snoop is a TCP aware retransmission 
scheme. 

The main improvement in performance is due to TCP not reducing its congestion 
window, because the snoop agent residing in the base station apprehends duplicate 
acknowledgments, that are due to loss at the radio link, and thereby restrict the receiver 
from initiating a fast retransmit. To accomplish this, Snoop caches packets until the 
receiver has acknowledged them. 
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Snoop works by intercepting all messages that passes through the base station and after 
inspecting them taking the appropriate action. Both acknowledgments and data packets are 
intercepted. Snoop discards spurious ACKs from the mobile client. The reason that Snoop 
can distinguish between real ACKs and spurious ACKs is that Snoop keeps track of the 
already acknowledged data. Furthermore, Snoop filters out duplicate ACKs and retransmit 
only locally if it is needed. 

Snoop also deals with data transfers from the mobile host to a fixed host. For doing so 
Snoop introduces NACKs, negative acknowledgments, which are based upon the SACK 
option of TCP. The NACKs are used for requesting retransmission from the mobile client 
without forcing TCP to activate the congestion control. This will lead to a better 
performance but it requires the mobile client to have support for SACK. 

3.1.4 Eifel 
Eifel [5] is a modification of TCP that improves throughput performance by a different 
management of the congestion window. Eifel introduces new functionality letting TCP to 
see when a fast retransmission or a time-out is spurious. A spurious fast retransmission or 
time-out is not detectable, by standard TCP, due to the retransmission ambiguity 
(explained in next paragraph). By eliminating this ambiguity, Eifel can manage the 
congestion window with greater accuracy. 

The retransmission ambiguity is illustrated in Figure 6. When the sender receives duplicate 
acknowledgments, or gets a time-out for a packet arriving late it issues a retransmission of 
the packet missing. The packet is re-sent and eventually an acknowledgment for that 
packet is received. When the ACK is received the sender does not know which packet it 
corresponds to. Did the receiver send the ACK when the original packet arrived or was it 
sent when the retransmitted packet arrived? Since no information about this is available 
the sender must assume that the original packet was lost and that the ACK corresponds to 
the retransmitted packet. 

 
Figure 6 The retransmission ambiguity 
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When the sender assumes that the original packet was lost it has to assume that it was lost 
due to congestion and therefore issues window management. If the acknowledgment in 
fact corresponded to the original packet, the congestion window will have been decreased 
unnecessarily, since there was no congestion. In fact, the packet was not even lost. 

Eifel enables TCP to determine what packet the ACK corresponds to, i.e., if it 
corresponds to the original or the retransmitted packet. This is done by using timestamps 
and by recording the time when the retransmitted packet is sent. When TCP issues the 
retransmission, it saves the time and then sends the packet. A timestamp, containing the 
same time as recorded by the sender, is attached to the retransmitted packet. When the 
receiver receives a packet it copies the timestamp from the incoming packet to the 
outgoing ACK. This enables the sender to see the time when the acknowledged packet 
was sent. By looking at the timestamp attached to the ACK Eifel knows if it corresponds 
to the original packet or not. If the timestamp recorded at the retransmission is newer than 
the time in the acknowledgment’s timestamp, it must be the original packet that is being 
acknowledged. If instead the acknowledgment’s timestamp is newer or equal, the sender 
knows that it originates from the retransmitted packet. 

When TCP detects that the ACK corresponds to the original packet, by using Eifel, there 
is no need to reduce the amount of segments that can be sent since there was not any 
congestion. This lets TCP use the same size of the congestion window as it was using 
before the retransmission occurred and by this eliminating the slow start and congestion 
avoidance phases. This leads to increased throughput. Eifel of course also has the 
capability to detect spurious timeouts [19], which also leads to improved performance 
when timeouts are common. 

The timestamp option is used to separate the ambiguity when starting after a 
retransmission. Since the TCP timestamp is only an option it is not included in older TCP 
implementations. Eifel is backwards compatible with standard TCP. This enables the 
modification to be introduced incrementally in the network. 

3.1.5 TCP Westwood 

TCP Westwood [6] is a server side modification to TCP that tries to estimate the 
bandwidth in use in order to adjust the congestion window and the slow start threshold in 
an effective way. TCP Westwood falls into the category of solutions that changes the 
behavior of TCP. The authors of TCP Westwood argue that it can be seen as a natural 
evolution of TCP and compares the change from TCP Tahoe to TCP Reno with the 
change from TCP Reno to TCP Westwood. 

The improvement in throughput is the result of changes in the handling of the congestion 
window in the case of a retransmission. TCP Westwood estimates the bandwidth available 
and makes use of that information when setting the slow start threshold and the 
congestion window size. 

The estimation of the bandwidth is based on samples that TCP Westwood collects from 
every ACK received. When an acknowledgment is received the estimated bandwidth is 
calculated. This may seem simple and straightforward but in order to filter out fast 
fluctuations, the samples are passed through a discrete low pass filter. The filter takes into 
consideration how much data the ACK acknowledges as well as the time elapsed since the 
last sample. The time sample is used in order to weight old values lower compared to 
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newer ones. All this adds up to give TCP Westwood a reasonable estimate of the 
bandwidth available, even when the network is congested. 

The new threshold will be the estimated bandwidth multiplied by the RTT. The idea is to 
allow the sender to send as much data as the estimated delay bandwidth product, i.e. using 
all the link’s or network’s available capacity. 

TCP retransmissions can, as previously mentioned, either be caused by receiving duplicate 
acknowledgments or by a timeout. In the case of duplicate acknowledgments, TCP 
Westwood sets the slow start threshold to a new value, based on the bandwidth 
estimation. TCP only enters congestion avoidance if the current congestion window is 
larger that the new threshold. This makes sense since we do not need to reduce the rate if 
there is more bandwidth available than what we are using. If the retransmission was caused 
by a timeout, the congestion window is set to one segment and a slow start is issued. This 
is similar to what TCP Reno does but with the difference that the slow start threshold is 
calculated using a new mechanism. 

3.1.6 HSDPA 
HSDPA, high-speed downlink packet access, is a technology that will serve as bearer for 
UMTS in the future. This will improve both quality and speed resulting in data rates well 
up in the megabit range. When WCDMA is used with HSDPA, services can make use of a 
speed as high as 8 Mbit/s. The delay will also decrease due to reduction in the amount of 
interleaving. 

HSDPA uses a faster and more advanced link layer retransmission scheme than “older” 
links, to compensate for the relatively high loss rate. The main advantage over “older” 
links is its speed both in transfer rate and in response time. This will lead to different 
effects on TCP’s congestion control and hopefully, by its quicker reaction to loss, reduce 
the problem with TCP over wireless substantially. 

In [10] it is shown that HSDPA, using its shared channel capacity, mitigates the 
throughput problem as well as increases the utilization of the system. Besides providing 
better effectiveness for TCP, HSDPA also increase the total system performance. The 
improvement for the end-user is not thoroughly analyzed but indications point to a 
significant increase in performance. The performance of HSDPA is also studied in [26]. 

3.1.7 Other Solutions 

There are, as mentioned earlier, numerous approaches for trying to solve problems related 
to TCP over wireless, besides the ones presented in the previous sections. Often they 
share the same underlying semantics as the solutions presented above, and thereby also 
share many of the performance enhancing attributes. 

TCP SACK, Selective Acknowledgment, [20] provides functionality for a selective-
acknowledgment scheme instead of the incremental acknowledgments usually used. 
Performance is especially improved when several packets in the same window are lost. 
T/TCP, TCP for transactions, [21] can improve the performance when transferring small 
files since it reduces the set-up time of a TCP connection. 

Optimizing the parameters of TCP can also be a good way to improve the performance. 
Increasing the MSS as well as widening the initial window size mitigates the throughput 
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problem [9]. Furthermore, increasing the threshold for duplicate acknowledgments will 
decrease the probability for spurious retransmissions but at the cost of longer time before 
congestion is detected. In order to be able to choose the most suitable solution in a 
specific context, a comparison is needed. 

In UMTS the mobile host can either deliver the received packets to the IP layer as soon as 
they arrive or the packets can be sorted and delivered in the order they were received at 
the base station. Sorting the packets might improve performance when the packet 
reordering due to radio link retransmissions is extensive. 

3.2 Comparison of the Proposed Solutions 

The different solutions are based on totally different ideas, as we understand from the 
previous sections. Therefore they can be difficult to compare. While TCP Westwood and 
Eifel are modifications to TCP, HSDPA is a new type of radio link. Split TCP is as 
described a way to isolate the characteristic of the wireless link from the rest of the 
communication path. Snoop is somehow similar to Split TCP but it also resembles the link 
layer retransmission scheme. 

The main advantage of TCP Westwood is that it gives rather good improvements in wired 
situations as well as in wireless without changing the end-to-end semantics of TCP. In [6], 
huge improvements can be shown but this can also be the result of TCP Westwood being 
more aggressive. Since congestion is unwanted, are more aggressive approaches really the 
way to improve performance over wireless links? Furthermore, the migration from TCP 
Reno to TCP Westwood will take a long time since every TCP implementation will have to 
be changed. 

The Eifel algorithm is a rather clean modification of TCP. Although it is less complex than 
TCP Westwood, which uses bandwidth estimation, it requires the host to use the 
timestamp option. Since not all hosts are required to use the timestamp option it is not 
possible to use Eifel everywhere. Eifel shares the migration problem with TCP Westwood 
and will not be used in every implementation in a long time. 

Snoop shares some properties with Split TCP but keeps the end-to-end semantics. 
Thereby it escapes the criticism that Split TCP has got due to the fact that it does break 
the end-to-end semantics. Split TCP has another flaw: every packet that is sent across the 
TCP connection has to go through the TCP-stack four times. That’s twice as many times 
as when using ordinary end-to-end TCP. This is the result of the back-to-back TCP stacks 
at the base station and may introduce some extra delay depending on the processing power 
available at the intermediate node. Furthermore, it is obvious that the base station needs to 
have an implementation of TCP that otherwise would not be necessary. All this leads to 
these approaches not always being advisable to use. 

HSDPA does not really have any obvious disadvantages besides its cost. One property that 
can complicate the evaluation of HSDPA is that it can use shared channel communication. 
The scheduling algorithm that is responsible for distributing the right to send data, has a 
major impact on how TCP will perform. Since TCP is sensitive to variations in delay, a 
scheduling algorithm that leave one user without connectivity for some time will affect 
TCP in a negative way. Furthermore, HSDPA is not in use today and it is not clear when it 
will be implemented into the mobile networks. 
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The simplest form of solution is the optimization of TCP’s parameters as the initial 
congestion window size and the MSS. These optimizations can be used together with 
other modifications of TCP, and the combination might very well mitigate the problem. In 
order to have a big MSS, path MTU discovery is important to use. Increasing the window 
size that is used after a timeout will allow TCP to reach a high data rate faster and thus 
limiting the cost of a retransmission. 
Table 1 The presented solutions and the problems they address 

 Differentiate 
between 
Congestion 
and Loss 

Spurious 
Retransmissions 
and Timeouts 

Small Files Congestion 

Split TCP X X X X 

Snoop X X   

Eifel  X   

TCPW  X  X 

HSDPA  X X X 

Parameter 
opt. 

 X X X 

A summary of the solutions and what problems they address is seen in Table 1. The figure 
should be considered as a guideline, since it does not say how well the different solutions 
mitigate the problems. Furthermore, there may be difficulties implementing the solutions, 
as well as side effects. Depending on which problem is considered the worst, different 
solutions could be recommended. 
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4 Discussion of  the Proposed Solutions 
Much work in this area has already been done, as previously seen. The problem is that the 
solutions will behave differently in different networks (UMTS, GPRS, WLAN) and a 
general rule of which solution to use is not applicable. All solutions may not even be 
possible to use depending on how much freedom there is to change the system. Several 
solutions introduce extra complexity in order to improve performance and this seems to 
be the general tradeoff. How much complexity can then be accepted for a certain 
performance improvement? 

The suggested modifications to TCP will definitely reduce the problem but in different 
ways. Also the cost of implementation differs. Since both TCP Westwood and the Eifel 
algorithm are backwards compatible, they will work in a partially changed environment. If 
the support for these solutions is not widespread they will of course not work in many 
situations. 

The split connection forces a “TCP-proxy” into the system and introduces all the 
problems associated with that. HSDPA is a new type of radio link that introduces different 
behaviour for the connection to the clients. This will at the same time change the 
underlying layer for TCP and thereby change its behaviour.  

Security issues cannot be neglected when looking at how well the solutions can be 
implemented and how well they improve performance. If the mobile client wishes to 
communicate with a server on the Internet using e.g. IPSec, it is extremely important that 
the solution does not interfere with such security protocols. For instance, Split TCP and 
Snoop do not allow end-to-end IPSec. 

Simulations done with the different solutions show a big improvement over the versions 
of TCP that are mainly used today (TCP Reno and successors). Most of the simulations 
and tests have considered WLAN as means of communication. WLAN has different 
characteristics than UMTS and that may lead to different conclusions. Moreover, the case 
considered is often to transfer a big file from a server on the Internet to the mobile client. 
This is a reasonable assumption apart from one thing: the file size may be small. If this is 
the case, more of the total transfer period will be spent in the start up period and thereby 
limiting the improvement. Furthermore, the traffic pattern, e.g. the packet sizes and the 
traffic distribution, is an important factor when judging how well a solution will mitigate 
the problem. 

The eventual introduction of IPv6 will also have a role in the effectiveness of using TCP 
over wireless media. IPv6 has bigger packets in general and the minimum size of the MTU 
is substantially larger. 

More testing and evaluation is needed in the context of UMTS since the characteristics of 
UTRAN will have a major impact on the performance of TCP. The link layer has 
retransmission and it is necessary to examine how this affects the suggested solutions. 
Other factors of the link used for UMTS radio access might also impact TCP’s 
performance over the wireless link. 
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5 Method and Results 
A few of the proposed solutions, described in the previous sections, have been simulated 
in a modeled environment. Before these simulations could be done and the result can be 
presented, the model of the radio link must first be presented. We must however first 
present how the UMTS RLC, radio link control, works. Section 5.1 will describe some 
relevant parts of UMTS in order to give a general understanding. The following section 
will describe the model and point out its most important features. 

5.1 UMTS 

5.1.1 UMTS – UE, UTRAN and CN 
We need a bit more knowledge in the area of data transmission in UMTS in order to be 
able to build the model. UMTS is comprised of several logical network elements as 
described in the background section. There are three main parts: UE, the user equipment, 
UTRAN, the UMTS terrestrial radio access network, and CN, the core network. The 
architecture of the system is in many ways similar to the one used for GSM. A more 
comprehensive description of UMTS is available in [14]. 

The user equipment provides the interface to the user and the radio interface that connects 
the UE with the UTRAN. This interface is called Uu. The UTRAN defines how users 
access the network but also how they will be connected to the core network. Furthermore, 
the UTRAN also defines various radio-related functions. The core network is the internal 
structure of UMTS and communicates with UTRAN over the Iu interface. The core 
network’s switching and routing is of limited interest here, since this study will only deal 
with the interface for transferring data wirelessly from and to the mobile host. 

 
Figure 7 How the logical elements are interconnected 

The logical network elements are interconnected by interfaces according to the structure 
seen in Figure 7. Another dimension is that the interfaces are divided into two planes: The 
user plane and the control plane. This is done to distinguish between the data related to 
controlling the transmission and the actual user data. 

The system is divided into several logical elements, as described. These logical elements are 
in turn made up of smaller components. 
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5.1.2 Components of the UE, UTRAN and CN 
The UTRAN has two main components: RNC and Node B. While RNC, the radio 
network controller, controls the radio resources, Node B functions as a base station. 
Figure 8, shows how RNC and Node B are interconnected. Every RNC can have several 
Node B. Furthermore, different radio network controllers can communicate with each 
other through the Iur interface. 

 
Figure 8 How RNC and Node B are interconnected 

The core network uses many of the same components as GSM and GPRS. The most 
important components are: 

• HLR, home location register, is a database located in the user’s home network that 
stores the user’s service profile.  

• MSC, mobile services switching center 

• VLR, visitor location register 

• GMSC, gateway MSC 

• SGSN, serving GPRS support node 

• GGSN, gateway GPRS support node 

External components can also be connected to the UMTS core network. These 
components can be divided into two groups from the core network’s point of view: the CS 
(circuit switched connections) group and the PS (packet service group). Internet is one 
example of a PS while PSTN is an example of a CS. 
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The UE is made up of two main components: USIM and ME. The USIM, UMTS 
subscriber identity module, is implemented as a smart card and holds identity information 
about the user. Moreover, it performs authentication and encryption. The ME, mobile 
equipment, is simply the terminal used by the user to access the UMTS network over the 
Uu interface. The RLC resides in the ME and in the RNC. 

5.1.3 RLC 
The radio link control’s main task is to control the data transmission over the wireless link 
[18]. The RLC also interconnects the UE and the UTRAN. It has a variety of capabilities 
but the most interesting in this context are the ones related to transmission. 

The RLC resides above both the MAC and the physical layer in the protocol stack. It is 
able to handle transmission errors. These errors are a direct result from the unreliable 
communication that the wireless physical layer provides. Since the conditions for receiving 
and transmitting radio signals vary over time, UMTS needs a way to compensate for the 
changes. Adjusting the power level of the transmission can actually control the error rate. 
Doing this results in a more constant error rate than would have been the case otherwise. 

The RLC has three different modes, which it can operate in to provide data transmission 
for different applications. They are: transparent, unacknowledged and acknowledged 
mode. When operating in the transparent mode, RLC simply forwards the incoming data 
without adding any extra functionality. The unacknowledged and the acknowledged mode 
share many things related to control but only the acknowledged mode provides 
retransmission of data. However, the unacknowledged mode provides an error free 
delivery of packets to upper layers. This is achieved by discarding erroneous packets so 
that only error free packets are delivered. 

In Figure 9, it can be seen that the RLC layer fits between the MAC layer and the RRC, the 
radio resource control layer in the control plane. Also seen in Figure 9 is that the RLC is 
located in the UE and in the RNC. This leads to two things: Node B has to be traversed 
by every radio block and no active retransmission is done between the base station (Node 
B) and the mobile host. 

 
Figure 9 The protocol stack related to RLC 

When the RLC is used for TCP traffic, the acknowledged mode is the recommended 
choice. It is always recommended to use a local retransmission scheme whenever possible. 
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The main focus and interest in this context is therefore the acknowledged mode, since we 
want to study and maximize TCP’s performance over UMTS. 

The RLC interacts with the networking protocol directly in the user plane and the data are 
passed from, e.g. IP to the RLC. The IP-packets are from the RLC’s point of view called 
SDUs, service data units. The SDUs are segmented into PDUs, protocol data units, and 
passed on to the MAC-layer. To achieve higher utilization of the link, concatenation is 
used if the SDU does not fill the last PDU fully. 

 
Figure 10 PU, PDU and TTI relation 

The TTI, transmission time interarrival, defines how often data should be sent from the 
RLC layer. The amount of data that can be transmitted during one TTI is decided by the 
bandwidth and of course the length of the TTI. Hence, this determines the number of 
PDUs in one TTI, and the PDU size is set to the amount of data in a TTI of the lowest 
possible bit rate for the service in question. During one TTI the bits can be scrambled in 
order to obtain a better tolerance to variations in radio conditions. 

When the RLC is operating in acknowledged mode, erroneous PDUs are retransmitted. If 
the receiver receives a PDU that turns out to be corrupted by bit errors, it must request 
the sender to retransmit that PDU. The receiver lets the sender know of an incorrect block 
by sending a status report. All this is handled by ARQ, automatic repeat request. In the 
RLC, the automatic requests are implemented by status messages. Exactly how the status 
messages are used is not well defined and manufactures have some freedom. The most 
straightforward method is for the receiver to send a status message when a received PDU 
is erroneous. Another way of doing this is for the sender to ask the receiver at a certain 
interval if everything is ok. That delay will affect upper layers, e.g. TCP, and it is important 
for the ARQ to have as short response times as possible. 

Error detection is done using CRC, cyclic redundancy check. The CRC is calculated over 
the entire PDU and the RLC is thereby able to detect errors and order retransmissions. 

The use of retransmissions has drawbacks. The main problem with using acknowledged 
mode is that it introduces extra delay. When a radio block is retransmitted, it cannot be 
delivered to the upper layer before it is correctly received. The delay will vary since it might 
take several retransmissions before the radio block is correctly received. This variation in 
delay is the cost for the guarantee of error free delivery. There is functionality in RLC for 
doing a tradeoff between retransmissions and delay. This is accomplished by providing a 
threshold for how many times the RLC will retransmit a specific block before giving up. 

Another option is whether the SDUs should be delivered in-sequence or out-of-sequence. 
The simplest option of the two is the out-of-sequence delivery. It simply delivers a SDU 
when all PDUs associated with it have been received. The in-sequence delivery never 
delivers a SDU before all preceding SDU’s has been delivered. The later option causes the 



Improving 3G performance for Mobile Internet  Erik Lundsten 
_____________________________________________________________________ 

23 

variation in delay to increase. Using RLC in acknowledged mode in combination with 
using in-sequence delivery gives the highest variation in terms of delay. There is a major 
drawback if out-of-sequence delivery is used: the possibility for IP packets to be reordered. 

There are of course more details of how the RLC works and they can be found in [14]. 
The functionalities that the RLC provide can be summarized in the following points: 

• Segmentation and reassembly 

• Concatenation 

• Padding 

• Transfer of user data 

• Error correction 

• In-sequence delivery of higher layer PDUs 

• Detection of duplicate  

• Flow control 

• Sequence number check 

• Protocol error detection and recovery 

• Encryption 

• Suspend/resume function 
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5.2 Simulation Model 

5.2.1 Introduction 
A model of the radio link is needed to evaluate the possible performance improvements 
resulting from the different solutions presented in Section 3.1. The model allows tests to 
be conducted without actually implementing the proposed solutions in a real system. A 
model is by definition a simplification and an abstraction of the reality, and thereby the 
results from the experiments involving the model should only be seen as a guideline. 

5.2.2 Modeling the UMTS RLC 

When modeling the radio link control some abstractions are made. The actual physical 
layer is not modeled; the model is entirely on the RLC level. The model will of course take 
into consideration the errors that the physical layer will introduce. However, the block 
error rate is kept at a predefined level by adjusting the power of the transmission. 
Therefore it is assumed that the distribution of errors is uniform when considering blocks 
of data. This assumption is justified by the fact that increasing the transmission power will 
reduce the error rate. There is of course a limit to the extent the power can be increased 
without interfering too much with other users and base stations. This is, however, not a 
problem addressed here, since we assume that the network is constructed in such a way 
that increasing the power is possible for adjusting the error rate to the predefined level.  

The segmentation used in the RLC is also considered in the model. IP packets are split 
into PDUs in the radio link control layer. There are two cases to consider when IP packets 
are segmented into PDUs: Either the IP packet size is larger than the PDU size or the 
reverse. In either case the model handles this as seen in Figure 11. 

 
Figure 11 The IP-packets are segmented into protocol data units 

After the segmentation of IP packets, the radio blocks (PDUs) are transmitted over the 
wireless link using the MAC and physical layer. As described previously the TTI, 
transmission time interval, in addition to the transfer speed determines how many PDUs 
that can be transferred during one TTI. 

Radio blocks are retransmitted if they are found to be erroneous, when the model uses 
acknowledged mode. Blocks being retransmitted are given a higher priority than those 
who are sent for the first time and are therefore resent immediately after an error 
indication. It is critical to do so since the transmission time, including retransmissions, for 
each PDU is crucial for the performance of the link. 
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5.2.3 Assumptions and Description 
Parameters and details must also be specified in addition to the description of how the 
RLC and the wireless link are modeled. The assumptions made in this context are 
important and they must be handled with care in order to realize an accurate model. Some 
of the most important attributes of the model and the surrounding area are described in 
this section. 

The RLC can deliver data to the upper layers in-sequence or out-of-sequence, as described 
in Section 5.1.3. The choice of this has relevance to the simulation results, since if in-
sequence delivery is chosen the delay will increase when packets have to wait for other 
delayed packets. If, on the other hand, out-of-sequence delivery is chosen there might be 
reordering of packets. 

In the model we assume a specific level of errors to be used in every simulation. We are 
especially interested in comparing a 10% BLER with a low BLER, possibly 0 or 1%. The 
errors are on the RLC level and the BLER value indicates the probability that a radio block 
(PDU) is determined as erroneous by the receiver. For instance if a 10% BLER is used, on 
average every tenth radio block needs retransmission. 

The model will not set a limit for how long the RLC will try to resend a packet. Since the 
probability of loss is assumed to be around 10 %, the probability for a packet not being 
correctly received after n retransmissions is 10^(-n). Obviously there will only be a very 
small number of packets needing as high as three or four retransmissions. The gain from 
setting a threshold is not always obvious since it might cause a timeout for TCP, due to a 
lost packet. 

The cost of a retransmission is of greatest importance and will have a big effect on the 
results. It takes time to process a PDU through the protocol stack and must be 
considerate. This also includes the CRC calculation and CRC check. A reasonable 
assumption is that it takes 20 ms every time that the PDU has to be processed from a 
protocol point of view. There are, of course, two end-points and there will consequently 
be a delay of 40 ms only for protocol processing. Furthermore, the status report message 
needs 20 ms to be sent. All this time adds up to a total of 60 ms for a packet to be 
retransmitted, when using a TTI of 20 ms. 

The model of the UMTS core network and the Internet are greatly simplified. We assume 
that no packet losses occur over the fixed network. If such packet losses were used in the 
model they can make the effects on TCP even greater, but the main thing here is to 
investigate the effects that the radio link cause. 

Different transmission channels are available in UMTS. The channel type examined here is 
the dedicated channel. It means that every transport flow has its own channel. This can be 
seen in contrast to the shared channel strategies that let several flows share one channel. 
To avoid conflicts in that case, scheduling is used. Furthermore, the channel described in 
the model is the downlink channel. 

5.2.4 Simulation Topology 
The topology of the simulation is of greatest importance. It will affect the results so we 
have chosen a simple model to get a clearer picture of how the radio link affects TCP 
without the interference of other factors.  
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The topology comprises three nodes, each with its own representation as seen in Figure 
12. The leftmost node represents the mobile host. This could in the reality be a UMTS 
terminal in form of a PDA or a mobile phone. The node in the middle represents the base 
station (Node B in UMTS) while the rightmost node represents a server residing on the 
Internet. 

 
Figure 12 The simulation topology 

The delay is one of the most important characteristics of the model and it must be selected 
with care since the performance of TCP is totally dependent on it. The delay of UMTS 
(CN and UTRAN) combined with the Internet is assumed to be around 135 ms one-way. 
Out of these 135 ms, 60 are accounted for the delay in UMTS while the rest (75 ms) 
represents the Internet delay. The delay in UMTS are in turn made up of two parts: the 
delay resulting from the core network are assumed to be 20ms, while the delay for the 
radio access network is assumed to be 40 ms. 

The transmission speed of the radio link model is adjustable and it ranges from 64 to 384 
kbps. How often the different speeds are actually used is not specified, but it is dependent 
of the quantity of users sharing the same cell. The more users, the lower the speed. 

A quantification of the problems with high error rate will be made under the assumption 
that a large file is downloaded is shown in Section 5.5. A few proposed solutions will be 
tested in order to investigate their ability to reduce the problem. Downloads of small files 
will be examined in Section 5.4, while Section 5.5 gives the result from using smaller 
PDUs. 
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5.3 Simulations of Large File Transfers 

Simulations are done in order to characterize and examine to what extent TCP is affected 
by the high radio block error rate. All simulations are done in NS2, network simulator 
version 2 [17]. NS2 is described in detail in Appendix 1. The radio link model is 
implemented as a module in the simulation environment of NS2. A description of the 
implementation and its usage can be found in Appendix 2. 

To see how the performance, of the transmission, is affected when downloading data 
using TCP, a large file of 16 Mbyte is downloaded from the Internet to the mobile host. 
By using such big file, the steady state of TCP can be studied. The time for this transfer is 
measured, and from this data the utilization is calculated. The parameter values of the 
features described in Section 5.2.2 are shown in Table 2. Of course some other 
parameters, e.g. packet size, also need to be specified but since they will be different for 
every simulations they are specified in conjunction with each individual simulation. The 
parameters listed in Table 2 are used in all simulations described in this section. 

Table 2 Parameter values 

Parameter Value 

TTI 20 ms 

Retransmission delay 60 ms 

PDU size 1 TTI 

UL Error Rate 0% 

DL Error Rate 0% vs. 10%

Network delay 135 ms 

File Size 16 Mbyte 

The speeds 384, 128 and 64 kbps are considered. The reason for choosing these specific 
speeds is that they will initially be the most commonly used in UMTS. 

The maximum send window is set so that the capacity of the link is fully utilized when the 
window reaches its maximum. The BDP indicates how much data can be in transfer at the 
same time at the maximum capacity, and the window size is set to a higher value. To use 
an unlimited maximum window would be unrealistic due to implementation issues, e.g. 
receiver buffer size. The maximum window sizes used here have been verified as large 
enough for full link utilization of an error free link. 

The amount of data being transferred includes the size of the IP header (usually 40 bytes). 
If, e.g. a packet is 1500 bytes, the amount of data accounted for is also 1500 bytes, even 
though 40 bytes in the reality is used for the IP header. This approach makes the 
difference in overhead from IP transparent. This is reasonable, since we are only interested 
in the utilization of the link and not the amount of overhead that IP headers introduce. 
Hence, this is how the bit rates 384, 128 and 64 kbps should be interpreted, i.e., as IP layer 
throughput. 



Improving 3G performance for Mobile Internet  Erik Lundsten 
_____________________________________________________________________ 

28 

5.3.1 TCP Reno with and without Radio Block Errors 
TCP Reno is one of the most common implementations of TCP and it has the behavior 
described in Section 2.1. To understand how big the reduced utilization is, simulations 
without any modification to TCP are needed. The objective of these simulations is to 
examine how much extra transferring time the 10% BLER in UMTS causes when the 
Reno implementation of TCP is used. The speeds 384, 128 and 64 kbps have been 
simulated. 

Table 3 Increase in download time for different speeds and packet sizes 

Speed 

(kbps) 

Packet Size 

(bytes) 

Max Window 

(segments) 

Increase in Time 

(%) 

384 576 25 239 

384 1500 14 25 

128 576 11 19 

128 1500 7 11,3 

64 576 9 11,1 

64 1500 6 11,4 

The best possible utilization still takes 11% more time when 10% BLER is used, as seen in 
Table 3. These 11% arise from the 10% radio block retransmissions, and are not due to 
TCP congestion control. This effect is considered a small price to pay in relation to the 
cost savings of building a mobile network with high BLER instead of a lower BLER (1%). 

The results show that 64 kbps does not cause any problems for TCP’s congestion control. 
Neither does 128 kbps in combination with 1500 bytes packet size. The cases when 64 
kbps speed is used are considered to be satisfactory and no extra investigation to improve 
the performance is therefore needed. 

The cases that cause problems are when the 384 kbps channel is used and when 128 kbps 
is used in combination with small packets. These results correspond well with earlier 
results [11]. Using a speed of 384 kbps and a packet size of 576 bytes shows a very 
significant increase in download time. 

A new calculation is made to show the underutilization when the RLC retransmissions are 
not considered (that introduces 11% increase), and only the effect of the TCP congestion 
control is considered. In Table 4 the modified values are shown. They are calculated as 
follows: (transfer time-(10% of transfer time))/ideal time. 
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Table 4 Increase in download time with the retransmission time of RLC excluded 

Speed 

(kbps) 

Packet Size 

(bytes) 

Max Window 

(segments) 

Increase in Time 

(%) 

384 576 25 183,18 

384 1500 14 12,63 

128 576 11 7,1 

128 1500 7 0,1 

The degradation in the performance is large in the case of 384 kbps while still not small 
enough to be neglected at the speed of 128 kbps, as seen in Table 4,. In the following 
simulations the result that will be shown will include the 11%. So results should be 
compared to Table 3, and the reader should bear in mind that 11 % is the optimal value. 

5.3.2 TCP Reno Congestion Window 

The retransmissions can cause IP-packets to be reordered as described in Section 5.2.5. If 
a packet is delayed long enough, three or more packets may pass the retransmitted packet, 
forcing TCP to do a fast retransmission. The receivers advertised window will affect the 
simulations since the sender’s window is limited by the minimum of the congestion 
window and the receiver’s advertised window. In all simulations the advertised window is 
set as small as possible but without limiting the throughput when an error free link is used. 
Simulations have been made to verify the choice of window size. 

The increase in download time is a direct result of TCP interpreting the reordering as 
congestion and limits the send window accordingly. In the following figures the send 
window over time is shown to visualize TCP’s performance degradation. 

 

 
Figure 13 Send window for 384 kbps with a packet size of 576 bytes 
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Figure 13 shows that the congestion window varies a lot. The degradation of the 
utilization is obvious since the link is only fully utilized then the congestion window is near 
the maximum send window of 25 segments. 

 
Figure 14 Send window for 384 kbps with a packet size of 1500 bytes 

Here in Figure 14, the effect is not as big but the throughput degradation is still as big as 
twelve percent. The horizontal sections of the plot, at the value of 15, indicate that the link 
is fully utilized at some times. 

 
Figure 15 Send window for 128 kbps with a packet size of 576 bytes 

In Figure 15, the influence of TCP’s congestion control on the utilization is not as big as 
in the previous two figures. The effect corresponds to an increase in download time of 
seven percent. The figure also serves as a good illustration of the congestion window being 
halved when a fast retransmission occurs. 



Improving 3G performance for Mobile Internet  Erik Lundsten 
_____________________________________________________________________ 

31 

 
Figure 16 Send window for 128 kbps with a packet size of 1500 bytes 

When TCP do not do any fast retransmission due to imparities in the link, the congestion 
window will not be decreased at all. In Figure 16, the utilization is at the maximum level 
and the send window is fixed at seven segments all through the transfer2. 

The send window alternates the most when the packet sizes are small and the transfer 
speed is high as seen in Figure 13 to Figure 16. The fluctuation of the send window seen in 
the figures, correspond well to the measured download time. TCP’s handling of the 
congestion window, due to high BLER, causes the link not to be utilized to the extent that 
one would desire. 

While the problem is severe at 384 kbps, almost no effect can be seen when using a 
transfer speed of 64 kbps. In the search of a solution to the underutilization problem, only 
the link speed and packet size combinations with a problem are considered (and therefore 
simulated). 

5.3.3 Eifel and Westwood 
To address the problem of underutilization of the radio link, quantified in the previous 
section, the solutions described in Section 3.1 are used. As we remember from Section 
3.1.4, Eifel improves the performance of TCP when spurious fast retransmissions are 
common. This is exactly the problem that the UMTS radio link causes, under our 
assumptions. 

TCP Westwood on the other hand does not attempt to detect false fast retransmissions; 
instead it changes the limitation of the congestion window for all fast retransmissions. This 
is done by bandwidth estimation as described in Section 3.2.5. The result is that Westwood 
does not reduce the window as much as Reno and thereby it improves the utilization. 

Both the simulation of Eifel and TCP Westwood is made under the same assumptions as 
the simulations using TCP Reno. In Table 5, the results obtained using Eifel can be seen, 
while Table 6 shows the results obtained using Westwood. 

                                                
2 Except for an initial slow start phase, which is to short too be seen in the figure. 
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Table 5 Increase in transfer time using TCP with Eifel 

Speed 

(kbps) 

Packet Size 

(bytes) 

Max Window 

(segments) 

Increase in Time 

(%) 

384 576 25 34,2 

384 1500 14 13,6 

128 576 11 12,5 

Eifel almost eliminates the TCP problem in the case of a 128 kbps link as seen in Table 5. 
The highest speed (384 kbps) still cause an increase in download time due to TCP, but not 
to the same extent. Note that the increase in transfer time in the case of 384 kbps with a 
packet size of 576 bytes has decreased from roughly 240% to 34%. 

The results when using TCP Westwood can be seen in Table 6. The results are roughly the 
same as for Eifel. 

Table 6 Increase in transfer time using TCP Westwood 

Speed 

(kbps) 

Packet Size 

(bytes) 

Max Window 

(segments) 

Increase in Time 

(%) 

384 576 25 33,6 

384 1500 14 12,8 

128 576 11 13,8 

TCP Westwood and Eifel do not prevent TCP retransmissions, which are rather frequent, 
but instead try to limit the effects from them. Thus, much of the 34% are due to 
unnecessary IP packet retransmissions and the window only limits the throughput to a 
fairly low extent. 

5.3.3 Split TCP 
One of the main reasons for Reno’s bad performance is the big delay over Internet and 
the UMTS network, since the TCP window recovers slowly from congestion when the 
RTT is large. Split TCP, described in Section 3.1.2, can actually help to reduce the effects 
by reducing the delay seen by TCP. Each TCP flow will have a smaller RTT since the 
window handling will be separated over the two parts of the path. Hence, the TCP 
window can recover faster by introducing a Split TCP scheme. 

There is no support for Split TCP in NS23, but a simplification still enables the simulation 
to be completed. Simply removing the delay over the fixed network gives a good 
approximation, since the limiting factor, over long time, is the wireless link. Depending on 
where the TCP connection is split, different fixed network delays should be considered. It 
is reasonable to place the TCP proxy between the RNC and the SGSN. This is assumed 

                                                
3 No Split TCP add-no module for NS2 has been found either. 
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here and the delay from the radio link’s physical layer to the TCP proxy is assumed to be 
30 ms. 

Table 7 Increase in transfer time using Split TCP 

Speed 

(kbps) 

Packet Size 

(bytes) 

Max Window 

(segments) 

Increase in Time 

(%) 

384 576 25 75,6 

384 1500 14 12,5 

128 576 11 11,6 

The data from simulations using Split TCP are shown in Table 7. The result from the case 
when 384 kbps is used in combination with a packet size of 576 bytes is rather good, 
compared to the original results using Reno, but not as god as with Eifel and Westwood. 

5.3.4 In-order Delivery 
The SDUs, in this case the IP packets, can be delivered to the mobile node’s IP layer in 
the same order that they are received at the sending base station. This is in contrast to 
delivering them in the order that they are actually received without errors. The risk that the 
radio link reorders IP-packets are eliminated, but at the cost of larger variation in the delay. 
Many packets can be delayed by only one erroneous packet since every packet received 
during a RLC retransmission has to wait for the retransmitted packet. 

The Reno implementation is used to quantify the problems of using in-order delivery. The 
results from using the facility to deliver SDUs in order can be seen in Table 8. Again, the 
case of 384 kbps in combination with 576 bytes packet size causes the most problems. The 
increase in time is 53%. As with the other solutions, the lower speeds do not cause any 
significant problems. 

Table 8 Increase in transfer time using in-sequence delivery 

Speed  

(kbps) 

Packet Size 

(bytes) 

Max Window 

(segments) 

Increase in Time 

(%) 

384 576 25 52,87 

384 1500 14 12,57 

128 576 11 11,12 
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5.3.5 Comparison of the Modifications to TCP 
A comparison of the accumulated data transferred is shown in Figure 17. The quantity 
measured is the amount of data received. The comparison is for the speed of 384 kbps in 
combination with a packet size of 576 bytes, i.e. the worst case. The rate of data received is 
almost the same for Eifel and TCP Westwood while Reno is far behind. Split TCP 
manages to reduce the problem significantly but as seen the result is not as good as for in-
sequence delivery.  

 
Figure 17 Comparison of the data received and acknowledged for different TCP versions 
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5.4 Simulations of Small File Transfers 

Another important scenario to study is when a user wishes to download a small file. This 
case differs in many ways from the case of a large file. The most important difference is 
that a bigger proportion of the connection time will be spent either setting up the 
connection or in the slow start phase. To quantify the problem, simulations of small file 
transfers are needed. 

5.4.1 Quantifying the Problem 

By small files we mean sizes of less than 200 kB. Which size in this range that are the most 
common can be discussed but 100 kB seams reasonable. This file can for instance be a 
web page being downloaded with HTTP 1.1. If an older version of HTTP is used, the 
objects in the web page would be downloaded separately, each using its own TCP 
connection and the file sizes would then be smaller. This would cause the downlink 
utilization to be even worse. 

In the following simulations the receiving part of the TCP connection is set to 
acknowledge every segment. Note that most TCP implementations acknowledge every 
second segment, which results in a even slower initial TCP window increase. 
Table 9 Increase in download time of 100 kByte for different speeds and packet sizes compared for 

10% error rate vs. an error free link 

Speed 

(kbps) 

Packet Size  

(bytes) 
Max Window 
(segments) 

Increase in Time 

(%) 

384 576 25 94,5 

384 1500 14 17,3 

128 576 11 16,6 

128 1500 7 10,2 

64 576 9 11,5 

64 1500 6 11,6 

The figures in Table 9 are the results from calculating the mean value of twenty 
simulations. The variation in the results from the individual simulations is quite large. The 
results will be affected by the time when the retransmissions occur since the simulations 
are short (only 100kByte). As seen in Table 9, the problems in terms of performance 
degradation are not as significant as with larger files. The figures does not show the whole 
truth, since they are only indicating how much longer the transfer takes when the link has 
10% errors and uses retransmissions versus an error free link. The actual utilization is low 
even in the first case, when the link is error free, and this is mainly due to the slow start 
phase being large in relation to the total transfer time. Furthermore, the time to set up the 
connection, using the three-way-handshake, is a significant part of the total connection 
time. The time before data can be sent is about one RTT. Even when the speed of the link 
is 384 kbps, the actual transfer speed is only around 250 kbps for an error free link as seen 
in Table 10. The table shows the average transfer speeds with 10% error rate and also 
without errors. 
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Table 10 Average transfer speeds when downloading a 100 kByte file 

Link Speed 

(kbps) 

Packet Size 

(bytes) 

Actual Speed 0% 

 errors (kbps) 

Actual Speed 10% 

errors (kbps) 

384 576 224,09 107,61 

384 1500 251,57 215,34 

128 576 109,73 94,06 

128 1500 113,96 104,17 

64 576 61,11 54,89 

64 1500 61,53 55 

In conclusion, using a low BLER instead of 10% would roughly increase throughput 10-20 
% but at a high network infrastructure cost. However, lowering BLER for 384 kbps and 
small packets is much more beneficial. 

5.4.2 Increasing the Initial Congestion Window 

Increasing the initial congestion window is one way of mitigating the problem of the big 
proportion spent in slow start. This will allow the start up to go faster and thereby increase 
the utilization. It has been discussed by how many segments the initial window should be 
increased. Note that there is a negative side of increasing the initial window size: The 
traffic will be burstier. The window should at least be increased to two segments, which is 
allowed but there are also suggestions for allowing a size of three or four. In [1], the 
formula min(4 SMSS, max(2 SMSS, 4380bytes)) is presented but it is not a part of the 
standard. Note that the receiver as well as the media can limit SMSS, sender maximum 
segment size. The intuition behind the formula is that more segments can be sent initially 
if the segments are smaller. The formula gives an initial window of 4 segments for 536 
bytes SMSS and a window of size 3 for 1460 bytes SMSS. 
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The results from simulating a download of a 100 kByte file using an initial window size of 
3 and 4 are shown in Table 11,. The improvement is measured in decreased download 
time when using an initial window size of three or four instead of one. 
Table 11 Decreased download time for a 100 kByte file, due to increased initial window. Increasing 

the window from 1 to 3 or 4 segments 

Speed Packet Size Init Window size Improvement 

384 576 3 6,47% 

384 1500 3 17,38% 

128 576 3 5,74% 

128 1500 3 5,66% 

384 576 4 5,75% 

384 1500 4 21,32% 

128 576 4 7,85% 

128 1500 4 6,65% 

The largest gain can be made when the slow start phase is significant in combination with 
a large packet size. The difference in improvement is not that big between an initial 
window of three and four segments. 

The following two figures are presented to illustrate how the initial window affects the 
transfers. The first figure, Figure 18, shows the accumulated data during a transfer when 
an error free link is used. Figure 19 shows an example of traces when an error rate of 10% 
is used. The speed of 384 kbps and a packet size of 576 kBytes are used in the simulations. 
As seen in the first figure, the difference lies in how fast the connection is able to reach its 
maximum speed. Increasing the window size has largest effect on files really small files, 
e.g., 20 kB as seen in Figure 18. 
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Figure 18 Ideal simulation with no errors showing the difference between an initial window of 1, 3 
and 4 segments 

 
Figure 19 Trace of simulations of small files for an initial window of 1, 3 and 4 segments with 10% 
BLER on the radio link 
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Figure 19 shows only one simulation trace of each initial window size. The actual transfer 
speed of the link varies considerably between the simulations. The reason for this is the 
random errors that occur over the wireless link. The numerical results shown in the tables 
are the mean over 20 simulations. 

5.4.3 Different File Sizes in combination with different Initial Windows 

Two other cases are also simulated in order to study how the results are affected by the file 
size. The new file sizes are 50 kByte and 200 kByte and are chosen to assess the 
improvements. Table 12 and Table 13 show the result from 50 kByte and 200 kByte files, 
respectively. Only the window size of three was used to study the improvement since the 
gain from increasing the window from three to four segments is rather small: see Figure 
18. 

Table 12 Decrease in download time for a 50 kByte file, due to increased initial window 

Speed Packet Size
Init Window 
size Improvement

384 576 3 10,60% 

384 1500 3 20,95% 

128 576 3 6,86% 

128 1500 3 10,13% 
Table 13 Decrease in download time for a 200 kByte file, due to increased initial window 

Speed PacketSize 
Init Window 
size Improvement

384 576 3 3,36% 

384 1500 3 1,98% 

128 576 3 4,07% 

128 1500 3 3,43% 

Small files in combination with large packet sizes is the case where it is most beneficial to 
use larger initial window. This is no surprise, but the improvement in transfer speed of 
20% is quite large. For 200 kByte files the increased initial window gives only a minor 
improvement. 
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5.5 Simulations using Multiple PDUs in one TTI 

Along with the assumptions made in the previous simulations, there is the possibility for 
one TTI to hold several PDUs. Using PDUs as small as 40 bytes is suggested. Considering 
the amount of data that fits into one TTI when the speed is 128 kbps, there will be a large 
amount of PDUs in every TTI. The retransmission probability for each PDU is still the 
same since the error rate for them are still considered to be around 10%. But since more 
PDUs will make up an SDU the probability that an SDU will be delayed increases, causing 
a higher delay. To quantify the throughput problems when using multiple PDUs, 
simulations of large file transfers are again carried out. 

5.5.1 In-order Delivery vs. Out-of-order Delivery 
When using the multiple PDU approach there is a choice whether to use in-sequence or 
out-of-sequence delivery. As we remember from earlier, the in-sequence delivery delivers 
IP-packets in the same order as they are received at the base station while the out-of-
sequence delivers each packet as soon as they are received correctly. Due to extensive 
retransmissions on the link, the packets may be substantially delayed when using in-
sequence delivery or extensively disordered if out-of-sequence delivery is used. 

The first case to study is when out-of-sequence is used in combination with 40 byte PDUs 
using the Reno implementation of TCP. Table 14 shows the results from these 
simulations. The results for the higher speeds are terribly bad. 
Table 14  Increase in download time for different speeds and packet sizes using 40 byte PDU 

Speed 

(kbps) 

Packet Size  

(bytes) 
Max Window 
(segments) 

Increase in Time 

(%) 

384 576 25 676 

384 1500 14 388 

128 576 11 184 

128 1500 7 18,7 

64 576 9 11,4 

64 1500 6 11 

One possible solution to the bad performance is to use in-sequence delivery. Although it 
does not solve the underutilization problem, it reduces the effect to a large extent. It can 
be seen that there is only a major problem with 384 kbps and 576 Bytes packets in Table 
15. 
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Table 15 Increase in download time for different speeds and packet sizes using 40 byte PDU and in-
sequence delivery 

Speed 

(kbps) 

Packet Size  

(bytes) 
Max Window 
(segments) 

Increase in Time 

(%) 

384 576 25 305 

384 1500 14 14,3 

128 576 11 18,7 

128 1500 7 11,5 

64 576 9 11 

64 1500 6 11 

The bad result in out-of-sequence delivery is due to IP packet reordering. The reason for 
this extensive reordering is that RLC retransmissions occur and many packets will need 
several retransmissions before they are ready for delivery. If on the same time a few 
packets of higher sequence number pass by such a significantly delayed packet it causes a 
fast retransmission. TCP’s inability to tell the difference to reordering on the wireless link 
and congestion is also here the root of the problem. 

The introduction of in-sequence delivery does not solve the utilization problem even 
though it removes the fast retransmissions. Similarly to when in-order delivery is used in 
combination with PDUs of the size of a whole TTI, the case of smaller PDUs also cause 
timeouts to TCP. The timeouts occur most often when the speed of 384 kbps is used. 

5.5.2 In-sequence Delivery using TCP Westwood, Eifel and Split TCP 

In-sequence delivery managed to reduce the problem of using small PDUs substantially. 
However, for the speed of 384 kbps, in combination with a packet size of 576 bytes, the 
problem is still significant. An increase of some 300 % is not an acceptable price to pay for 
the 10 % BLER used. 

The suggested solutions may be used to try to mitigate the low utilization when using in-
sequence delivery in combination with small PDUs. The reduced transfer time are 
quantified by simulation of TCP Westwood, Eifel and Split TCP. We show a comparison 
of the different solutions in Figure 20. 

The first solution we look at is Westwood. Again, we download of a large file and compare 
the result to using Reno with 0% and 10% error rate, respectively. TCP Westwood does 
actually reduce the problem, and the increase in download time versus Reno with 0% 
BLER is 120 %, to be compared with 305 % for Reno with 10% BLER. While still a quite 
large number, the reduction is noteworthy. 

The next solution considered is the Split TCP approach. We do the same assumption now 
for Split TCP as previously and set the delay to 30 ms over the wireless part of the path. A 
reduction of the recovery time of the TCP’s congestion window is achieved, and as we see 
in the result from the simulations that the utilization is now almost as good as it can be 
when using 10 %. 
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Eifel is also considered and the simulations indicate that Eifel is better than Westwood, 
but still gives worse performance than the Split TCP’s performance. An increase of 50 % 
compared to Reno 0% BLER leaves the Eifel at a rather large increase even though the 
link utilization is greatly improved. 
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Figure 20 Comparison of different solutions for multiple PDU at the speed of 384 kbps in 

combination with 576 bytes packet size 

In conclusion, the best result is achieved when Split TCP is used, but Eifel also gives a 
rather good improvement. The reason for Split TCP’s success in combination with in-
sequence delivery while it was not as good with out-of-sequence delivery, is most probably 
the result of the RTO. Split TCP is not affected as much by a higher variation in the RTT 
as it is by the reordering of the packet. Split TCP manages to evade timeouts by better 
estimation of the RTO threshold. Since the delay variation is greater in comparison to the 
fixed delay, TCP does not set the RTO as low as it would have done otherwise. 



Improving 3G performance for Mobile Internet  Erik Lundsten 
_____________________________________________________________________ 

43 

6 Analysis 
6.1 Introduction 

We must first realize that some of the solutions have totally different semantics and as a 
result from this they can be hard to compare. This is especially true if more factors than 
the simulation results are considered. Not only do they give different results, they also 
have different cost for introduction into the UMTS system. 

6.2 Discussion 

All simulations done to investigate the problems are based on the same model. The model 
includes the Internet, CN and UTRAN but is rather simplified. The delay is as previously 
mentioned set to 135 ms in order to account for routing in the Internet and also the 
traversal of the UMTS network. Packet losses on the Internet were not included in the 
model. This may have impact on the result but since packet losses are in general rare on 
the Internet, the model is relatively accurate. Another simplification is that the uplink is 
assumed to be error free. This is not the case in reality and if uplink errors were introduced 
the results would probably be even worse. The model is of course an abstraction but the 
most important part in this context, the RLC, is relatively accurately modeled. 

The decrease in performance seen in the simulations comes from two different areas: First, 
the retransmission of radio blocks limits the throughput, since a retransmitted radio block 
uses capacity that otherwise could have been used by another block. Second, the TCP 
congestion control limits the utilization by restricting the sending of enough data to fill the 
pipe. Furthermore, TCP retransmissions also “steal” capacity. The first reason (that the 
RLC retransmissions “steal” capacity) is not something that can be solved without 
lowering the BLER and it is considered to be a small price to pay related to the financial 
benefits that can be made in the network construction. The capacity of each base station is 
utilized better if the BLER is increased because the transmission power for each user is 
reduced. This implies that there will be more capacity in the network if the TCP problem 
could be solved. Hence, different solutions to the TCP problem are investigated. 

The results from the simulations show that there is a great gain in the utilization of the link 
when using either Eifel or Westwood. The benefit from using these is greatly dependent 
on how bad the utilization is in the first place. The largest improvement can be seen when 
the utilization was really poor when using Reno. 

Both TCP Westwood and Eifel give similar results but the improvement comes from 
different modifications to TCP. Eifel adjusts its window to the old size after finding out 
that the retransmission was unnecessary. TCP Westwood on the other hand estimates the 
available bandwidth and does not limit the congestion window as much as TCP Reno. 
Since the radio link is the limiting factor in terms of bandwidth, Westwood uses almost all 
of that bandwidth. The advantage of Westwood is that it improves performance when 
there is congestion in the network as well. This is accomplished by a rather big 
modification of TCP. Eifel’s main advantages are its simplicity and the fact that is already 
implemented in actual operating systems (e.g. Linux) [19]. Furthermore, Eifel is advancing 
through the standardization [28]. 

Split TCP also gives a rather good improvement in performance. This is dependent on the 
fact that the RTT for the TCP connection over the wireless link is smaller. Depending on 
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where the TCP connection is split, different results will be achieved. We have made the 
reasonable assumption that the split should be placed between the RNC and the SGSN. 
The closer to the mobile host that the split is done, the lower the RTT. Lowering the RTT 
will result in a better performance. An evaluation of the performance of I-TCP in general 
can be found in [27]. It is evident that not only the usage of a Split TCP approach is 
important, but the actual implementation and its associated algorithms are also of outmost 
importance. 

The introduction of in-sequence delivery of SDUs gives a totally different characteristic of 
the TCP connections behavior. The reordering of IP packets are no longer present, but 
instead the risk for TCP timeouts is introduced. The timeouts are triggered by a sudden 
change in RTT, caused by a PDU being retransmitted several times. If the threshold for 
timeouts would be higher, the problem would not be as big. However, raising the 
threshold would have implications on the performance of TCP in general, e.g. in severe 
congestion situations. 

Multiple PDUs in one TTI gives interesting results. The performance is really bad if a 
PDU size of 40 bytes and out-of-sequence delivery are used. The result can be improved 
by using in-sequence delivery. However, even when the in-sequence delivery is used there 
is still a big underutilization, and to tackle this some of the suggested solutions are again 
considered. Both Eifel and Westwood manages to reduce the increase in download time 
significantly but the best solution in this context is Split TCP, which almost eliminates the 
problem. Eifel is better than Westwood in dealing with the spurious timeouts triggered by 
the radio link. One thing is clear, the problems that arise from using small PDU needs 
attention and some solution ought to be used for high speeds. 

For small files the utilization is overall low. Ten percent BLER gives a poor performance 
but since the performance is poor even without errors another strategy than lowering the 
BLER is needed. Increasing the initial window is generally good and the result from this is 
satisfactory for 64 kbps and somewhat good at a speed of 128 kbps. Increasing the 
window from 3 to 4 segments provides only a minor improvement, and a window size of 4 
is not considered to be worth the price of higher congestion probability. A general 
observation is that increasing the window gives a higher increase in performance when the 
packet size is large. The 384 kbps speed needs some additional measure since there is a big 
underutilization In-sequence delivery may improve the performance even for small files 
(this has not been tested in this study), but errors on the uplink, acknowledging every 
second packet and Internet congestion may imply that 128 and 64 kbps radio bearers also 
needs additional attention. 

There are of course other suggestions available to how TCP’s problems of handling the 
imparments of the radio link. One very interesting suggestion is to change the threshold 
for fast retransmissions dynamically. Different schemes for updating the threshold are 
investigated in [22]. Moreover, changing the way the retransmission timer is calculated may 
also be worth investigating. The current method obviously has its limitations [24]. 

From the UMTS network operator’s point of view, not only the simulation results are 
interesting. Maybe even more important is the cost and feasibility for introducing these 
solutions into the network. The modifications to TCP are very attractive since both Eifel 
and Westwood improves the performance significantly while no cost in term of equipment 
is needed (from the network operators perspective). The problem with this is that all TCP 
implementations have to support the algorithms. Both Eifel and TCP Westwood are 
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applied to the sender side of the TCP connection. In the case studied, i.e. when a file is 
downloaded, the modifications are only needed to the server side of the connection4. 
Although the upgrade to TCP variants addressing these problems may be done in the 
future, the network operator has little means to force the migration to be done as soon as 
possible. 

One advantage of Split TCP is that it can be deployed immediately into the network since 
the TCP sender and the TCP receiver, i.e., the parts that the operator has little or no 
control of, do not need any updating. Split TCP also has some drawbacks. For instance, in 
the case of handovers, exchange of information between TCP proxies might be needed. 
Furthermore, IPSec will not work on an end-to-end basis. Therefore, the network operator 
cannot deploy the Split TCP without a moderate amount of effort. 

Changing the configuration of the RLC is on the other hand something that the network 
operator can do at a low cost. The parameters that could be changed are the delivery 
order, the TTI and the selection of how small the PDUs will be. There are of course some 
restrictions on how these parameters can be changed and consideration has to be made to 
radio transmission issues as well as to optimize for TCP. Note that TTI and PDU sizes 
will affect the required signal power and thereby create more radio interference, which in 
turn affects the capacity of the network. This is a complicated situation with many factors 
involved. However, the most important parameter that this thesis is based on is the BLER. 
10 % is attractive when dimensioning the network. 

                                                
4 For Eifel also the receiver might need to be updated if it does not support the time stamp option. 
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7 Conclusions 
The different problems associated with using TCP over wireless links, as the one used in 
UMTS, have been both discussed and quantified in this thesis. The implications of a high 
BLER on TCP’s congestion control are in fact the core of the problem. In the previous 
section we have discussed the results and the problems, and from this discussion we now 
point out some conclusions. 

The wireless link is controlled by the RLC. The RLC has several important tasks to 
perform. The two possibly most important tasks are the segmentation of IP packets into 
radio blocks and the process of resending those blocks until they are correctly received. 
Furthermore, the RLC has an option to deliver IP packets in-sequence or out-of-sequence. 
Because of the RLC’s and the wireless media’s important characteristics, we have modeled 
and implemented them into the simulations environment of NS2. 

First, simulations to quantify the problems were conducted. We saw that there were severe 
problems, especially at high speeds and with small IP packets. Due to these problems we 
tested a few proposed solutions to see how well they serve as a remedy. The tested 
solutions are: TCP Westwood, Eifel, Split TCP and also some RLC parameter 
optimizations. Small files are also used for simulation and the size of the initial window 
affect on the performance is quantified. 

7.1 Results 

To quantify the problems, TCP Reno is used for simulations over the wireless UMTS link 
model. The radio block error rate is set to 10 % and a large file is downloaded. The results 
from these simulations show that there are problems that TCP does not handle well. The 
worst results are obtained at the speed of 384 kbps in combination with small packet sizes. 
However, the lower speeds does not reach the maximum utilization either, due to the fact 
that TCP perceives the packet reordering, caused by the high BLER, as congestion. 
However, the lower speeds do not at all present a problem to the same extent. For 
instance, using 10 % BLER over a 64 kbps channel does not present any underutilization 
at all (only radio link retransmissions steal capacity). 128 kbps is also relatively free from 
implications and can be used without any extra measures if a small underutilization can be 
accepted. 

It becomes apparent that the choice of using in-sequence or out-of-sequence delivery is of 
greatest importance when looking at how the network can be adjusted to deal with the 
problems in a good way. In general, the in-sequence delivery ought to be used since it 
gives better results for all transfer speeds. It is also recommended to use PDUs of the 
same size as the TTI when looking from a utilization point of view. 

Short file transfers have different characteristics than long transfers, since a major part of 
the connection time will be in the start up phase. From the simulations of this scenario we 
come to the conclusion that a large initial window is preferable. Increasing the window 
size to three segments improves the performance, but not to the extent one would desire. 

To deal with the problems arising from the high BLER, different TCP approaches are 
used (in addition to adjusting the delivery order). Eifel and TCP Westwood gives similar 
results generally. Eifel handles spurious timeouts better then Westwood, but Westwood on 
the other hand is believed to handle congestions in a better way. A Split TCP approach is 
also tested and it is found to out-perform Eifel and Westwood when the risk for spurious 
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timeouts is high. Moreover, Split TCP might also be of interest for short file transfers, 
especially in connection with high bit rates. 

It is important to use as large IP packets as possible. In every case studied and simulated 
during this work the performance is improved when using large instead of small packets. 
Making sure that the largest packet size possible is used, by utilizing the path MTU, is 
stressed as extremely important. 

7.2 Future Work 

There are still things to study even though the area has been studied in detail and 
simulations have been conducted. The limited time as well as the limited form that a thesis 
represents have caused us to leave out some areas that are both relevant and interesting. 
Much work in the area of TCP over wireless media is still being done, e.g. [25]. Some of 
the following points may be worth investigating. 

• HSDPA. The introduction of HSDPA into the network contributes with a great deal of new 
possibilities and issues. The main things to look at here are to see how the shared channel affects 
TCP and how the scheduling could be implemented. 

• Split TCP for small files. The use of Split TCP for small files could improve the performance. The 
performance are however dependent on the implementation of the TCP proxy and thereby it 
would be very interesting to look at how the actual implementation of the proxy affects the 
performance. Caching and window management can affect the performance. Snoop could also be 
investigated as an alternative. 

• System utilization. Considering the view of the system utilization and not only the link utilization 
would greatly improve the possibility for making the right decisions and recommendations. Issues 
like flow interaction are considered to be important. For instance many simultaneous TCP sessions, 
belonging to several users, can be active over the same link.  

• Implementation details, i.e. how the solutions should be deployed. The recommendations in this 
report are based on simulations. If solutions are to be implemented there are great deals of practical 
issues that need attention. Hardware and design issues are of greatest importance. 

• Handovers between different base stations is also important to consider. It is especially important 
to examine the handover time. This time might cause TCP to timeout or in some other way 
decrease the performance. 
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Appendices 
Appendix A – The Network Simulator 

An introduction to the network simulator, NS2, and its features is given in the following 
sections. We will focus on the issues needed to implement the RLC model. Hence, the 
description of NS2 is not complete. 

A.1 Discrete Event Simulation 

Simulation is used to investigate how the proposed solutions mitigate the problems 
associated with TCP over wireless media. Discrete event simulation is suitable to use since 
the network simulated is IP. There are two main advantages with using simulation for the 
research and evaluation. First, simulations it is often inexpensive and provides an easy way 
to examine how different assumptions in the model affect the result, without having to 
implement the model in a real system. Second, the implementation of the model is often 
much less time consuming than the implementation of a real system. Furthermore, discrete 
event simulations can be very fast executing and effective, since only the actual events 
have to be simulated, not the time in between. 

A discrete event simulation can be seen as the system moving from one state to another in 
discrete steps. Discrete time simulation is suitable since we wish to simulate a packet-based 
network. One thing common for all simulation is that it mimics the behaviour of the real 
world. Of course some characteristics may differ between different implementations and 
simulations. 

There are a few simulators for simulating IP networks available. Two of the most well 
known is Opnet and NS2. They are a bit different in their approaches but still they provide 
almost the same functionality. However, Opnet is a bit more focused on larger systems 
while NS2 is excellent for simulation smaller topologies. 

A.2 Introduction to NS2 
Network simulator version 2, NS2, is a discrete event simulator developed at UC Berkely 
for simulating local as well as wide area networks [17]. The type of networks simulated is 
mainly IP but other types, e.g. ATM, can also be simulated with add-on modules. One of 
the most important strengths of NS2 is that it is widely used, mainly in the academic 
community. There are a great variety of extensions to NS2 available. The fact that it is free 
licensed encourages users to share information about bugs and features and the 
development is in progress continuously. 

The simulator is mainly written is C++ [16] and it is implemented according to the object 
oriented paradigm. All behaviour of links, nodes and other functionality is implemented in 
C++ but NS2 uses an interpreter as a front-end. The interpreter enables users to set up a 
topology in a rather smooth manner, instead of having to edit C++ code and recompile 
for every new simulation. The front-end is written in OTcl, object tool command 
language, which is an interpreted language with support for objects. The objects in C++ 
are linked to the OTcl objects in such way that the behavior of the model objects in C++ 
can be controlled from OTcl objects. This approach of has the benefit of both the 
powerful and fast executing features of C++ but also the flexibility that a script language 
like tcl provides. There are of course drawbacks with the shared object approach, e.g. 
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special procedures are needed in order to make the C++ objects visible to the tcl part of 
the system. 

One major problem with NS2 is that it is rather poorly documented. This leads to 
problems for the one who want to learn how to use NS in a more advanced way. The only 
way to fully understand it is to look at the source code itself. Unfortunately, it is really 
necessary to fully understand the functionality when setting up more complicated 
topologies. 

A.3 Design and Implementation 
As mentioned in the previous section NS2 makes use of a shared object implementation. 
As seen in Figure 21, every object in Otcl has a corresponding object in C++. Since the 
objects are shared, their attributes can be accessed from both the tcl and the C++ 
interface. 

 
Figure 21 The shared object design used in NS 

A.4 Schedulers and Events 

One of the most important functionalities in NS2 is the scheduling of events. The 
scheduler is the core of the simulation and provides functionality for handling events and 
making sure that they execute the correct code at the right time. The scheduler class has a 
great variety in its features, but one of the most useful is the one providing a way to 
schedule your own events. 

schedule(Handler*, Event*, double delay) 

There are three main types of schedulers but they differ only in how they are implemented. 
The types are: calendar, heap and list. There is also a real-time scheduler but it uses the list 
implementation. The real-time scheduler tries to synchronize simulation time with real 
time events. This can be very useful when NS2 is used as a component in a larger 
environment where other parts are not simulated but instead may be real world equipment 
connected to e.g. the Internet. 

The packet class is a sub-class derived from the event class. The classes are therefore in 
many ways similar and in fact almost all events are packets being sent and received. Each 
event can be scheduled individually using the method show above. When an event is ready 
for dispatch, the handler passed to the scheduler is called. The handler executes its code 
and takes appropriate action before passing the event (packet) on.  
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The format of a packet can be seen in Figure 22. All the headers that are available in NS2 
are in fact present in the packet representation. This is in contrast to real IP packets where 
only the headers that are used are present. To compensate for this, the size of the packet 
in not at all dependent on these headers, instead the size of the packet is set in a special 
field in the cmn part of the header. The data field in the packet are most of the time not 
used at all. This results in that only headers are passed around in the network without 
actually carrying any data. Since NS is only a simulator this is reasonable, and everything 
that is dependent on the size of the packet, uses the size indicated by the number in the 
cmn field in the header. 

 
Figure 22 The internal structure of a packet in NS2 

A.5 Nodes and Links 
The first thing to set up before doing a simulation is the topology. It often comprise of 
nodes and links. The links interconnect the nodes and one node can have multiple 
incoming and outgoing links. To determine what incoming packet should be sent out to 
what outgoing link an internal “routing” is used. Classifiers who have the capacity to 
determine what to do with an incoming packet implement this routing. The classifier used 
in unicast is the address classifier and it can use IP addresses to forward the packet to the 
correct destination. 

Each object that ever handles a packet has one thing in common: the way that the packet 
is received. A packet is always received through the method recv(Packet* P, Handle* H). P 
is the packet being transferred and H is a reference to a handler. The handler is a pointer 
to the object that will execute if the receiver chooses to call it. The handler can be, and is 
in some cases, used to send information in the opposite direction from what the packet is 
travelling. 

Links are also a very fundamental element of the simulation topology and comprises of 
several components. The most important parts are the queue, linkdelay and the ttl module. 
While the linkdelay introduces a delay corresponding to the transfer time over the link, the 
queue simply queues incoming packets before sending them on the link. The ttl module is 
responsible for calculating the new time to live value for every packet. All packets must 
pass these modules before being passed on. 
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It might be strange that the queuing is done in the link instead of in the node (router) but 
there is only a small difference. All queuing of packets are normally done in the incoming 
stream of a router, in NS2 this is done in the link instead. The main disadvantage of the 
strategy used in NS2 is that if a node has several incoming queues the node has no way of 
doing advanced queue management taking into account the characteristics of all queues. 
The reason for this is simply that the different queues are located in different links. 

A.6 Agents 
A simulation without traffic is not worth much so NS of course has a way to insert traffic 
into he network. The means for this is agents. There are many types of agents but they 
have one thing in common: they all operate at an end-point of the network, i.e. they work 
as terminals. Furthermore, they have the responsibility of constructing and destroying 
packets. 

There are several agents supporting various protocols implemented in NS2. One agent is 
the TCP agent. It sends out TCP traffic and is actually only a sender side implementation 
of TCP. For receiving TCP traffic and responding in a correct way there is need for an 
agent handling this. The agent who does this is called the TCP Sink. This division of TCP 
into one sender and one receiver is really a simplification and later there were added 
functionality to have both sides act as both sender and receiver. This new agent is called 
Full TCP. There is also support for other types of traffic. TCP may be the dominant in the 
number of variants supported but there is also support for UDP as well as RTP. 

The TCP and UDP agents do not produce data. Instead a traffic generator needs to be 
connected to the agents. The least complicated one is the CBR, constant bit rate, but there 
are many others as well. FTP is implemented as a traffic generator and when connected to 
TCP it can be configured to send a specific amount of data to another agent in the 
topology. 

A.7 Tracing 
There is built-in support for tracing the data flow generated in the simulation in NS2. The 
tracing is done by writing data, describing various events, to a text file. Since the simulator 
is used to simulate networks, most things that have to do with packets are written to the 
file. If the packet is associated with a specific protocol, e.g., TCP, data from the protocol 
header can also be traced. 

Besides tracing packet related events the simulator can also be configured to trace other 
things. This manually configurable tracing utility is one very useful feature when working 
with TCP since all TCP’s internal variables can be traced. One example of this feature is 
illustrated when the congestion window of TCP is traced. It shows in a straightforward 
way how the congestion window grows or shrinks as a reaction to packets arriving. Below, 
a sample taken from a trace file can be seen. 
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The trace file may seem confusing at first, but once you understand the meaning of the 
columns and symbols it is really straightforward. The leftmost column indicates what type 
of event that occurred; the next column is the time when that event occurred. After this 
there is two columns containing information about the source and destination addresses 
for the packet transmitted. The next thing to come, still going left to right, is the type of 
packet followed by the packet size. 

The most common symbols in the leftmost column are the r, + and -. The r symbol 
represents the event that a packet is received at a node, while + and – symbols are related 
to queuing. The + means that a packet was inserted in a queue while – means that a packet 
was taken from the queue. 

Even when one understand the trace file it can be hard to se the big picture. That’s where 
a visualization tool can be very useful. NS2 has its own graphical visualization tool called 
NAM, network animator. 

 
Figure 23 NAM the network Animator 

NAM shows not only the topology but also packet flow and can be very useful for 
following the traffic. In Figure 23, a simple topology can be seen as well as some packets 
that are in transit. Unfortunately you cannot see any internal state event though you chose 
to trace it in the log file. 

r 0.534048 3 0 ack 40 ------- 2 3.0 2.0 2 5 

+ 0.534048 0 1 ack 40 ------- 2 3.0 2.0 2 5 

- 0.534048 0 1 ack 40 ------- 2 3.0 2.0 2 5 

+ 0.541776 2 1 tcp 1500 ----- 2 2.0 3.0 3 6 

- 0.541776 2 1 tcp 1500 ----- 2 2.0 3.0 3 6 

- 0.544176 2 1 tcp 1500 ----- 2 2.0 3.0 4 7 

r 0.554112 0 1 ack 40 ------- 2 3.0 2.0 2 5 
+ 0.554112 1 2 ack 40 ------- 2 3.0 2.0 2 5 

- 0.554112 1 2 ack 40 ------- 2 3.0 2.0 2 5 
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Appendix B – Implementation 

In the following sub-sections the design and implementation of the RLC model is 
described. The model is implemented as a module for NS2. Readers only interested in 
using and configuring the module should skip to Section A.2.5. 

B.1 Introduction 
The implementation of the model is done with NS2 as the target simulation platform. 
Since NS2 does not have support for UMTS radio links, a new module had to be 
implemented. There is support for wireless simulation in NS2, but the focus is mainly on 
WLAN and the RLC behaviour of UMTS not supported. However, implementing the 
complete UMTS RLC support in NS2, including the physical layer, would be extensive 
work and is really not needed to simulate the behaviour of UMTS RLC. Instead the model 
is implemented as a modification of a link. 

As mentioned in section A.1.5, every link has an internal queue, responsible for holding 
the packets while they are waiting for their turn to traverse the link. The name of this class 
is Queue and it is used as base for the implementation of the RLC model. The 
functionality of the original queue is limited and provides only functionality for inserting 
packets in one end and extracting them at the other end. Our model replaces the internal 
functionality of the queue to mimic the behaviour of RLC. Since we are only interested in 
building a model that from the outside behaves like RLC, this is a reasonable design. Since 
NS2 is object oriented, our implementation also follows this paradigm. 

B.2 The Implementation and its Features 
The implementation is a realization of the theoretical model described in section 5.2, and 
much of the features are the same. The central feature of the model is that packets are 
segmented into radio blocks, PDUs. The radio blocks are then transmitted and 
retransmitted according to the RLC algorithms. 

The radio blocks are after their creation inserted into a queue for radio blocks. When a 
radio block is sent, the next one is taken from the head of the queue and sent over the 
radio link. The actual sending is implemented as delaying the radio block for a while and 
when the block is ready, a handler takes care of the responsibility for making the correct 
thing happen. 

B.3 Classes 
To implement the functionality there are three main classes that providing the necessary 
functionality. The most important is the EasyLink class that is a subclass of Queue. Since 
the queue interacts with the link delay, EasyLink also needs to do so in an appropriate way. 
Below, a list of the classes in the model can be seen. 

 The model comprises the following classes: 
• PacketHolder 
• PHList 
• DelayHandler 
• ResumeHandler 
• RetransmitHandler 
• RadioBlockQueue 
• EasyLink 
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• SortPac 

B.4 A Packets Route through the Model 
To illustrate and hopefully give a better understanding of the how the implementation 
works, an example is now given. The scenario starts with a packet being received at the 
link and ends with that the packet is sent on. 

The packet enters the system when EasyLink’s recv() method is called. In recv the packet 
is “segmented” into radio blocks. Actually, the packet is not segmented but radio blocks 
are allocated and a mapping from that IP packet to the allocated radio blocks is 
constructed. There are a number of things that are considered when the mapping is done. 
The most obvious one is if the IP packet fits into one radio block or if several blocks are 
needed. Furthermore, there is a check to find out if there is room in an earlier block so 
that concatenation can be done. 

When the mapping is done, both the IP packet and the mapping to radio blocks are stored 
in a PacketHolder for later use. The radio blocks are now put in a queue, waiting to be 
“sent” over the radio link. If no radio block is in transfer, a new block is scheduled for 
sending. When the block has been in transit for long enough time (the amount of time is 
of course dependent on the links speed) the DelayHandler is invoked by the scheduler. 
The code in DelayHandler now calls the EasyLinks method passon(). In passon() a 
decision is made whether the block has an error or not. This is done with a random 
variable. If the block is free from errors, the mapping from radio blocks to IP packets is 
consulted to make a decision if any packets are ready. If, on the other hand, the block is 
considered to be faulty, a retransmission is made. 

 
Figure 24 Diagram over the function of the simulation model 

When a retransmission issue has been processed long enough (retransmission time) it is 
inserted in the queue where packets that not yet have been sent are contained. To follow 
the models indication that the retransmitted blocks should have a higher priority, they are 
inserted at the front of the queue. This procedure is repeated until every radio block 
associated with the incoming IP-packet are transferred without errors. The packet is then 
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sent on the next item, usually a node. Of course several packets can be handled at the 
same time causing a radio block from one packet to wait for another radio block from 
another packet. This type of interaction in normal and are considered being a part of the 
model since the real RLC will have the same behaviour. 

B.5 Usage 
In order to be able to use the implementation of the model for simulations a few 
prerequirements must first be fulfilled. First of all a NS2 package must be installed and 
configured. Furthermore, the link model must be inserted into the NS2 environment and 
compiled. When all this is done, it is time to set up the simulation topology and configure 
the parameters of the model. 

The topology set-up is not described here since it is well documented in the NS manual 
[17]. However, we will describe the configuration of the parameters in the model. 

To start with we need to set up a link and tell it that our EasyLink should be used as 
queue. This is done by using the built in simplex-link in NS and specifying that our model 
should be used as a queue in that link. 
 
$ns simplex-link $n1 $n0 3Mb 3ms EasyLink 

This code results in a connection between node n1 and node n0, where EasyLink is used 
in the direction from n1 to n0. Besides the possibility to set up the link, EasyLink also has 
a few parameters that can be set. These parameters are central in the model and thereby 
affect the simulation. Below a short initialization code can be seen. The parameters set 
corresponds to the parameters in the model. 
 
Queue/EasyLink set tti_ 0.02 
Queue/EasyLink set retransdelay_ 0.059 
Queue/EasyLink set speed_ 128000 
Queue/EasyLink set errorrate_ 10 

When the link is configured it is ready to be used. Please note that omitting the 
initialization of the parameters will result in default values that may not correspond to the 
desired configuration. 
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 List of Abbreviations 

3G Third Generation (Mobile Networks) 

3GPP Third-Generation Partnership Project 

ACK Acknowledgment 

ADSL Asynchronous Data Subscriber Line 

BDP Bandwidth Delay Product 

BPS Bits Per Second 

BER Bit Error Rate 

BLER Block Error Rate 

BMC Broadcast/Multicast Control 

BPS Bits Per Second 

CN Core Network 

DUPACKS Duplicate Acknowledements 

GPRS General Packet Radio Service 

GSM Global System for Mobile telecommunications 

GMSC  Gateway MSC 

GGSN  Gateway GPRS Support Node 

HLR  Home Location Register 

HSDPA High Speed Downlink Packet Access 

HTTP Hyper Text Transfer Protocol 

IP Internet Protocol 

MAC Medium Access Layer 

MSS Maximum Segment Size 

MSC  Mobile Service Switching Centre 

MTU Maximum Transmission Unit 

NS2 Network Simulator (version 2) 

OPNET Optimum Network Performance 

PDU Protocol Data Unit 

PDCP Packet Data Convergence Protocol 

PSTN Public Switched Telephone Network 

QoS Quality of Service 

RB Radio Block 

RLC Radio Link Control 

RNC Radio Network Controller 
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RTT Round Trip Time 

RTO Retransmission Time-Out 

SACK Selective Acknowledgments 

SDU Service Data Unit 

SGSN  Serving GPRS Support Node 

SMSS Sender Maximum Segment Size 

SYN Synchronizing Segment 

TCP Transport Control Protocol 

TTI Transmission Time Interval 

UDP User Datagram Protocol 

UMTS Universal Mobile Telecommunications System 

UTRAN UMTS Radio Access Network 

VLR Visitor Location Register 

WCDMA Wideband Code Division Multiple Access 

WLAN Wireless Local Area Network 

 


