
Master of Science Thesis
Stockholm, Sweden 2005

IMIT/LCN 2005-13

C A R L O S M A R C O A R R A N Z

IP Telephony: Peer-to-peer versus SIP

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

IP telephony: Peer-to-Peer versus SIP

Master of Science Thesis Performed at

Wireless@KTH, June 2005

Student: Carlos Marco Arranz

Supervisor and Examiner: Prof. Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
Royal Institute of Technology (KTH)

Stockholm, Sweden

 i

 Abstract

In recent years dramatic technology developments have exploited the development of
better transmission media and allowed for broad internet penetration. This in turn has fostered
the growth of IP telephony calls, i.e., Voice over IP (VoIP).

New VoIP products are introduced almost daily, each seeking an opportunity in the
market. Some of these products are free - thus putting pressure on other vendors. A good
example of a commercial VoIP product is Skype. It is possibly the most important one as it
has gained more than 3 millions users in approximately 2 years time. In contrast, Minisip is a
non-commercial implementation of SIP developed by students at KTH. These programs are
based on different architectures. While Skype is said to be based on a peer-to-peer protocol,
Minisip utilized the Session Initiation Protocol (SIP) protocol.

The aim of this thesis was to evaluate these two VoIP programs not only in terms of
development, but also in terms of the quality of service and user perceived voice quality. The
study of efficiency, usability, and installation of both are also in the scope of this thesis. The
devices used for the evaluation included a HP iPAQ 5550, two PCs running in RedHat Linux
9, and a laptop running Microsoft Windows XP.

 ii

Sammanfattning

På senare år har den dramatiska teknikutvecklingen exploaterat utvecklingen av bättre
överföringsmedia samt möjliggjort för en bred Internetpenetrering. Det i sin tur har gynnat
ökningen av telefonsamtal med IP-telefoner, d.v.s. Voice over IP (VoIP).

Nya VoIP produkter introduceras nästan dagligen och varje produkt söker sin möjlighet på
marknaden. Vissa av dessa produkter är gratis och sätter alltså press på andra försäljarna. Ett
bra exempel på en VoIP produkt är Skype. Det är möjligtvis den viktigaste produkten då den
har fått tre miljoner användare på ungefär två års tid. I kontrast till detta finns Minisip som är
en icke kommersiell implementation av SIP, utvecklad av studenter från KTH. Dessa program
är baserade på olika arkitekturer. Medan Skype är baserat på ett peer-to-peer protokoll,
utnyttjar Minisip protokollet Session Initiation Protocol (SIP) Protocol.

Syftet med denna avhandling var att evaluera dessa två VoIP program, inte bara i termer av
utveckling utan också i termer av ”quality of service” och hur användaren uppfattar
röstkvaliteten. Studien innefattar också effektivitet, användarvänlighet och installation av de
båda programmen. Enheterna som användes under denna evaluering var en HP iPAQ 5550,
två pc:s med Linux Red Hat 9 samt en bärbar pc med Windows XP.

 iii

 Acknowledgment

There are many people who made this work possible. First of all, I am highly thankful to
my advisor Gerald Q. Maguire Jr. for his time, his advice and valuable ideas during this
thesis and also for giving me the opportunity and resources needed to pursue this thesis. I
would also like to thank Johan Billien and Erik Eliasson for their time helping me to
solve problems with Minisip.

 I would like to extend my thanks to my family, my girlfriend Oya Yilmaz and all my
friends for their support and encouragements throughout my studies. I could not have
done it without you, I am really grateful to your help.

Thanks as well to everyone else in the Wireless@KTH department that have helped me
in anyway.

 iv

Table of contents

Abstract... i
Sammanfattning.. ii
Acknowledgment.. iii
Table of contents .. iv
1 Introduction.. 1
2 Prior work... 2

2.1 Minisip ... 2
2.2 Skype API .. 2
2.3 Skype Protocol... 3

3 Problem Statement... 4
4 Background .. 5

4.1 Voice over IP ... 5
4.2 H.232 Standard ... 6

4.2.1 Components of H.323... 6
4.2.2 H.323 Stack Protocol ... 7
4.2.3 Control and Signaling.. 7

4.3 Session Initiation Protocol (SIP).. 8
4.3.1 SIP Components... 9
4.3.2 SIP Messages .. 9
4.3.3 Overview of SIP Functionary ... 9
4.3.4 SIP Addressing ... 10
4.3.5 Locating a SIP Server .. 10
4.3.6 SIP Transaction.. 10
4.3.7 SIP Invitation ... 10
4.3.8 Locating a User .. 10
4.3.9 Modifying an Existing Session .. 11
4.3.10 Sample SIP Session .. 11

4.4 Comparison of H.323 with SIP .. 12
4.4.1 Supporting Protocols ... 13
4.4.2 RTP and RTCP .. 13
4.4.3 SDP .. 14
4.4.4 RSVP ... 15
4.4.5 Peer-to-Peer Architecture ... 15
4.4.6 Advantages of peer-to-peer networks .. 15
4.4.7 Generations of peer-to-peer networks ... 15

4.5 Skype and Minisip... 16
4.6 AES... 17
4.7 RSA (Rivest, Shamir, Adleman) .. 19

5 Feature Comparison between Skype and Minisip .. 21
5.1 Skype .. 21

5.1.1 Underlying Operating systems.. 21
5.1.3 Telephone Conference ... 22
5.1.4 Audio CODEC.. 23
5.1.5 User Availability... 23

 v

5.1.6 Information Security ... 23
5.1.7 Other Features ... 24

5.2 Minisip ... 24
5.2.1 Operation systems .. 24
5.2.2 Exchange of information ... 25
5.2.3 Conferences .. 25
5.2.4 Videoconference ... 26
5.2.5 Audio CODEC.. 26
5.2.6 User Availability... 27
5.2.7 Information security .. 27

5.3 Functional Comparison of Skype and Minisip... 28
6 User Interface Comparison... 31

6.1 Skype .. 31
6.1.1 User Support... 31
6.1.1 Skype Support for Developers .. 31
6.1.3 Software and Service Installation... 32
6.1.1 Using Skype .. 33

6.2 Minisip ... 39
6.2.1 User Support... 39
6.2.2 Extending and Building upon Minisip ... 39
6.2.3 Installation .. 39
6.2.4 Minisip User Interface ... 40

6.3 Common Graphical Interface .. 44
6.3.1 Design decisions.. 44
6.3.2 Operation with the GUI... 44

6.4 Comparison of The User Interface .. 49
7 Packet Level Comparison of Skype and Minisip .. 52

7.1 Skype .. 52
7.1.1 Login.. 52
7.1.2 Call Establishment ... 54
7.1.3 Media Transfer and Codecs .. 55

7.2 Minisip ... 61
7.2.1 Login.. 61

7.3. Packet level comparison .. 67
8 Conclusions... 68
9 Future work.. 70
10 References... 71
Appendix A Study of the Skype protocol... 75

A.1 Experiment setup ... 75
A.2 Functions... 75

A.2.1 Startup.. 75
A.2.2 Login... 75
A.2.3 User Search .. 80
A.2.4. Call Establishment / Teardown .. 82
A.2.5 Media Transfer and Codecs ... 86

Appendix B Introduction to the Skype API in our interface 91
Appendix C Attacking Skype´s Security .. 102
Appendix D Common Graphical Interface .. 104

 1

 1 Introduction

In the last years, an incredible development has happened in the different technological

fields. Transmission mediums such as optical fiber have improved data transmissions
providing both higher speed and lower noise. This rapid evolution in security and quality has
allowed telephony over the network to become a reality, so that, better telephone service is
available for users. However, this technological development has happened in a short period
of time and has generated a huge hole in the market driven by Voice over IP which a lot of
companies are trying to take advantage of.

Perhaps the VoIP product with the greatest development and best known (currently) is

Skype. This product, in just two years, has spread all over the world with the advertisement
“make calls for free”. In fact, more than 3.5 million users use Skype, more than 100 million
downloads have been done, and these numbers increase every day.

However, at the same time, new open source VoIP products are being introduced to

provide services to clients without cost. An example of these is Minisip, an SIP agent which
provides videoconferencing, telephone conferencing, or instantaneous message services in a
efficient and secure way.

In this thesis, I compare both VoIP products’ features, user interface, and performance

in order to explain the current situation in both products. I also assess the quality of service
provided to the user, not only in terms of quality of voice perceived, but also the support
given to the user. I also measure which program is more efficient in the voice transfer. These
programs are based on different architectures. While Skype is based on a peer-to-peer
architecture (section 4.5), Minisip utilizes the SIP protocol (section 4.3)

The comparison of the features permits me to describe the services each program

provides and on what operating systems the application runs so that services common to both
programs can be compared and the differences can be emphasized.

The comparison of the user interface begins with a description of the support for the

user, the development of applications in each program, as well as the usability of the program
and quality of voice perceived by the user. To study this quality, a graphic user interface
(GUI) was created to hide the program interface from users in order to obtain objective
evaluations.

Finally, measurements are performed and the programs´ behaviours are monitored using

the Ethereal program, from this we can determine the efficiency of both programs by knowing
which messages correspond to what information. This necessitated a study of the Skype
protocol at network level.

 2

 2 Prior work

The present thesis provides a performance comparison between two VoIP packages:

Minisip [38] and Skype [21].

 2.1 Minisip

Minisip is a prototype of a VoIP product based on a SIP agent initially written by Erik

Eliasson at the Royal Institute of Technology (KTH). This prototype is constantly being
improved by various master thesis students and others so that, it enables communication
between clients providing:

• A “phone” call
• Instantant messaging
• Videoconferencing

Underneath this communication service, security for signaling and media is provided by

an implementation of the MIKEY and SRTP protocols [26], [77] in C++. This is a result of
the Johan Bilien´s and Israel Abad Caballero´s master theses.

Other students are studying alternative data encoding, allowing different quality and

efficiency, spatial audio [45], etc.

 2.2 Skype API

As the comparison was to include the quality perceived by the user when making calls,

the initial idea was to implement a graphical user interface (GUI) to hide which program was
being used to make calls so that the user does not know the program carrying his call.
However, currently there is no Windows version for Minisip, so only the connection with
Skype was implemented. To establish the connection between our interface and Skype, the
Skype API provided in [21] was modified.

That API is built based on simple text messages that are sent back and forth between

Skype and our device [70]. Such a API permits the following types of transfers:

Skype to Device Device to Skype

- Status commands - Initiating searches
- Search results - Getting parameter values
- Notifications - Setting parameter values
 - Making calls
 - Sending messages
 - Opening dialogs

Moreover, in [70] an example of this API is available, where the commands are enter

 3

via a console. I use this example to understand the structure of these messages. Based on this
understanding and I build our interface.

2.3 Skype Protocol

Finally, a study at the packet level of both programs was done to learn the traffic

generated for each program when sending the different commands. By comparing common
services such as call establish, tear down of the call, media traffic, etc. We will examine
which product is more efficient.

Unfortunately the Skype protocol is not opened, so the study entitled “The Skype

Protocol Analysis” performed by S.Baset at the Department of Computer Science at the
Columbia University [63] was considered the initial source of information for this
comparison. In this report, Skype´s operation is divided into several functions; then each one
of them is studied. These functions are:

• Startup
• Login
• User search
• Call establish/Teardown
• Media transfer and codecs
• Conferencing

 I expand upon this earlier study of the Skype protocol (see Appendix A). This study

will clarify several points related to the architecture and the encoding used by Skype.

 4

 3 Problem Statement

This master thesis can be considered as another step in the evolution of the Minisip

product developed by Erik Eliasson, Johan Bilien and Jon-Olov Vatn and was intended to
compare it with one of the most important VoIP products nowadays, Skype. An introduction
of both programs is provided in section 4.6.

For this thesis I utilized four devices: an HP iPAQ h5550 PDA running Microsoft

Pocket PC operating system, an AMD 2800+ laptop running the operating system Microsoft
Windows XP, and two PCs running Redhat Linux.

The environment chosen for my development was Microsoft´s Embedded Visual C++

4.0. This was used to implement the graphic user interface (GUI) for the Pocket PC and
Microsoft´s Visual Studio 6.0 to implement the GUI for the laptop. Moreover the connection
between my graphic interface and Skype used the API provided by Skype. This is briefly
explained in Appendix B.

The codes for both applications and the different simulations and measures performed

using Ethereal are not included in this document, but rather provided on a separate CD.

 5

 4 Background

 4.1 Voice over IP

Today the Internet and mobile telephony are the two most important areas in
telecommunications. Both have had huge growth in the number of users in recent years.

IP technology appears to be a substitute for conventional telephony due to, mainly,
lower customer prices. However, traditional operators offering local and long-distance calls
could decrease the price of these calls - in order to have a similar cost, i.e. similar costs for
both circuit-switched and Voice over IP calls. In such a situation, the economical advantage
of VoIP would be lost, but other features of VoIP will still favor its use, e.g. for multimedia
traffic, easy creation of new services, control of call routing by the user’s PC, etc.

Today, there are two main motivations for Internet telephony:
• Cost reduction
• Easy integration of (additional) services
However, some problems must be solved to increase the popularity of VoIP technology.

These problems appear as a consequence of the design of the Internet for transporting data
and because many vendors do not follow the relevant standards. As it is explained in [1] and
[2], these aspects are:

• Quality of voice: As stated above, the Internet was designed to transport data without
considering real time services, i.e. it simply provides a best effort service. Voice
communication will generally be considered acceptable when the delay is less than 150 ms
and when the loss rate is less than 10% [3]. Additional techniques can be used to improve the
perceived voice quality such as: Echo Cancellation, Packet Prioritization (e.g. giving higher
priority to voice packets), or Forward Error Correction.

• Interoperability: In a public network environment it is necessary to have some level
of interoperability, thus products from different companies should be able to interoperate with
each other - if VoIP is to become wide-spread.

• Security: The information being communicated by the users and the information to
setup calls must be protected in order to provide some level of security - since it is easy to
capture and analyze network packets.

• Integration with Public Switched Telephone Network (PSTN): As both PSTN and
VoIP will need to operate side by side for several years, thus some solution should be
developed to integrate PSTN and VoIP.

• Scalability: Currently major efforts are being made to provide better quality in calls
at lower costs by exploiting the high penetration of home broadband. Moreover, VoIP
systems need to be flexible enough to grow to a very large user market and to allow a mix of
private and public services.

 6

 4.2 H.232 Standard

H.323 [4] is a standard developed by the International Telecommunications Union -

Telecommunication section (ITU-T). It is utilized in many VoIP products. It defines the
technical requirements to provide VoIP in LANs without considering Quality of Service
(QoS). Although it was created to support multimedia conferencing over LANs, it is now used
for Voice over IP communications. Products based on the H.323 standard should interoperate.

4.2.1 Components of H.323

In [5], [6], and [7] VoIP networks built according to H.323 consist of four fundamental

elements:
 Table 1. Components of H.323

 7

Figure 1. H.323 architecture

4.2.2 H.323 Stack Protocol

The H.323 protocol stack is presented in the figure below. Data, control, and signaling

information are transmitted using the Transmission Control Protocol (TCP) whereas audio
and registration packets use the User Datagram protocol (UDP).

Figure 2. H.323 protocol stack

4.2.3 Control and Signaling

H.323 provides three control protocols:
• Signaling for call control is provided by H.225.0/Q.931 call signaling
• Call establishment from a source to a receiver (host) is performed by H.225.0 RAS
• Media streams will be negotiated once the call is set up with the H.245 protocol

 8

 H.225.0 RAS

H.225.0 RAS is the protocol between endpoints (terminals and gateways) and
gatekeepers and it is used to perform registration, admission control, bandwidth changes,
status, and disengage procedures between terminals [8]. A RAS channel is used to exchange
RAS messages over UDP.

 H.225.0 Call Signaling

H.225.0 call signaling [8] is a protocol used to establish connections between H.323
endpoints. In order to do that, H.225 protocol messages are exchanged on the call-signaling
channel, using TCP port 1720, between two endpoints. This port initiates the Q.931 call
control messages with the purpose of connecting, maintaining, and disconnecting calls.

When a gateway is present in the network zone, H.225.0 call setup messages are
exchanged either via Direct Call Signaling or Gatekeeper-Routed Call Signaling (GKRCS).
The gatekeeper selects the method during the RAS admission message exchange. If there is
no gatekeeper, H.225 messages are exchanged directly between the endpoints.

 H.245 Media and Conference Control

H.245 [10] is a control signaling protocol inside the H.323 architecture which performs
the exchange of end-to-end H.245 messages between two endpoints once they have
established communication. The H.245 control messages flow over H.245 control channels
and include the information necessary to exchange terminals capabilities and to open and
close logical channels.

Once the connection is set up using the call signaling procedure, the H.245 call control
protocol is used to determine the call media type and establish the media flow, before the call
is established. It also manages the call after it has been established.

4.3 Session Initiation Protocol (SIP)

IETF’s SIP [11] standard is used for the establishment, modification, and termination of VoIP
connections. This protocol operates at the application layer, and it can create, modify, and
terminate sessions with one or more participants. It uses a client-server architecture similar to
HTTP [9], where the client generates and sends requests to the server. The server receives and
processes the requests and then replies to the client. The complete process is called
“transaction”.

SIP has two messages, INVITE and ACK, which are used to open a reliable channel.
Messages exchanged over this channel control the call. SIP makes very few assumptions
about the underlying transport protocol. SIP can utilize: TCP, TLS, UDP, or SCTP. SIP’s
INVITE also permits user mobility via re-INVITEs.

SIP uses the Session Description Protocol (SDP) to perform the negotiation of the
codecs and their parameters. This allows the participants to agree upon the set of multimedia
types to be used.

SIP provides a number of services, some of these are [11]:

 9

• User location, determining the end-point to be used for the communication,
• Call establishment: making a call and configuring its parameters,
• Determining user availability (including consideration of user preferences), and
• Call management: transfer and termination of calls.

4.3.1 SIP Components

SIP is built upon two different types of components: user agents and network servers.

4.3.2 SIP Messages

The messages SIP can use for communication between client and server are:
• INVITE: invites the user to join a session (call).
• BYE: ends the session.
• ACK: an acknowledgement
• OPTIONS: exchanges information related to the caller/callee capabilities.
• REGISTER: tells the SIP Registration Server the user’s current location.
• CANCEL: cancels a SIP request.

4.3.3 Overview of SIP Functionary

 Each SIP terminal is identified by one or more SIP addresses. When a user wants to
make a SIP call, the first step is to find the location of the appropriate server and to send to
that server the INVITE request. Two situations could occur:

• the caller is able to directly reach the callee user, or
• the caller needs to communicate with one or more Proxy and/or Redirect servers to

reach the destination.
The Call ID field in the SIP message uniquely identifies a given call.

 10

4.3.4 SIP Addressing

In the SIP architecture, each user is identified using one or more SIP Uniform Resource

Identifier (URIs). These addresses are of the form: sip:username@domain. Note, that such a
URI can identify a user or a group of users (or even terminals).

4.3.5 Locating a SIP Server

When a client wants to establish communication with another server, first it sends a

message to the proxy with the SIP URI of the user to be called. Then the proxy performs a
search of the registrar sever for that client, this is similar to locating a SMTP server for a
given e-mail address. There are several ways to try to connect with the registrar server [16]:

• We know the IP address of the registrar associated with this SIP URI.
• The registrar’s network address is designated by a DNS SRV record for the domain

contained in the SIP URI.
• The SIP URI’s domain part has an DNS A record or AAAA record of IPv6 in the

case, which points to the registrar
• The SIP URI’s domain, prepended with 'sip.' has a DNS A record or AAAA record

which points to the registrar.

However, usually the client relies on its own SIP proxy server to perform the search.

 4.3.6 SIP Transaction
Once the domain part of the URI is resolved, the client can send the request to the

identified server. Such a request together with its reply constitutes a SIP transaction. The
request and the replies could be sent over TLS, TCP, UDP, SCTP.

 4.3.7 SIP Invitation
In a SIP invitation, two messages are sent: INVITE and ACK. The INVITE request,

asks the callee if he wants to join the conversation. This request contains several parameters
which permits the callee to participate and describes the proposed session. If the callee’s
client accepts the call, it will reply to the INVITE request by sending its proposed description
of the session. After receiving this, if the caller wishes to establish such as session, then the
caller sends to the callee an ACK.

4.3.8 Locating a User

The callee may change its position over time (i.e., user mobility is permitted) and the

new location will be dynamically registered with the callee’s Registration SIP server. When
this SIP server is interrogated to learn the location of the callee, it returns a list of possible
locations. Actually this list is created by a Location Sever which provides it to the SIP server
However, this communication does not use SIP.

 11

 4.3.9 Modifying an Existing Session

The SIP protocol supports the modification of the parameters of an ongoing session. To

do this, another INVITE message is sent with the same call identification, but with new
parameters.

 4.3.10 Sample SIP Session
This section will illustrate SIP’s operation using a simple example. In this example, a

SIP client sends an INVITE message to the proxy server indicating that the destination is the
SIP user torobravo7@sip1.it.kth.se. The proxy server next obtains the IP address
of the SIP server which handles or manages requests for the domain (e.g., sip1.it.kth.se). The
proxy server communicates with the Location server to determine the next hop server.
Actually, the Location server is not a SIP server, but maintains the registration information for
each user.

The Proxy server forwards the INVITE request to the next hop server in order to learn
its IP address. Finally the User Agent Server (UAS) in the destination is reached and it replies
to the Proxy server. Now the Proxy server sends the reply to the client and the client responds
with an ACK acknowledgement.

 Figure 3. Example of operation in SIP

 12

4.4 Comparison of H.323 with SIP

The developers of the SIP protocol believe that the H.323 protocol has high complexity

and overhead. In contrast, SIP was designed to avoid complexity, thus SIP reuses many of the
header fields, formats, error codes, and the authentication mechanism used in HTTP.
Moreover, SIP defines only 37 headers, each one of them with a small number of values and
parameters - whereas H.323 has hundreds of elements.

Another difference between both protocols is that H.323 uses a binary representation for
its messages, based on ASN.1 - while in SIP the messages are encoded as text, just as for
HTTP.

H.323 does not scale which is necessary for VoIP to be successful [1]. As was indicated
previously; this is because the design is focused on LAN settings rather than on internet
setting. H.323 has limited scalability regarding loop detection in complex multi-domain
searches since it performs these by keeping message states. In contrast, SIP uses a loop
detection method based on checking the message history which is saved inside the header
fields themselves - thus avoiding the need to keep state.

SIP has the advantage of being supported by IETF, but H.323 currently has an
advantage of a larger market. The comparison between the two is summarized in the
following table:

 Table 2: Comparison of H.323 and SIP

 13

 4.4.1 Supporting Protocols
SIP protocol operates together with other protocols:
• Real-time Transport Protocol (RTP) & RTCP - used for transmission of data with

real time properties.
• [Optionally] Resource Reservation Protocol (RSVP) - allows resources to be

reserved.
• Session Description Protocol (SDP)
The H.323 protocol also utilizes RTP and RTCP. Current voice gateways utilize RTP

and RTCP at a media gateway; while the signaling gateway communicates with the media
gateway using the Media Gateway Access Protocol (MGCP) protocol. MGCP is able to work
with both SIP and H.323.

Figure 4. Protocol layering

 4.4.2 RTP and RTCP
The Real-time Transport Protocol (RTP) [12], [13] is an Internet protocol which can be

used to transmit data with real-time properties, such as audio or video. This protocol does not
ensure real-time delivery of the multimedia data, but provides information to both order the
data and detect data loss at the receiver. The RTP header also indicates to the receiver which
codec was used to produce this packet.

 14

RTP works together with a control protocol (RTCP), which allows the monitoring of
data delivered in large multicast network. The receiver can inform the sender of the level of
lost packets, jitter, and etc. while senders can indicate their identity and other information in
RTCP packets. As a general rule, both RTP and RTCP are carried over UDP.

The RTP components include:

 Sequence number allows the detection of lost packets
 Payload identification describes the encoding of the multimedia data
 Frame identification indicates the limits of a frame (beginning and end)
 Source identification identifies the source of the frame
 Intramedia synchronization timestamps allow jitter detection within a frame and can

 be used in conjunction with a de-jitter buffer

The RTCP components are:

 Quality of service feedback indicates the number of lost packets, the round trip time,
 and jitter, so that the sources can modify their transmission
 rates, coding, etc.

 Session control indicates that a user is leaving a session by sending a BYE
 packet.

 Identification Can be used to provide the name, E-mail address, telephone
 number, … of the participant

 Intermedia synchronization Permits synchronizing separate audio and video streams

 4.4.3 SDP
The SIP communications requires a protocol to describe the sessions. This protocol is

SDP (Session Description Protocol) [15] which permits the exchange between users of
information related to the type of data, the transport protocol to be used, or the port to utilize
in the communication. The protocol has different fields to indicate this information [16]:

• Origin field: contains information about the user that initiates the session.
• Session name field: title for the session.
• Email address field: contains the IP address of the caller.
• Phone number field: contains the telephone number of the caller.
• Connection Data field: provides information about the network connection to

establish the session.
• Media Announcement field: indicates the kind of data to be exchanged.
• Attribute field: gives additional properties for the session and for one of the streams.

 15

The negotiation performed using SDP begins by sending an SDP offer (proposal) from
one of the terminals (the SIP initiator) which can include the additional information noted
above. The destination terminal will reply to this message describing its capacities in a 200
OK message.

 4.4.4 RSVP

The Resource Reservation Protocol (RSVP) [14] can be utilized by terminals (host) to

request a specific quality of service from the network. The protocol must also be used by all
the routers along the path over which the media will flow. If all the routers are able to supply
the requested resources, then they establish and maintain the state to support the requested
service. As a result resources are reserved in every node on the path.

4.4.5 Peer-to-Peer Architecture

A peer-to-peer architecture, abbreviated as P2P, defines a network in which each node

has the same capabilities and responsibilities [17]. It can be seen as the opposite of a client-
server architecture, in which some node(s) focus on serving requests sent by others.

Peer-to-peer networks are widely used to share information such as video, audio, files,
or other documents in a digital format. Specific nodes are not designated as servers, but rather
all the nodes work as both servers and clients (often simultaneously).

There are a number of famous “peer-to-peer” networks, such as Napster [18] and
Gnutella [19], that mix a client-server architecture with a peer-to-peer architecture. These
networks utilize servers that inform peers about the addresses of other peers, thus providing
better run-time performance. For example, Napster uses a centralized file list to improve its
service, by improving the speed of searching.

 4.4.6 Advantages of peer-to-peer networks
One of the most important advantages of peer-to-peer networks is that the bandwidth of

all the clients can be used, thus the more users are (and hence clients), the higher the
bandwidth available. In a client-server architecture all the clients share the bandwidth to and
from the server, so the greater the number of clients is, the lower their share of the limited
bandwidth is; thus in this setting the client generally has a lower average transfer rate.

 4.4.7 Generations of peer-to-peer networks
 First generation

The first generation of peer-to-peer networks was designed for sharing files and utilized
a centralized file list. An example of this generation is Napster [18]. In this centralized peer-
to-peer model, a user sends a request or search query to a centralized server indicating the
information desired. Then, that server replies with a list which contains the peers that have the
information. The client subsequently connects to one of these peers and download the desired
file.

 16

 Second generation

Napster encountered major legal problems, and a new network called Gnutella [19] was
introduced to avoid the problems caused by centralized nodes. In the Gnutella network all the
nodes are equivalent, i.e. they all have the same roles even though some may have more
memory, processing power, bandwidth, etc. than others. However, this new model suffered
from several major bottlenecks as the former Napster users joined the new network. The result
was the creation of yet another network called FastTrack [20], in which some nodes are more
capable than others. In this new architecture nodes with greater storage capacity provide an
index to other nodes, thus generating a tree structure. This dramatically increases the
scalability. Gnutella uses the same solution; in fact, most current peer to peer networks utilize
this structure since it makes it possible to create very large networks.

The second generation also utilizes the hash tables. Here several nodes are selected to
index hashes which identify files. As a consequence, it is possible to perform searches faster.

 Third generation

Examples of third generation networks are Freenet [71], I2P [72], GNUnet [73], or
Entropy [74]. These networks have integrated anonymity features so that only known contacts
will be able to access your computer. Moreover, each user can forward a request (and files)
between friends, hence increasing the anonymity. The problem in these networks is the
overhead caused by providing anonymity.

 4.5 Skype and Minisip

 Skype

Skype is a VoIP package based on a peer-to-peer architecture which diferenciates it

from other VoIP products. The Skype program allows clients to make telephone calls between
them for free, and even to call regular telephone numbers paying for using the SkypeOut
service. In [21] and [22] it is stated that the Skype user directory is completely decentralized
and distributed between the nodes in the network providing scalability of the Skype network
while avoiding high costs. However, with the increasing number of Skype clients, some
centralized elements were added. On April 15th, 2005 the number of downloads was ~100
millions and the number of users ~3.5 millions.

 Skype can route calls through other peer-to-peer networks and is able to traverse NATs

and firewalls. This is not true of most other VoIP programs. Moreover, the selection of
computers to be used is done automatically; without the users having a choice to avoid the
utilization of their resources by other Skype clients. This point has not been properly
explained and it could be a “contradiction with the license agreement of facilitating the
communication between the user and other Skype Software users” [51].

 Minisip

Minisip implements a SIP user agent. It is being developed as a platform to explore

services that are not available in the traditional telephony networks today [23].

 17

The Minisip program currently available for Linux allows the user to exchange video,
audio or text; while providing additional security features such as mutual authentication,
encryption, and integrity of on-going calls, and encryption of the signaling (SIP over
TLS)[24]. To provide this security the SRTP [25] and MIKEY [26] IETF standards were
implemented and added to the program.

 4.6 AES
AES [27] is a block cipher used as a standard for encryption by the government of the

United States of America. Both software and hardware implementations are possible. The
algorithm is designed to be fast and easy to implement without requiring a large memory.
Currently, the AES standard is being used in many applications.

AES is sometimes called Rijndael, but really they are not exactly the same cipher
algorithm. In the case of Rijndael, the size of the block is not fixed - whereas in AES blocks
of 128 bytes are used. The size of the key can vary among 128, 192, and 256 bits. In the
Rijndael algorithm the size of the block is a multiple of 32 over the range 128 to 256 bits.

The AES algorithm utilizes arrays of 4x4 bytes and each round consists of four steps:
1. SubBytes: Each byte in the array will be replaced by its entry in a fixed lookup

table. This operation introduces the non-linearity in the cipher algorithm. Using a lookup table
avoids runtime computation. The speed gain can be significant, since retrieving a value from
memory is often faster than performing an (expensive) computation.

Figure 5. SubBytes operation

2. ShiftRows. In this step every row is shifted cyclically a certain number of steps.
The number of steps changes among the rows. The operation can be better understood by
examining the figure below:

 18

Figure 6. ShiftRows operation

3. MixColumns. Now the four bytes in every column are going to be passed thorough
a linear transformation. This linear transformation consists of a multiplication by a fixed
polynomial c(x).

Figure 7. Mix column operations

4. AddRoundKey. Each byte will be combined using a XOR (exclusive OR)
operation with the round key. Each round key is obtained from the cipher key using a key
schedule.

 19

Figure 8. AddRoundKey operation

 4.7 RSA (Rivest, Shamir, Adleman)
The RSA public key algorithm [28], [29] was created in 1978 by Rivest, Shamir, and

Adleman, and it is currently the best known and most widely used cryptographic system. It is
based on the difficulty of calculating factors of large numbers.

The best way to factor a number is to divide this number by 2, 3, … searching for an
exact result which provides us with a factor of the number. If the original number is prime,
that is, it can be divided only by 1 and itself. If, in addition to being prime, the number is large
enough, the factorization process takes a really long time.

The RSA system creates keys using these steps:
 1. Two large prime numbers are chosen, P and Q (each between 100 and 300 digits
 long).

2. Two numbers n and m are calculated as n = P*Q and m= (P-1)*(Q-1).
3. Now, a new number we call e is selected such that there are factors in common with

m.
4. The private key is calculated as d = inverse (e) mod m, where mod is the remainder

of a division.
Once these steps are done, n is the public key and d is the private key. While P, Q, and

m will be destroyed, e is publicized since it will be used later for encryption/decryption. The

 20

calculations of the keys are done in such a manner as to protect the private key. RSA is a
computationally attractive function, since although the modular exponentiation is easy to
perform, the inverse operation and the calculation of the roots modulo m are very difficult
unless you know e, i.e. the private key).

RSA is widely used for public key systems. In part this has been because it is the fastest.
Moreover, it presents all the advantages of an asymmetric system such as enabling digital
signatures, but it is mainly used to implement confidentiality in symmetric systems, because
they are faster than asymmetric ones. It can also be utilized in mixed systems to encrypt and
send the symmetric key which will later be used to encrypt the communication. Some
examples of this algorithm are presented in [30] and [31].

 21

 5 Feature Comparison between Skype and Minisip

In order to correctly compare these two VoIP approaches I begin by clearly describing

each program.

 5.1 Skype
 5.1.1 Underlying Operating systems

One of the first to be noted which operating systems can be used under each of these
programs. From the Skype website [21] we can easily see from the download choices which
operating systems are supported. There are four different Skype versions depending on the
OS. These are:

• Microsoft’s Windows 2000 or XP,
• Apple Computer’s Mac OS X,
• Linux, and
• Microsoft’s Pocket PC
The requirements for each of them are described on this web page. For example, in

order to use the Microsoft Windows version of the Skype software we need:
• a PC running Windows 2000 or XP,
• at least a 400 MHz processor,
• at least 128 MB RAM,
• a minimum of 15 MB free disk space,
• a Sound Card, speakers, and microphone, and
• an Internet connection of at least 33.6 kbps (either broadband or a dial-up)
 The complete information about the requirements for each version can be found at [20].

5.1.1 Information Transfer

The main function of Skype is to make a simple voice call. If the called party also has a

Skype client this call can be made without cost. These calls are encrypted - ensuring both
security and privacy for the communication. Moreover, the user does not need to worry about
neither the presence of a firewall or its configuration, nor about the routers or other network
components. As Skype said says on its website, “it just works”.

In addition to the calls to Skype clients, Skype also enables calls to regular telephone
numbers, that is, the number of a PSTN (fixed or mobile) phone using their SkypeOut service.
This provides connectivity to nearly any telephone in the world. It is important to note that the
cost of the call does not depend on the location of the caller, but rather it depends on the
location of the callee. For example, the cost of calling from London to London will be the
same as calling from Russia to London. The tarrifs for making calls to PSTN numbers can be

 22

seen at [32].
Apart from the calls, Skype also offers instant messaging, enabling chatting with upto

48 other Skype users. Note that the maximum size of a message is only limited by the
operating system. In general, this size will be between two and four Gigabytes. It is possible
to send messages between different platforms - but for non-ASCII text there is no guarantee
that the contents of the file will be meaningful.

 5.1.3 Telephone Conference
Skype allows users to establish conferences between several users. With the current

version of Skype it is possible to have conferences with upto five users. However, only the
Skype client who initiated the conference can add new people to the conference. In fact, the
Skype protocol handles the conferences by making this node the centralized node for the other
participants in the conference. The scheme is shown in the following figure.

Figure 9. Conferences in Skype

Thus, the other users send to the conference creator their voice packets, where the audio

streams are mixed and forwarded to the other users. Therefore we can see that the
communication is not really peer to peer, but actually depends on one node and its resources
in terms of bandwidth and computational power.

There are several aspects to be noted. First of all, the conferences can not only be
between Skype clients, but may include users of the PSTN (including mobile networks), i.e.,
regular phones, and even with SIP phones in a close future. Of course, the calls will be billed

 23

separately: all based on where the callees are.
Secondly, conferences can include Skype clients running on different OS platforms.

However, depending on the OS, this behavior may be different. For example, clients running
on top of the Linux software are able to join a conference with other users as well as to see
which users are taking part in it, but they cannot start the conference by themselves. For users
using Skype running on a Pocket PC, the client can join conferences, but not start new ones.
While, clients running Windows or Mac software can join and create conferences as well as
control the users participating in these conferences.

 5.1.4 Audio CODEC
Skype currently uses a broadband codec which permits the encoding of audio signals

upto 16 kHz. Several studies indicate that the codec used by Skype is iLBC [33], [34]. An
earlier study of the Skype protocol performed at Columbia University [63] indicated that the
codec used by Skype could be iLBC, iSAC, or another unknown codec. However, the reality
is that the codec could not be iLBC since it is actually a narrow band codec and also this
codec fixes the size of the frame to one of the two possible sizes; nor iSAC because the range
of output rates from this codec is from 10 to 32 kilobytes per second - while the transmission
rate observed from Skype varies between 3 and 16 kilobytes per second. A study of the Skype
protocol was performed in this thesis and details can be found in the Appendix A.

 5.1.5 User Availability
Skype also has a Global User Directory consisting of a huge telephone list with all the

Skype users [21]. This list can be used to search for other users (contacts) that we wish to
communication with. It provides information such as the user’s name, country of residence,
birthday, or other data depending upon what the user decided to include in his login
information.

In addition to searching for contacts, it is possible to add a given user to your own
contact list and to send a message to this user (for example, asking if they are available for a
call). In fact, Skype provides us a general indication of the state of the user - this is one of:

• offline
• online
• away
• busy
• not available
• do not disturb
• invisible

 5.1.6 Information Security
Skype provides security for signaling and call contents. Skype uses two encryption

algorithms: RSA [28], [29] and AES (Advanced Encryption Standard) [27]. Skype utilizes
1536 to 2048 bit RSA to negotiate symmetric AES keys at the beginning of the
communication. Once the negotiation of the keys has been performed, the signaling and data

 24

messages are actively protected by encrypting them using the AES algorithm. The size of the
keys used is 256 bits, so that the total number of possible keys is 1.1 * 1077. Moreover, users
public keys are certified during the login process by one of the Skype servers [63].

Therefore, the information that every user sends, regardless of being a speech

communication or an instant message, is protected. However, the user is not able to modify
the parameters to provide a greater or a weaker level of security since the Skype protocol does
not offer such a feature and it is a closed source protocol.

 5.1.7 Other Features
Another Skype function is a robot to test your sound configuration. This robot helps you

to have better quality in the calls and it is described at [21].
Skype also provides a link named “store” [21] where users can find information related

to all the complementary products sold by the company. For example, it is possible to buy a
handset or USB telephone.

Moreover, Skype offers users advanced services such as VoiceMail [35]. This service is
available to registered Skype users who pay the additional fee charged for this service. This
service allows users to create audio messages and send them as an e-mail to ones contacts. To
send the messages, the VoiceMail service uses the “Standard Windows MAPI” [36] which is
compatible with nearly all e-mail systems. The VoiceMail service subscription is 5 euros per
3 months, or 15 euros per year (plus 15% VAT in EU countries), or for free if you subscribe
to the SkypeIn service. Although initially they advertised an automatic service to extend the
contract for VoiceMail, Skype no longer provides this option. Moreover, if the user decides
not to continue using Skype VoiceMail within the period of a month, Skype will return their
money.

Another interesting advanced service, called SkypeIn, enables a user to register a Skype
contact with a number of telephone which could be used to call Skype clients (without cost)
or to call PSTN numbers or SIP numbers using the SkypeOut service (for which the caller
would pay per call charges).

In addition to these services, Skype has announced it is working to enable users to send
GSM short messages. Even more important is that this will be usable to/from the third
generation of mobile telephones [37].

Now that the main features of Skype have been noted, I next give a similar description
to Minisip [38].

 5.2 Minisip

 5.2.1 Operation systems
The Minisip program is currently only available on top of the Linux OS. It consists of a

set of libraries to be downloaded. Binary packages exist for installation on the GNU Linux
Debian, Red Hat Linux 9, Familiar Linux, or Mandrake cooker. However, it is noted on the
website that some of these versions are not stable. It can be assumed that in the near future
that a Windows software will be available. Unlike Skype, the full source code is available
from the web site for those who wish to compile it from source, extend it, … .

 25

There is no information about the minimum hardware requirements for proper operation
of the software. The web site only indicates that the appropriate versions of the libraries are
needed. However, it is necessary to have a full-duplex audio subsystem.

 5.2.2 Exchange of information
Minisip allows user to make calls around the world without cost when the

communication is between Minisip clients or between Minisip and another SIP client
elsewhere on the Iiternet. Communication between two Minisip clients is encrypted to ensure
the privacy of this communication. However if one of the users is not using Minisip (for
example, a regular telephone via a voice gateway, or another SIP client), then encryption
might not be available. This depends on the voice gateway and the other SIP client.

In addition to audio communication, Minisip also incorporates the ability to send
messages, just as Skype; but in addition also includes support for video conferences.
Additional functionality is planned, such as exploiting speech-to-text and text-to-speech to
dramatically decrease the bandwidth necessary for a given quality, integration with local
media players (as shown by Inmaculada Ranges Vacas [39] in her thesis), … .

In addition to single party telephone calls, Minisip also supports a push-to-talk
mechanism; for details see Florian Maurer’s project report [40]. The push to talk mechanism
enables the establishment of group communication (such as conferences), but adds floor
control. This mechanism allows the development of a wide variety of communication
facilities such as:

• Instant Personal Talk: direct communication between users.
• Chat Group Talk: There are two different modalities for this kind of communication:
 • Open chat group. In this version of Chat Group Talk, each participant can invite

new users to join the communication.
 • Restricted Chat Group. In this version, the creator of the group will be allowed to

add or remove users to/from the group. Moreover, only those users within the
contact list of the creator could join the communication.

• Instant Group Talk. Consist of the establishment of a push-to-talk session with a user
of your contact list. Each user upon initiating communication can add a new contact
to such a list.

• Ad hoc Instant Group Talk. This service allows direct communication between users
without this infrastructure.

• Instant Personal Alert. This facility consist of sending to the user a message
indicating to him that he must contact the sender of such a message.

 5.2.3 Conferences
Conferences without floor control are just recently supported by Minisip [75]. This

required either the design of a bridging/mixing mechanism for the multiple audio streams or a
full mesh. The implementors chose the later and added acoustic echo suppression. Using the
spatial audio facilities which Ignacio Sanchez Pardo introduced into Minisip is possible to
listen to multiple audio streams at the same time - however, there is not yet a convenient
control to indicate to which stream your outgoing audio should be directed, but in a

 26

conference it naturally goes to all but then source.

 5.2.4 Videoconference
Minisip includes videoconference in order to provide better communication between the

users of the system. This enables communication to be much more personal and efficient than
audio only calls, since we can appreciate both voices and facial features (and perhaps even
gestures).

Videoconferencing is useful between two friends, in fields such as remote education,
internal enterprise communication, communication between different companies, remote
consultation with doctors, etc. An important application area is “I see what you see” to enable
a remote advisor to help a user. Typically videoconferencing implies expensive equipment as
well as high costs of use, however, Minisip provides this service on-line over internet and
only requires a web camera (whose cost is today rather low).

 Figure 10. Videoconference in Minisip

 5.2.5 Audio CODEC
In the current version of Minisip there are many possible codecs: PCMu, iLBC, linear

encoding with 16 bits and Stereo. Unfortunately, only PCMu and iLBC are available from the
Graphic User Interface (GUI). Both codecs are narrowband codecs and assume that
frequencies over 8 kHz will be filtered or removed. However, if the users have a broadband
connection and use 16 bit linear stereo coding at up to 48K samples per second, the resulting

 27

quality can be even better than CD quality.

 5.2.6 User Availability
Since Minisip is based upon SIP, all contacts can be kept at servers (similar to Skype) or

the user can keep a local list of contacts at the device running Minisip. Unlike Skype, we do
not need to send a message to the other party to add them to our list of contacts.
Unfortunately, no display of the status of your contacts as is available in the Skype GUI. Of
course since presence information is available via SIMPLE [41], the Minisip GUI could be
extended to display it. In fact, the code is already in the GUI to enable this [77].

 5.2.7 Information security
Minisip also supports encryption, but unlike Skype a Minisip user can select different

levels of security via the GUI. Of course these different levels of security will change the
traffic actually sent and hence the efficiency of the communication. Measurement of this will
be presented in section 7.2. The interface to control these settings is shown below:

Figure 11. Dialog to change the security properties

As shown above the level of security could be one of the following:
• enable secure outgoing calls if it is possible
• enable Diffie-Hellman [42] key agreement
• enable pre-shared key agreement
In the case of selecting Diffie-Hellman key agreement it is possible to change the

certificate settings in the following dialog in which you can select: the private key to be used,
the certificate to be used, and the authority of certification (CA) to be used.

 28

 Figure 12. Advanced security options.

 5.3 Functional Comparison of Skype and Minisip
This section presents a functional comparison of each of these two VoIP applications.

An obvious difference is that Skype is a commercial product while Minisip is a research
prototype.

Skype is available for several operating systems (Windows, Macintosh, Linux or Pocket
PC) while Minisip is currently only available for Linux machines (but is being ported to
Windows by Andreas Ångström in his thesis [43]). More importantly, the released Skype
versions are stable and have clearly stated hardware and software requirements, while some of
the Minisip software versions are not stable and there is not yet a clear statement of hardware
and software requirements [38]. Not having a Windows version puts Minisip at a great
disadvantage; hence the great need to port the program, as this represents the largest potential
user group. The result will be the ability to establish secure calls between users running on top
of different OSs.

With respect to basic communications both Skype and Minisip allow making telephone
calls as well as sending messages. The possibility of chatting exists in both cases, but in the
case of Minisip chatting is limited to ten clients, two per position, when Skype allows a
communication with up to 48 users. Using either program it is possible to call PSTN
(including mobile numbers) via a PSTN gateway. However, here Minisip has a dramatic
advantage over Skype since you could utilize any SIP compatible PSTN gateway (hence
potentially have lower costs); while if you use Skype you can only use their gateways.

It must be noted that Skype supports audio conferencing without using high bandwidth,
i.e.the bandwidth used is between 3 and 16 KBps; while the bandwidth for Minisip depends
on the users choice of codec. Since a voice PSTN call provides a bandwidth of ~8 kilobytes/s
(in the best conditions), the communication with Skype is limited to this bandwidth. In Skype
to Skype communications, a broadband codec is used - which codec is used can not be
selected by the user; while Minisip supports both narrowband and broadband codecs as
selected by the user. Depending on the codec selected in Minisip the comparison of the
perceived voice quality should be better or worse than in Skype. If the codec used in Minisip
is a narrowband codec, then the perceived voice quality of Skype is better (as expected).

Typically, a young adult perceives the range of frequencies from 20 to 20,000 Hz.
Consequently, the sampling frequency of CD audio is chosen to be 44.1 KHz, which is more
than double that of the highest frequency perceivable by most humans. Moreover, it is known
that the energy in speech signals is concentrated in the low frequencies. In fact, there are

 29

studies which show that a speech signal can be filtered with a bandwidth of 10 KHz without
affecting its perception [44]. Thus the quality provided by Skype is better than Minisip when
it uses a narrowband, since Skype keeps all the necessary frequencies, while when Minisip
uses a narrowband codec it filters out some of these frequencies. However, if the encoding
used in Minisip is 16 bit per sample linear encoding, then the sampling frequency can be
increased up to 48 K samples per second (in mono or stereo) - providing much better voice
quality (although for most people the difference will not be noticed for speech - but can be
noticed if the audio content is music). Consequently, the selection of the codec and its
parameters will affect the quality of a telephone conversation; this can be evaluated by
enabling users to rate the quality of their call when it ends.

There is a difference in how conferences are controlled, since in Skype conferences the
outgoing packets are sent to the participants in the group by the party who started the call;
while in Minisip there is either (a) explicit floor control using a push-to-talk mechanism, that
is, the same mechanism used in walkie-talkie communications and the resulting outgoing
packet is sent directly to all the participants - note that here there will only be one source
sending at a time or (b) a full mesh – where each source sends to all the others. Therefore, in
Skype is essential that the user starting the communication has the best computational and
network resources; while in Minisip there no such a limitation.

Additionally, the push-to-talk floor control not only covers the conference service
provided by Skype, but it introduces new advantages since it allows the user to classify the
conferences depending on the users talking with (different conference modes permitting a
better division of them) as well a taking part in several conferences simultaneously as was
shown in [40]. Chat Group Talk provides the equivalent conferencing as Skype, since it
allows communication with your current contacts and with new contacts. In fact the
conferences that Skype can establish are really equivalent to those allowed via the Restricted
Chat Group. The Open Chat Group service allows a greater freedom than thus, as it does not
centralize the ability to incorporate new users in the conference as happens in Skype.

Additionally, the push-to-talk mechanism can setup Ad-Hoc communication in which
Minisip clients could communicate without having any infrastructure. Hence allowing peer-
to-peer communication!

Recently Minisip has incorporated a new service named “spatial audio for the mobile
user” as a result of Ignacio Sanchez Pardo’s thesis [45]. This service allows the user to locate
every incoming call in a virtual spatial position - this provides immediate knowledge to the
user who can now separate the different communication streams when listening, based on the
perceived direction from which the sound arrives.

Beyond the capacity to make voice calls, Minisip also provides a videoconference
service. This service provides many possibilities to the user. And recently, it is possible to
create a video conference with more than two users using a full mesh. Therefore, this has
improved the service provided by other programs such as MSN messenger [46], CuSeeMe
[47], or Netmeeting [48] which do not support videoconferencing for more than two users
simultaneously.

Although both programs support instant messaging, Minisip client only supports
messages with a number of users not higher than 10 Minisip users; whereas Skype supports a
chat service with up to 48 users. In addition, Skype can send whole files as messages; while

 30

Minisip does not yet have this functionality.
With regard to the security provided by both systems, Minisip enables the user to

choose the desired level of security. However, I personally consider the security provided by
Skype (using AES [27]) to be sufficient, thus I don’t consider this functionality to be an
important advantage for a normal user.

The final features which we will consider (“other features”) are Voicemail and
communications involving PSTN telephony. As VoiceMail is currently being introduced in
both programs there is no clear advantage of Skype versus Minisip. However, significant
change in functionality is the recent addition of SkypeIn - as until now a PSTN user could not
call a Skype user (even though the reverse was possible), of course both are services which
you must pay for. In the case of Minisip you do not have these problems because Minisip
supports SIP telephony, thus you can use any SIP compatible PSTN gateway and there are
numerous ways to register a telephone number to cause a call to it to be gatewayed to your
SIP client. Providers of these kinds of service are companies such as: Digisip [49] or HotSIP
[50].

 31

 6 User Interface Comparison

The structure of this comparison will be similar to the functional comparison above.

 6.1 Skype
 6.1.1 User Support

One of the most important aspects from the user’s point of view, without any doubt, is
the tools, documents, or sources that help us when we have some problem with the program.
Here, Skype provides (through its website [21]) a complete set of solutions for the different
sorts of problems that most users will encounter.

They provide a finder which finds the answers to user’s questions easily and quickly -
avoiding the need to search the website. In addition to the finder, they provide a number of
other aids:

• Links to Frequently Asked Questions (FAQ).
• A database of answers classified depending on where the problem appears such us:
 • Use of SkypeOut,
 • File transfer,
 • General questions,
 • Etc.
• A tutorial which introduces and explains to the user how to use the program,
In addition to these sources of immediate answers, Skype has two additional ways of

informing customers. The first of these is a list of news related to the use of the program, this
currently mainly focuses on the SkypeOut service. This list is updated periodically and
describes the new options introduced in the program - as well as known problems. The second
source of information consists of a number of forums, currently fourteen forums, where the
user can send questions or look for answers to previous questions - this requires selecting the
appropriate forum. Questions can be answered by other participants in the forum or by the
developers of the Skype software.

All of this information is the result of the collective effort and knowledge of the many
workers employed by Skype. The extensive information makes the development of new
applications easier and faster. It seems that Skype is paying attention to their customers. A
consequence is the rapid development of a relatively new product that is now widely used. Of
course this depends on the Skype partners and owners providing capital to maintain this
structure, as well as supporting the ongoing development of new services.

 6.1.1 Skype Support for Developers
Skype has not limited the forums to answering problems related to the operation,

installation, or other aspects for the basic user, but has opened the door to anyone interested in
developing their own applications building on one of the Skype products. These questions are
answered by the personal in charge of developing Skype. Skype is conscious of the enormous

 32

potential for development outside the company and tries to make use of these efforts to
improve its product and, as a result of it, to obtain greater economic benefits.

To support this, Skype segments the people interested in the development into 3 levels:
1. The first level, is oriented to all those interested in going beyond simply using the

product and to develop new applications. At this level, Skype will help interested
users by answering their questions without cost. One of the great opportunities
introduced to this level of developers is the Skype Application Programming
Interface (API). This API allows other applications to utilize the underlying Skype
functions (however, currently this is limited to Windows and Linux applications
running on a PC). As an example, I have evaluated the operation of this API by
developing a console application. This is described in appendix B.

2. The second level of the support requires establishing a relation between the developer
and Skype. In this case, the developer has to pay an annual fee of 1000 euros. In
addition to the previous level it provides the following additional advantages:

 • Access to the upcoming Skype versions for testing;
 • Access to prototypes and examples of Skype services; and
 • Increased potential access to the Skype developers.
3. Finally, a third level is reserved for invited corporations and important partners.

Obviously this level includes the features of the two previous levels, along with:
 • Direct access to Skype engineering team members;
 • Ability to provide input into Skype’s development efforts and priorities; and
 • Strategic development support.

 6.1.3 Software and Service Installation
The installation of the Skype product depends on the software selected:
• For the Windows software, you simply download to your computer the installation

software and to follow the steps as indicated.
• For the Pocket PC software: Either (A) you are required to have ActiveSync [51] in

your Personal Digital Assistant (PDA), but aside from this the process is quite
similar to installing the Windows version of the software. Once you have
downloaded the installer, you simply open the file, when you accept the displayed
conditions, the Active Application Manager will pop up to do the rest of the work or
(B) you can download a CAB file directly to your PDA.

• For the Macintosh software version, it is necessary to mount the downloaded disk
image doing a double click on the “dmg” file and drag the Skype application from
mounted disk image volume to Applications folder on your main volume as it is
described on the Skype web page [21].

• Skype is available for several Linux platforms, specifically:
 • SuSe 9 and newer versions,
 • Mandrake cooker 10.1 and newer versions,
 • Fedora Core 3,
 • Debian,
 • RedHat.
 Depending on the Linux version there are three different installation methods:

 33

• RPM version: as a superuser simply enter the command “rpm -U skype-
version.rpm”, where skype-version.rpm is the name of the file downloaded.

• Tar.bz2 version: simply enter the command: “tar xjvf skype-
version.tar.bz2”, where skype-version.tar.bz2 is the name of the file
downloaded; in this case it is not necessary to be the superuser. The Skype software
is unpacked to the current directory.

• Debian package: download the package and follow the instructions.

 6.1.1 Using Skype

In this section we will briefly comment how to interact with the program. The primary
focus is how to use the different options described earlier. Rather than describe each of the
different versions of the software (since the differences are not particularly important), I will
focus on the current version for Windows (2000 or XP).

The main Skype interface is shown in the following figure:

Figure 13. Skype Interface for Windows XP or 2000 software.

 34

The first tab available inside this Graphical User Interface (GUI) shows a summary of
the information related to the current Skype contact, e.g. the number of contacts online in that
moment, calls unanswered and the Skype users who made them, or a message indicating that
there is some user who wants to establish a communication session with the user, but whose
request has not (yet) been accepted.

As noted earlier, Skype offers the possibility of making calls to telephones attached to
the PSTN (or mobile networks). In order to be able to make these calls the user should have a
positive credit with Skype, since the SkypeOut service is not free. If the user has bought
credits to use with SkypeOut, this will be indicated (as show in the figure above).

If a Skype user is interested in knowing who his online contacts are, they simply
selecting the second tab shown in the dialog box - which is labelled “Contacts”. One can also
access this same information from inside the main menu.

Once the list of contact is shown, the Skype user might be interested in setting up a
communication session with one or more of them (however, no more than five can be
contacted currently; as noted earlier). The easiest way to establish a call is to select the
appropriate user or users to be called and click over them. Once these contacts are selected
pressing the “call” button, represented by a red button with a vertical telephone, the call will
be initiated.

If the Skype user wants to send an instant message instead of making a call to the
selected contacts, the user simply opens a new menu with a right mouse click. From this new
menu, you simply select the appropriate option to send a message.

If the user wishes to make a call to a PSTN user whose number is not yet in the list of
contacts, they can do so by using the “dial” tab. Invoking this “dial” tab displays a keypad
which can be used to enter the number of the user to be called. Once the number has been
dialed the “call” button has to be pressed and the call starts.

 Figure 14. Keypad in Skype

 35

The last of the tabs presented in the main Skype window displays a list of calls sent and
received indicating the date, the time, and the client which the call was from. An example is
shown in the figure below:

 Figure 15. Register of calls
Below I will explain the main buttons presented via the Skype GUI (although many of

them perform functions which have been previously described). The Skype user often has
different ways to do the same action, this redundancy increases the usability of the program.

 Figure 16. Skype Push-buttons
The first button shown in Figure 16, which looks like the letter “i” in a purple circle,

allows the user to retrieve his or her user profile or the profile of a selected user, i.e. it
retrieves the data available in the (Skype) Global User Directory.

The second button shown in Figure 16, which looks like a “plus-sign” in a green circle,
allows the user to add a new contact to its list of contacts. After pressing this button, a new
dialog will be opened so that the Skype name of the contact can be added. The next figure
shows this dialog:

 36

 Figure 17. Add a Contact dialog

The third button (which is an icon of a person) and the fourth button (which looks like

the letter “A” in a yellow circle) allow the user to establish a session or to send messages (as
explained previously). These and other functions are also available via the main menu.

If the user wants to setup a conference using the dialog shown in Figure 18, it will be
necessary to add each of the other parties one by one - by selecting and pressing the “Add”
button. Once this is done, the Skype contacts are introduced to the conference list. As noted
earlier this is limited to 4 users (for a total of 5 participants).

The dialog to establish a chat session is shown in the Figure 19. As can be seen, it is
quite similar to other dialogs which are used to establish chat session in MSN messenger,
NetMeeting, etc. The dialog consists of one editlist in which the received messages are
displayed and a second editlist is used to introduce messages to be sent. It is possible to
communicate with upto 48 users in a single session.

When pushing the fifth button (which looks like a page icon with a vertical), a new
dialog is opened to allow the user to select the file they want to send. Once the file has been
selected, the dialog displayed in Figure 20 is used to select the contact whom you wish to
send it.

 37

 Figure 18. Start a Skype Conference Call dialog

 Figure 19. Skype Chat dialog

 38

 Figure 20. Sending file dialog
Finally, the last button (which looks like a magnifying glass icon) is used to search for

Skype contacts that are not in our own contact list. Once the button has been pressed, a new
dialog is displayed to enter the name of the Skype contact, pushing the search button will start
the actual search:

 Figure 21. Search for Skype users dialog

In addition to these functions, Skype provides additional functions via its main menu,

 39

for example: blocking users (to avoid communication with them), sending your contacts to
another Skype client, or checking for an updated version of your Skype client.

 6.2 Minisip
 6.2.1 User Support

Minisip also has a website [38] which provides an introduction to Minisip. It is also
provides information as to what operating systems are supported, as well as a list of
publications about Minisip. The user will also find a link to download either pre-built binary
releases along with the different libraries needed by the program and a brief explanation of
which versions of the packages must be download or they can download the complete source
code. Additional information related to installing Minisip will be explained below. In
addition, the user can consult the master theses written by several KTH students.

One of the best features of Minisip support is that the source code is open. This allows
other people to not only use this program and to work with it, find and fix bugs, but to add the
services and features which they want. There are two e-mail lists, one to help users and the
other developers. These lists facilitate contact between the developers and users. Information
about joining these mailing lists is provided from the web site.

 6.2.2 Extending and Building upon Minisip
Unlike Skype, Minisip is not a commercial product, but rather an experimental

prototype for exploring issues in communications, security, etc. Additionally, since the source
code for Minisip is available and the code has very liberal license terms (LGPL [52]) it can be
studied and even extended by others. Because of this there is not a similar hierarchy for
support as for Skype, but rather it is up to users and developers to extend it as they wish.

 6.2.3 Installation
The installation of Minisip depends on which version of the software is to be installed

(although as noted earlier the number of versions is fewer), specifically:
• Τhe Windows version of the software, is not yet available
• There are several Linux versions available:
• Debian GNU/Linux
• Mandrake cooker 10.2 (unstable)
• Redhat Linux 9
• Familiar Linux
• For the Debian version, it is possible to access the binary packages in an APT [53]

repository with:
deb http://www.minisip.org/debian binary
• Unfortunately, the version is only tested for the Intel x86 ("i386'') architecture and is

know to be unstable
• For Redhat 9, the binary packages can be downloaded directly from the available

link, but it is also possible to download it from an APT-RPM repository:

 40

rpm http://www.minisip.org redhat stable
• On RedHat systems an environment variable must be changed since there is an

incompatibility with the threading library. To do that:
$ export LD_PRELOAD="/lib/libc.so.6 /lib/libpthread-
0.10.so"

• For Familiar Linux the version is also unstable, but its binary packages can be
accessed from:

src minisip http://www.minisip.org/ipkg/release/

• Binary packages are also available for Mandrake cooker in 10.2 version (unstable)
Once the binary packages have been downloaded, they can be built. The procedure to

build each of the packages is shown at the web site. The build process to build the packages
libmutil, libmnetutil, libmsip, and libmikey is the same:

• In most cases:
$./configure
$ make

• Τhen install:
make install

• On many systems /usr/local/lib should be listed in /etc/ld.so.conf. If not, add it:
echo '/usr/local/lib' >> /etc/ld.so.conf
ldconfig

Once the above libraries are installed you can build Minisip:
$ cd minisip
$./configure
$ make

The executable is in a subfolder called Minisip and the binary package will be installed
executing the command "make install". It must be noted when Minisip is started the first
time a default configuration folder “.minisip.conf” is created

As note above on RedHat systems it is necessary to say:
$ export LD_PRELOAD="/lib/libc.so.6 /lib/libpthread-

0.10.so"
$ minisip

due to the incompatible version of pthread that is used by default on Redhat 9.
For the Pocket PC software running in Familiar Linux, the procedure is mostly the

same. In this case, there is not a dependency of the computer. It is just an executable to be
downloaded to your computer.

 6.2.4 Minisip User Interface
Minisip has several possible user interface faces, ranging from a textual interface to a

GTK GUI. Here I will describe the operation of Minisip via the GTK GUI. The main window
of the Minisip GUI is show below:

 41

 Figure 22. Main Window in the Minisip GUI.
The main window is composed of a main menu and only one tab. This tab shows the

contacts of the current user, indicating their phone number, laptop URL, mobile phone
number, etc. (depending on the contact information that has been added for this user). The
figure above shows the window corresponding to when the program is first launched (i.e., the
user does not yet have any contacts). This window shows a template for a URI (e.g., address)
by default, so that the user can add new contacts in this form. It does not display a valid phone
number least the user can choose it. Hence the telephone number is initialized to
00000000000.

Using Minisip the user can make calls to Minisip, SIP, or PSTN contacts. For this
reason the graphical interface incorporates an editlist in which the user will introduce the
address or phone number of the contact. Then the user only has to press the call button to
initiate a call.

Additionally, Minisip can send instant messages using the same editlist with the contact
information (number or address) and pressing the “IM” (Instant Message) button. Then the
message will be sent so to the user.

Of course if the call or the message cannot be sent, a warning message indicating the
reason will be shown on the interface.

The main window in the interface only has these options so it would seem that
functionality is limited. However, unlike the Skype product, the main menu of Minisip does
not incorporate redundancy - you have to know how to reach the functionality you want. The
main menu consists simply of three items: File, View, and Contact.

The file item has a submenu with three items: Preferences, Certificates
Settings, and Quit. After selecting the preferences item the following dialog appears:

 42

 Figure 23. Preferences submenu
This dialog shows in its first tab the general properties activated for this contact. Figure

23 shows the initial state of my “torobravo7” Minisip account - showing the user has a default
configuration and that a PSTN account is not yet activated. To active it, simply press the
PSTN account button and the radiobutton below the title PSTN will be marked. Via this
dialog we can add or remove contacts using the “Add” or “Remove” buttons. The default
account is related to the file created previously to use the first time the program is executed.

The second tab in this dialog contains the options related to security. As noted earlier
Minisip allows the user to establish different security levels. The security dialog is show in
the next figure:

 Figure 24. Security options in Minisip

 43

The level of security for communication can be modified through this dialog. The user

can select from Diffie-Hellman key agreement [42], [54], a Pre-Shared key [55], or using
some security algorithm in an outgoing call only when it is possible. Here the user can select
the authentication certificate [56] and the private key to use, as well as the Authority of
certification [57]. By default these options are not activated. However, they will become
available after pressing the Certificate settings button, at which point the following dialog will
pop up:

 Figure 25. Certificate settings
Additional properties are managed by using the third tab titled “Advanced”. This tab

opens a dialog with the advanced preferences, as shown in the figure below:

 Figure 26. Advanced preferences for the communication in Minisip

 44

This dialog enables the user to modify several important communication parameters.
For example, the user is able to select which local port will be used for UDP, TCP, or
Transport Security Layer (TLS) [58] traffic. By default UDP is used because it introduces less
overhead (i.e. no confirmation or acknowledgement as would be provided by TCP nor
security as provided by TLS). Moreover it is possible to active the STUN protocol [59] which
is a lightweight protocol that allows applications to discover the presence and types of NATs
and firewalls between the client and the public Internet, as well as determine the presence of
STUN servers.

 6.3 Common Graphical Interface
 6.3.1 Design decisions

As it stated in the introduction, in this thesis two GUIs are created to hide the Minisip

and Skype programs so that we are able to obtain objective results of the voice quality
perceived. The first task was to determine the environment and the programming language to
develop such a tool. In the “Problem Statement” section, it was noted that Microsoft Visual
Studio 6.0 was selected for the laptop and Microsoft Embedded Visual C++ 4.0 for
developing for the Pocket PC.

The selection of a programming environment depends on the programming language to

be used. I considered that the most appropriate language to develop the graphical interfaces
was C++ since Minisip was develop in this language, but it would have been possible to
create the GUIs in another language like C# and to use a cross compiler to port and obtain
compatibility.

The interface for the Pocket PC was the first program created and I planned to use

Visual Studio .NET 2003, but although this program allows the user to work in C++, it does
not provide the option to create a C++ program for the PDA. As a consequence, I chose
Microsoft Embedded Visual C++ 4.0 for this development.

Once the GUI was created I tried to establish a connection with Skype in the Pocket PC.

Unfortunately, I found that the current Skype software for Pocket PC does not allow other
applications to connect with it. Thus it was not possible to connect the interface on the PDA
to Skype. Because it was impossible to continue on the PDA I decided to translate the GUI
available for the Pocket PC to a version for the laptop. Unfortunately, Microsoft´s Embedded
Visual C++ is not completely compatible with Microsoft´s Visual Studio 6.0 so I had to
introduce several modifications to the code.

 6.3.2 Operation with the GUI

Besides comparing the support, development, and usability of both VoIP programs it is
necessary to compare the quality of voice as perceived by the user when making calls. In
order to perform an objective study I created a common GUI which hides from the user which
program is being used, but allows the user to make calls. The goal was to examine the quality
which the user perceives, hence allowing a comparison of Minisip with Skype. However, the

 45

situation is more complex that it might first seem, since Minisip users can change codec -
resulting in different quality for each call.

During this thesis project I have created a similar GUI for both a (laptop) PC and for an
HP iPAQ running Pocket PC. I will first explain the version for a (laptop) PC.

Since I have earlier shown the graphical interfaces in Minisip and Skype it was logical
to implement a common interface similar to these two GUIs. For that reason, the common
interface presents a main menu composed of four items: File, View, Contact, and Help. Inside
the File item there is the option to invoke a dialog as shown in the figure below - called a
property sheet:

Figure 27. Contact tab in common interface

This dialog is composed of several tabs that I will explain in this section. The second

 46

tab shown in Figure 27 presents several editlist and fields in which the user can enter his or
her own name and password before starting the experiment. Thus we can save in a file the
name, password, and the result of the evaluation given for each user. It is also important to
have this information both so that we know which user makes which call, but also so that we
can invoke the underlying program as if it were being invoked by this user.

In the near future, we hope to be able to invoke both programs from this common
interface. Unfortunately, this is not currently possible because the API provided by Skype
does not allow us to perform the start up and login!

Once the user has written these data, they must press the “Accept” button in order to
store the user’s data and to initiate the experiment. Once they have pushed the “Accept”
button, the interface will itself select which VoIP program is to be used for this
communication session so that this user does not know which program underlies the common
interface. This selection is performed randomly.

If the user decides not to continue, they can close the interface or start another
registration by pressing the “Cancel” button.

Once the “Accept” button is pressed and the VoIP program has been selected, we can
continue the experiment. The “contacts” tab now shows the contacts of the current user. It is
shown in the next figure:

 Figure 28. Contact of the user.

 47

Initially all the contacts in the list are shown as if they were in an offline state. The
reason for this is that Minisip does not indicate the current state of the user. When the user
wants to make a call, the “Check” button must be pressed and at that time the program will
check if the selected user is available (on-line) or not. Next, the “call” button can be pressed,
then there are two choices: the contact is connected and a call is establish or the user is not
available. In the later case, the following dialog will be shown:

 Figure 29. Dialog indicating the user is not available

If the user is available, the call will be initiated and the icon corresponding to that user
will change its color. Moreover the position of this user will be located at the end of the list
and the number of users connected will be increase in one.

 Figure 30. torobravo7 is available.

 48

My common interface also introduces a keypad to make calls similar the one presented
in Skype. This keypad allows the user to enter a PSTN or mobile number by directly entering
the phone number or by entering a contact name or a SIP URI.

 Figure 31. Dial in the interface

Using this keypad is as easy as dialing a telephone number and pressing the “call”

button on a typical VoIP phone. To finish the call, simply press the “Hang” button. If the user
wants to make call to a PSTN number, he or she must have positive credit in the SkypeOut
service, otherwise the call cannot be made.

Both tabs, “keypad” and “contacts”, allow establishing calls.
Once the user decides to terminate the communication session, they press the “Hang” or

“Cancel” button, at this point a new dialog will pup up as in Figure 32. Here the user can
evaluate the quality of the session with 1 being the worst quality and 5 the best quality. This
evaluation will be stored in a file (along with the username and the password). Thus creating a
log of the users who participated in the experiments along with their evaluations. Once the

 49

user enters their evaluation, the dialog will be closed and the program will be ready to start
again.

 Figure 32. Evaluation dialog
.
Additionally, I created a main menu which allows me to perform the same experiments

without using the property sheet. Using the property sheet is easier and faster than using the
main menu. However, the main menu could be used to introduce new features to permit
compare both programs not only for speech communication, but also for instant messaging.

Once the common graphical interface was created, the connection with Skype and
Minisip needed to be done. Currently only Skype provides such an API. The design and the
limitations of this API influenced the design of my common interface. The same idea will be
used for the connection with Minisip. However, unlike the connection with Skype which
currently works, the connection with Minisip will not be possible until the Minisip Windows
port is available. Unfortunately, this Windows port is not yet available, therefore experiments
will be performed on different platforms to allow me to finish this comparison. Once the port
is available, then experiments could be repeated on a single platform.

 6.4 Comparison of The User Interface

Skype clearly provides much more extensive help and information to users and

developers than does Minisip. While a number of theses have described their extension to
Minisip – many of these theses only became available at the end of the thesis project. There is
no corresponding on-going news as there is for Skype (although there are local weekly VoIP
meetings and the minutes of these meetings are sent to the participants - they are not readily
available from the Minisip web site).

In Minisip, because the source code is available, anyone can download the source code

 50

and change it in order to develop whatever service they wish and they can examine it to find
and fix whatever bugs they encounter.

While there are two e-mail lists for Minisip (for users and the developers), my
experience was that I got questions answered much more quickly from Skype. In fact, I was
fortunately in having most of my questions concerning Skype answered by one of the Skype
developers. One of the reasons for this is clearly the vast difference between a commercial
product with a large development and support organization versus a group of graduate
students and others simply interested in utilizing Minisip for their own purposes. These
differences are consequence of these different goals of the two programs:

• Skype receives incomes from their partners in the levels 2 and 3 and in the third level
the partners even provide technology as in the case of GlobalIPSound [60] which
provides the codec.

• The knowledge and the availability of the code in Minisip allows developers to
introduce new services without restrictions, that is, the possibilities are much greater
than for Skype.

In terms of installation, it must be noted that in addition to having support for many
more operating systems, that even when comparing the installation process for the different
Linux versions, the installation process for Skype is faster and easier than in Minisip.

With respect to the usability of each program, both interfaces allow the user to work
without problems since they are quite clear, but there are four points to comments upon:

1. The first point is that the choices Minisip provides to the user might be considered
as more complex in the sense that the knowledge required of the user is greater than
in the case of Skype. For example, if the user wants to turn on the Diffie-Hellman
key agreement, he must first consider the advantages and disadvantages the
activation will provide him.

2. The second point is that, unfortunately, the Minisip GUI is not being developed -
thus new features have been included in the program, but a normal user is not able
to access them through the GUI. Therefore, if the user wants to enjoy these new
features, he has to search in the code for how to run them which is quite
unfortunate. For example, how to enable 16 bit linear encoding.

3. The third point is that the user does not have to be concerned with firewalls, as the
router configuration is determined by Skype. A new user only needs to create a new
account, all the rest is done by the underlying Skype protocol, while in the Minisip
in addition to creating an account, the Minisip user must also decide upon the proxy
to use for their communications.

4. Finally, Minisip has not displayed the state of the user’s contacts via the GUI. I
think from the user’s point of view that this information is quite interesting and it
would be desirable to introduce this functionality in order to avoid situations in
which the user tries to establish a conversation, but can not do so and does not
know why it is not possible to do so.

 After performing several calls with Skype and Minisip with PCMu and iLBC codecs we

realized that the perceived voice quality in Skype is much better than in Minisip. Using iLBC

 51

the quality is improved over PCMu but still worse than Skype. In Skype the user feels that the
callee is closer and the voice is clearer distinguishing perfectly the different letters, whereas in
Minisip the voice is perceived as if it is coming from far and noisy. It was impossible to make
calls with a 16-bit linear encoding since the last modifications in Minisip did not include this
codec so the results are reasonable because the codec utilized in Skype is broadband while the
two codecs in Minisip are narrowband.

 52

 7 Packet Level Comparison of Skype and Minisip

This comparison was performed by studying with Ethereal [62], the information sent

during the operation of both programs. Thus we can calculate, for each of the main features to
be considered, the amount of data sent, the bandwidth used, the time necessary to perform a
given function, and even the entities involved in such communication. Given this information
several metrics could be used to evaluate and compare the programs, including the difference
due to the user’s selection of the security level they wish.

 7.1 Skype
 7.1.1 Login

The decentralized architecture (peer to peer) of Skype results in a complex login process

where an number of nodes participate and where the information to be sent and received by
the user is significant.

This process mainly involves three entities or machines: the Skype client (SC), one or

more supernodes (SN) which will establish a connection with the Skype client in order to
perform the login, and one or more login servers. Actually, during the login process the Skype
client establishes UDP sessions with several nodes, not only with the three nodes previously
mentioned.

In order to login, the user must enter his username and password in the dialog provided

in the Skype GUI. Once these data have been introduced, the Skype client starts to establish
UDP connections with different nodes following several patterns. These nodes are called
supernodes and the client must communicate with at least one of them to complete the login
process. These nodes will reply to the client and then the client will establish a TCP session
which will allow an exchange of information between both machines. A scheme showing that
exchange of information is in the following Figure 33.

Once that exchange of information has happened, then the Skype client has the address
of a login server (in fact, it is conjectured that the user has the address of more than one server
login). In such a situation, the client will set up a connection with the login server to perform
the authentication of the Skype user. The communication is shown in Figure 34.

At this point, the client has been authenticated and the login process will have finished
if the Skype client is running over Windows. But if the client is running over Linux software,
then I have found a couple of differences. First, the initial communications between the SC
and SN are a bit different and second, and much more important, there is communication with
a fourth node (also centralized). Such a communication is described in the following Figure
35.

 53

Figure 33. Exchange of information between a Skype client (SC) and a supernode (SN)
during the login. The amount of data sent in bytes

Figure 34. Communication between SC and a login server (LS)

 Figure 35. Exchange of information with the "version server"

In my opinion the above communication is reminiscent of a previous version of Skype

and will be eliminated in the future (as is explained in the appendix A). In fact, in a previous
study of the Skype product [63] a similar communication pattern was found and it was argued
that such a node is the login server. But in that case there was observed after the GET

 54

“getlastversion”, two messages were exchanged in which the authentication was done.
However, in the new version of Skype this node only appears for linux software and without
the authentication messages have disappeared.

It is also important to indicate the communication with the supernode (SN) does not end

with the last transfer shown, but it continues until the client closes the session or that
supernode is not available in which case a new SN will be found.

In fact, during the login process, we should see a transfer after the authentication has

been done. In this transfer, between SC and SN, information related to the contacts of this
user will be exchanged. To show that, two transfers of data are displayed below
corresponding to the cases in which the client does not have contact in his contact list and
when the client has 20 contacts.

Figure 36. Information about the contacts (a) no contacts, (b) 20 contacts

The number of nodes the user contacts initially is not fixed, but varies which does not

allow me to calculate the bandwidth required. The minimum bandwidth in the case when the
client only communicates with the supernode and the login server, and the user does not have
any contacts is 3293 bytes (with some little variation in the transmission ± 5 bytes), but the
time to perform all this communications varies between 1 or more seconds. Thus the average
is not useful.

 7.1.2 Call Establishment

With respect to the establishment of the call in Skype, three points are worth

mentioning:

First of all, the captures revealed that the signaling utilizes TCP and UDP which is

different from the old versions of the Skype product studied in [63].

The second aspect concerns whether the callee belongs to the buddy list or list of

contacts, if not then the establishment of the call will include a search for that contact as well
as the call establishment signaling. Finally the third aspect is the signaling shown in Figure
37.

 55

 In the communication between calleer and callee, messages are sent over UDP and
TCP. In my opinion, TCP supports the basic signaling to setup the call whereas the UDP
traffic is used to exchange some information which improves the communication beyond that
of previous versions.

In the figure above, it is observed that the first transfers are carried over UDP. In

particular I want to comment on the two messages between both users which are of sizes 103
and 41 bytes (respectively). These two messages carry the warning from the calleer to the
callee indicating that the calleer is online and the message with 41 bytes is the reply. I can
assume this because when a user perform the login process a message with 101 or 103 bytes is
sent to each one of his contacts and the reply from each one of them contains 41 bytes.

As described in appendix A, the first transfers of information do not really correspond

to the establishment process since otherwise the duration of the process would be longer than
5 or 6 seconds. As the time between pressing of the call button by the calleer and the moment
at which the telephone rings is shorter than these values.

After these messages over UDP, a TCP session between both users is initiated and two

messages in each direction are exchanged containing 14 bytes. Those two messages probably
perform mutual authentication. The other transfers in the session setup cannot be explained
because, unfortunately, I do not better knowledge about the proprietary Skype protocol.

However, the last two transfers, with message sizes of 16 (or 17) and 14 (or 13) bytes,

correspond to the tear down of the call and the direction of these messages depends on the
user who decides to tear down the call.

Finally, I have calculated the average delay of the call establishment (0,19 seconds) as

well as the average of bytes transmitted (2723,75 bytes). With these two values it was
obtained the average bandwidth used in the establishment and in the tear down processes can
be calculated. These results are:

BWcall_establishment ≈ 114684 bps
BWcall_ending ≈ 1537 bps

The results obtained show that the bandwidth required for the signaling in the

initialization of the call is almost five times higher than the value described in the previous
measurements [63].

 7.1.3 Media Transfer and Codecs

The different packet capture session enabled me to see that the voice is carried over

UDP. In fact, the user of the Windows software can modify the port used to send the voice
data (Linux and Pocket PC versions do not have this facility).

I have also found that the size of these packets is not fixed, and even more, it is not

possible to discern a pattern in their variation. Moreover when the call is initialized but the
user does not speak, the bandwidth does not decrease, this indicates that the current Skype
version does not use a voice activity detection mechanism.

 56

Figure 37. Call establishment signaling

The bandwidth used in voice transmission was calculated taking intervals with a

duration of approximately a second and calculating the number of bytes transmitted. Once
those values were obtained, I could calculate the bandwidth. To remove the dependence on
the specific temporal period considered, I utilized several periods of the same duration and
finally the average the values yielding with ± bytes/sec. variance:

• With media traffic exchanged:
BWmt ≈ 7892 Bytes/sec.
• Without media traffic exchanged (just silence):

 57

BWwmt ≈ 7175 Bytes /sec.

The comparison of these bandwidths supports the previous statement about the non-

existence of voice activity detection mechanism in the current version of Skype. During voice
communication, the bandwidth used varies from 3 to 16 kbps.

TCP traffic was also observed during the call. That traffic corresponds to messages with

a size of 18 bytes from one user to another user and the respective acknowledgements (ACK).
The interval between the sending of these messages in one direction and in the other varies.
My hypothesis (see appendix A) is that these messages are used to inform the other user about
the kind of information is going to be sent in the next UDP packets.

On average, the TCP traffic is:

• Caller to Callee, Callee to Caller:
T1 = 0,31 sec.
• Callee to Caller, Caller to Caller:
T1 = 0,68 sec.

With respect to the rate of sending TCP messages, the average value obtained was:

 BWtcp ≈ 40,74 Bytes/sec.

But, despite the values enumerated above, delay and jitter in these communications

were also studied. To do that, first we obtained a measure of the delay introduced by the
network running Skype and Ethereal in both terminals joining the communication and with
the same NTP [78] clock, that is time reference:

Figure 38. Scheme to calculate the delay and jitter in the network

 58

In such a scheme previously presented, the values calculated in average for the delay
and the jitter are:

 t(delay) ≈ 0,4272 msec.
 σ (jitter) ≈ 0,10771 msec.

Once we know the average of the delay and the variance of this value, we calculate the

real delay following the next scheme:

Figure 39. Scheme to calculate the delay and jitter

We introduce a signal, which can be a whistle, for example, and we record the

conversation. Since the path is closed we are going to receive the same signal, with less power
every T seconds. This value is the real delay to be measured. To obtain this period we can
calculate the Fourier transform of the signal. Since the value of the delay introduced for the
network is around 0,43 msec, the frequency corresponding to T will be really small.

The value of the real delay calculated following the explanation is T = 0,89 seconds,

and the variation of this delay, that is the jitter is 0.014 seconds. As a consequence, the time to
encode the information and to introduce in packets is the half of the difference between these
two values, that is approximately 0,445 sec. Once we know that value, we can study the
variation of such a delay due to the network.

Moreover of these values, the traffic and bandwidth used by the Skype user in an on-

line state without using the program was measured. The results of several of captures are
shown in the appendix A but was between 0 and 0.5 kbps.

With reference to the encoding used by Skype, I do not know exactly codec was used.

However, it can be shown that Skype uses a broadband codec that works with frequencies up

 59

to 16000 Hz. which permits it to have a better quality of voice than in basic PSTN telephony.
Although this was stated at Skype´s website [21], I confirmed this by performing an
experiment based on recording the signal one of the participants receives. Then I process this
signal to see the frequencies included. I used Matlab [64] to calculate the Fourier transform of
the signal. I recorded the call with a sampling frequency of 22542 Hz. In the frequency
domain I have centered the signal at 0 so it is symmetric at this frequency and this represents
0 Hz in the frequency domain (figures 41 and 42). In Figure 41 we can see that we have signal
frequencies until almost 0,5, which means that this signal has frequencies until almost 11.25
KHz. As a consequence, we have shown that Skype use a broadband encoding.

In the Figure 40 and 41 below we can see the signal represented in the time domain and

in the frequency domain.

The Figure 42 shows the power of the signal. As was stated in the section 5.3, the main

part of this power is focused within the low frequencies.

It is also possible to establish that the CODEC used is not among those below:

• iLBC
• RCU
• Enhanced G.711
• iPCM_wb
• ISAC

Since some of them are narrowband codecs (e.g. iLBC, RCU, and Enhanced G.711),

and the others do not provide the service features provided by Skype as is described in detail
in appendix A.

 Figure 40 . Signal temporal domain.

 60

 Figure 41. Signal in frequency domain with sampling frequency of 22 KHz.

 Figure 42. Signal power spectrum.

 61

 7.2 Minisip

 7.2.1 Login

In the case of Minisip, the login is a easier process than in Skype. In fact, there are only

four transferences to consider:
• Request to the ip address of the proxy server to the DNS server,
• Reply to this message,
• SIP REGISTER message
• Reply to the REGISTER message

In the following figure corresponding to a capture performed with Ethereal we can see the

SIP transfers between the client and the Proxy server:

Figure 43. Capture of the login process in Minisip.

 62

We can also see that the first REGISTER message receives a reply 401 Unauthorized and
it is in the second request when the reply is the correct one. The explanation to this situation is
that the first REGISTER message is sent to the registrar server without the username, the
password and the hash. Then the registrar does not accept this message and the client sends
another message including these parameters which is accepted by the server.

Looking the packets shown it is possible to calculate the time and the number of bytes
sent to complete the registration or login. This time is 31.1 msec. approximately and the
number of bytes transmitted is 2540 bytes.

7.2.2. Call establishment

When performing the call establishment is possible to check that the operation is the same

that was described in the background section for the SIP protocol. The capture of these
packets is shown in the figure below:

Figure 44. Capture of the call establishment in Minisip

From the previous packets it can be seen that the time required to complete the call

establishment is 0,56 sec. approximately and the number of bytes is 3710.

 63

7.2.3. Media transfer

The different packet capture session enabled me to see that the voice is carried over UDP

and RTP. The user can select the port used to send the voice data directly from the GUI using
the dialog shown in Figure 26.

In Minisip the size of the packets will depend on the encoding where are using and on the

level the security. So it is necessary to consider these situations separately. I will start with the
case of using the codec PCMu without security. One of the captures performed with this
codec is shown in figure below:

Figure 45. Capture of the media traffic using PCMu without security

We can see that the size of the packet is 180 bytes for the RTP packets. However the real

size of data is 168 bytes. Moreover if the users do not speak the size of the packets is the same
so there is not a voice activity detection mechanism.

To calculate the bandwidth used in voice transmission we just need to measure the time

 64

between the sending of two packets and divide the size of the packet in bits by the time
previously calculated. In average this value is 64000 bits per seconds since we are using
PCMu encoding.

130.237.15.236 130.237.15.235

Relative time to the first packet Time difference between packets
25,804957 --
25,824943 0,019986
25,844930 0,019987
25,874919 0,019989
25,884906 0,019999
25,905268 0,020362

So we can see that the average time is approximately 20 msec.

If security is also included by enabling the Pre-Shared Key Agreement and using

secure outgoing calls, we see that the size of the packets is increased by 4 bytes which is
as expected [16]. The situation is seen in the following figure:

Figure 46. Capture of the media traffic with PCMu and security

 65

130.237.15.236 130.237.15.235

Relative time to the first packet Time difference between packets
21,579294 --
21,599032 0,019738
21,615647 0,016615
21,639382 0,02375
21,658995 0,019613
21,674736 0,015741

In this case data size is 172 bytes and the average time is same. And as in the previous

case if the users do not speak the size of the packets is the same so there is not a voice
activity detection mechanism.

Another codec is iLBC, and the results for this codec without security are shown in

the table.

130.237.15.236 130.237.15.235

Relative time to the first packet Time difference between packets
10,496575 --
10,519311 0,022736
10,540923 0,021612
10,562036 0,021113
10,582647 0,020611
10,603510 0,020863

These values correspond to the capture shown in the Figure 47.
In this case we see that the average time continues being the same while the data size

is 38 bytes RTP (or 50 bytes of UDP payload). In this situation the bandwidth is:
BWRTP = 15200 bps.
BWUDP = 20000 bps.

The last codec measurement is for iLBC including the same security that was also

used with PCMu. The table showing the results is below.

130.237.15.236 130.237.15.235

Relative time to the first packet Time difference between packets
11,856495 --
11,876481 0,019986
11,896468 0,019987
11,916458 0,01999
11,936444 0,019986
11,956432 0,019988

 66

Figure 47. Media traffic corresponding to iLBC codec and without security

The capture enables to see that the packet size is 42 bytes for RTP and 54 for UDP. So,

security adds 4 bytes in each packet.

The bandwidths are approximately:
BWRTP = 16800 bps.
BWUDP = 21600 bps.

Concerning the 16-bit linear encoding, I faced one problem. It is that the traffic capture

could not be done since the last version of Minisip did not allow including this codec.

The next step would be the calculation of jitter and delay for the communications with

different codecs. However, there was another problem, valid for all codecs. The
communication in one direction presented a reasonable delay, whereas the delay in the other
direction was huge. And this case was not able to be explained by the developers neither. That
is why, I did not calculate the delay and jitter.

I also calculated the bandwidth utilized during the tear down of the calls for the four cases

 67

above. I found that regardless of security the traffic is the same for a given codec. This is as
expected since SIP messages are not protected. The traffic values are in the table below.

Codec used BYE message and 200 OK, Time
PCMu 275 bytes, 382 bytes, 0,016 sec
iLBC 500 bytes, 255 bytes, 0,016 sec

 Finally I will say that capture sessions were perform to calculate the traffic sent for the
Minisip users when there is not communication. All these captures showed that there is no
traffic.

7.3. Packet level comparison

 In the login process the minimum number of bytes that the user exchanges is 3293 and it
increases depending on the number of contacts to be retrieved, whereas in the case of Minisip
is 2540 bytes. We can see that there is an important difference in bytes.

Moreover, there is an important difference in the time needed to finish the login process. In
the Skype is observed that this time varies from 6 to 9 seconds. This is due to the search of the
supernodes and the information to be downloaded from them (buddylist and list of contacts).
In the case of Minisip the login process is done in 31.1 msec.

With respect to the call establishment process there are also several differences. First, in
Skype this process requires UDP and TCP traffic, whereas in Minisip we find only SIP traffic
over UDP. Second, in Skype if the user to be contacted is in our list of contacts, the caller
transmits in average 2723,75 bytes in a period of time of 0,19 seconds. However, if the callee
is not in our list of contacts, then the time and the number of bytes increases since it is
necessary to communicate with our supernode to perform a search of this contact. In the case
of Minisip the data transferred is higher than in Skype and the time could be higher if the user
to be called is in our list.

In reference to the media communication I see that in Skype the size packet is not fixed and it
varies, whereas in Minisip for PCMu and iLBC is fixed. It is also observed that the bandwidth
used in Minisip is lower when the audio is encoded with iLBC than in Skype (the half
approximately), but if the codec selected is PCMu, then the bandwidth required in Minisip is
the double. Then we can see that the bandwidth required depends on the codec selected and
that if we are able to introduce the same codec in both programs the bandwidth obtained will
be the same.

In the case of the tear down of the call two packets are sent in both programs. However, the
number of bytes in the case of Skype is lower than in Minisip. In the case of Skype these two
packets are carried over TCP whereas in Minisip correspond to the BYE and 200 OK packets.
Besides, the time for the tear down the call is lower in Minisip than in Skype.

Additional results are that both programs do not include voice activity detection mechanisms,
that the bandwidth utilized in Minisip when there is not communication is null while in Skype
it varies from 0 to 0.5 kbps, and that including security in the communication adds four bytes.

 68

 8 Conclusions

The general conclusion in my master thesis is that there are two initial ideas or targets

completely different in both products. These two ideas define and explain the other results and
conclusions obtained in my work.

The main aim of Skype is to create a VoIP program which provide to the company

incomes. In consequence, it is necessary to develop a product available to as many users as
possible by providing software version of this product for the most important operating
system, that is, Microsoft Windows, Microsoft Pocket Pc, Linux, and Macintosh. In addition,
since the clients pay for a service (i.e. SkypeOut, SkypeIn, VoiceMail, ...), a complete
information and support must be ready to gain the trust of the clients. Actually, this explains
the different sources of information included in the Skype website as well as the complete
definition of the hardware and software requirements and the steps to follow when installing
the corresponding software version. It is also very important to create a solid program to
avoid problems to the users.

Of course, it is desired and needed simple operation with the program. For this reason

parameters like the codec to be used in the communication or the security level are fixed in
the program. The current Skype version utilizes a broadband encoding of the audio so that the
frequencies upper to 16 KHz. will be filtered and the security is provided by using two
cryptographic algorithms. Initially, RSA is used to protect the negotiation of the 256-bit
symmetric key and later the AES algorithm encrypts the rest of the communications.

Moreover, we can see that Skype focuses development in the communication via text,

audio and also sending files. However they do not explore the field of the videoconference. In
fact, other services announced in their website and in their journal continue in the field of the
telephony. Basic knowledge of the operations of the market, especially the technological
market, shows us that the development of a product for large number of clients requires a
huge effort in terms of time and money. Furthermore, this enterprise wants to sell its product
for sure, but can introduce it in the market, even, without being completely sure about its
correct operation.

On the other hand Minisip is a prototype in continuous development. It pretends to

study the new ways of communication and services that the IP telephony allows to emphasize
the possible advantages and the problems. It also has the main source of developers in
students performing their master thesis at KTH in Stockholm.

Therefore Minisip, at least by the moment, is not oriented to normal users, but it is

focused in the investigation and development of new applications. This different aim permits
to understand that Minisip is covering a wider number of communications means than Skype,
including videoconference with one or more users as well as variation of the encoding of the
audio, or different levels of security in the communication. It is also possible to vary the
mechanism to control the phone conferences, the definition of different audio qualities by

 69

selecting different codecs in the different links of the communication (which is possible since
we are using SIP). It also allows sending different flows of audio over the same link of and
locating in different virtual spatial positions and even utilizing the audio-to-text and text-to-
audio mechanisms decreasing dramatically the bandwidth for a given quality. Then the
Minisip users have a greater number of parameters to vary so that it is possible to understand
how these parameters affect the communication.

However, since Minisip is a prototype with an investigational target the structure of

support to the clients does not have the structure of the Skype support, the number of
operating systems in which it is available is lower (only Linux versions although the
translation to Windows has been started). There is no definition of the hardware requirements
and the only stable version is on Debian. As a consequence, the Minisip users must have a
greater knowledge to understand the advantages of using one or the other options when
establishing the communication and also to solve more complex problems without much
information.

The following figure aggregates the results providing an easy way to compare the both
soft wares.

Figure 48. Summary of the results

 70

 9 Future work

The work I consider interesting to do in the future is commented in the following points:

• First, it is necessary to finish the translation of Minisip providing a Windows version

even compatible with Pocket PC. In that situation, the more people will be covered
increasing the number of developers and improving the usability of the program.

• Once the Windows version is available it would be interesting to introduce a

connection to Skype contacts in Minisip´s graphical interface. Then when the user
wants to call one of his Skype contacts, Minisip will connect with Skype by using the
Skype API (for Microsoft Windows and Linux) so that we could initiate the
communication using the Skype resources.

• It is also interesting to perform the comparison of both VoIP programs over the same

platform. Then it is necessary to connect our common graphical interface with the
Windows version of Minisip using the textual interface available for Minisip. As a
consequence the connection would be straight and it would be possible to compare the
new results with the results obtained in this master thesis.

• Finally, the last work I suggest is to decrypt the Skype protocol by following the ideas

indicated in this document in Appendix C. Then we will be able to know completely
the messages exchanged between the client and the servers in Skype and to obtain
advantages that could be introduced in Minisip. And even more, it could be possible to
use Skype network resources.

 71

 10 References

[1] Rakesh Arora, “Voice over IP: Protocols and standards" http://www.cse.ohio-
state.edu/~jain/ cis788-99/ftp/voip_protocols/index.html#intro. Last accessed on
2005.05.02.

[2] José Manuel Huidobro, “La telefonía sobre IP”,
http://www.monografias.com/trabajos10/ tele/tele.shtml. Last accessed on 2005.05.02.

[3] Marco A. Escobedo and Michael L. Best, ”Convivo comminicator: An interface-
adaptative VoIP systems for poor quality networks”,
http://xenia.media.mit.edu/~marcoe/convivo_paper_2003.pdf. Last accessed on
2005.05.15.

[4] O. Levin, April 2003, ”RFC 3508-H.323 Uniform Resource Locator (URL) Scheme
Registration”, http://www.faqs.org/rfcs/rfc3508.html. Last accessed on 2005.05.15.

[5] H.323. A premier on the H.323 Series Standard,
http://www.packetizer.com/voip/h323/ papers/primer/. Last accessed on 2005.05.02.

[6] Videoconferencia, una herramienta para aumentar la proctividad en la empresa de hoy:
H.323 o H.320, http://www.comunicaciones.unitronics.es/tecnologia/H.323.html. Last
accessed on 2005.05.02.

[7] Jose Espinosa, “VoIP: Presente y futuro de las comunicaciones de voz”,
http://www.aui.es/ biblio/libros/mi99/19voz_ip.htm, last accessed on 2005.05.02.

[8] H.225: Call Signaling and RAS in H.323 VOIP Architecture, http://www.javvin.com/
protocolH225.html, last accessed on 2005.05.02.

[9] Client/server architecture16.20.35
http://www.webopedia.com/TERM/C/client_server_architecture.htm. Last accessed on
2005.05.15.

[10] H.245: Control Protocol for Multimedia Communication http://www.javvin.com/
protocolH245.html, last accessed on 2005.05.02.

[11] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg, “SIP: Session Initiation
Protocol”, March 1999, 132 pages, IETF RFC 2543, ftp:// ftp.isi.edu/in-
notes/rfc2543.txt

[12] Real time Transport Protocol, http://searchnetworking.techtarget.com/sDefinition/
0,,sid7_gci812019,00.html, last accessed on 2005.05.05.

[13] Ville Hallivouri, Helsinki University of Technology, ”Real time Transport Protocol
Security”, http://www.tml.hut.fi/Opinnot/Tik-110.501/2000/papers/hallivuori.pdf, last
accessed on 2005.05.02.

[14] R.Braden, L.Zhang, S.Berson, S. Herzog, S. Jamin, September 1997, “Resource
ReSerVation Protocol”, IETF RFC 2205, http://www.ietf.org/rfc/rfc2205.txt

[15] Session Description Protocol, http://www.javvin.com/protocolSDP.html, last accessed
on 2005.05.04.

[16] Johan Bilien, “Key agreement for Secure Voice over IP”, Master Thesis, KTH,
Stockholm, December 2005. ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-
REPORTS/031215-Johan-Bilien-report-final-with-cover.pdf

[17] Peer to peer, http://en.wikipedia.org/wiki/Peer-to-peer, last accessed on 2005.05.08.
[18] Napster, http://www.napster.com/
[19] Gnutella, http://www.gnutella.com/. Last accessed on 2005.05.18.
[20] FastTrack, http://www.fasttrackdcn.net/ . Last accessed on 2005.05.18.

 72

[21] Skype, www.skype.com , last accessed on 2005.04.26.
[22] Skype. http://en.wikipedia.org/wiki/Skype. Last accessed on 2005.05.10
[23] Open.Net at KTH, Open Comminication Network Architectures,

http://www.nsrc.se/Open-brochure.pdf , last accessed on 2005.05.10
[24] Minisip, http://www.voip-info.org/wiki-minisip, last accessed on 2005.05.10.
[25] M. Baugher, D. McGrew, M. Naslund, E. Carrara, K. Norrman, March 2004, ”The

Secure Real-time Transport Protocol (SRTP)”, IETF RFC, www.ietf.org
[26] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, K. Norrman, August 2004, ”MIKEY:

Multimedia Internet KEYing”, IETF RFC, www.ietf.org
[27] Advanced Encryption Standard, http://en.wikipedia.org/wiki/AES, last accessed on

2005.05.06.
[28] Tom Davis, “RSA Encryption”, October 10, 2003,

http://www.geometer.org/mathcircles/ RSA.pdf, last accessed on 2005.05.08.
[29] Francis Litterio,”The Mathematical Guts of RSA Encryption”,

http://world.std.com/~franl/ crypto/rsa-guts.html, last accessed on 2005.05.08.
[30] Francis Litterio, “An example of the RSA Encryption”,

http://world.std.com/~franl/crypto/ rsa-example.html, last accessed on 2005.05.08.
[31] Luciano Moreno, “Criptografía (X)”, http://www.htmlweb.net/seguridad/cripto/

cripto_10.html, last accessed on 2005.05.05.
[32] SkypeOut Rates, http://www.skype.com/products/skypeout/rates/, last time accessed

on 2005.04.26.
[33] iLBC White Paper, October 15, 2004, “iLBC – Designed For The Future”,

http://www.packetizer.com/codecs/ilbc/iLBC.WP.pdf. Last accessed on 2005.05.17.
[34] Olof Hagsand, ”The application layer”, NADA/KTH, olofh@nada, January 20, 2005,

http://www.nada.kth.se/kurser/kth/2D1490/05/lectures/lecture4/applications.pdf. Last
accessed on 2005.05.17.

[35] Handybits voicemail, http://www.handybits.com/voicemail.htm, last time accessed on
2005.03.21.

[36] Messaging Application Programming Interface, http://project.uet.itgo.com/mapi.htm,
last time accessed on 2005.04.27

[37] Skype Journal, http://www.skypejournal.com/. Last accessed on 2005.05.18.
[38] Minisip, http://www.minisip.org, last time accessed on 2005.04.22.
[39] Inmaculada Rangel Vacas, ”Context Aware and Adaptative Mobile Audio”, Royal

Institute of Technology (KTH), Semester Project performed during September 2004 -
March 2005. ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-REPORTS/050418-
Inmaculada-Rangel-Vacas.pdf. Last accessed on 2005.04.26.

[40] Florian Maurer, “Push-2-talk Decentralized”, Royal Institute of Technology (KTH),
Semester Project performed during May-August 2004. http://push2talk.flohweb.ch/

[41] B. Campbell, R. Mahy, C. Jenning, August 24, 2005, “The Message Session Relay
Protocol”, http://www.ietf.org/internet-drafts/draft-ietf-simple-message-sessions-
10.txt. Last accessed on 2005.05.18.

[42] RSA Laboratories, What is Diffie Hellman?, 2004,
http://www.rsasecurity.com/rsalabs/ node.asp?id=2248, Last accessed on 2005.04.27.

[43] Andreas Ångström, “Peer to peer vs. SIP”, Royal Institute of Technolgy (KTH),
Master thesis, in preparation.

[44] Jan Linden, April 12th, 2005. ”VoIP: Better than PSTN?”,
http://www.globalipsound.com/solutions/solutions_whiteprs.php. Last accessed on
2005.05.18.

 73

[45] Ignacio Sanchez Pardo, “Spatial Audio for the Mobile User”, Master Thesis, KTH,
Stockholm, February 2005. ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-
REPORTS/050307-Ignacio_Sanchez_Pardo-with-cover.pdf

[46] Messenger, http://messenger.msn.es/. Last accessed 2005.04.26.
[47] CuSeeMe, www.cu-seeme.com. Last accessed 2005.04.26.
[48] Microsoft NetMeeting, http://www.microsoft.com/windows/netmeeting/. Last

accessed 2005.04.26.
[49] Digisip – Bredbandstelefoni, www.digisip.com. Last accessed on 2005.05.18.
[50] HotSIP. http://www.hotsip.com/. Last accessed on 2005.05.18.
[51] ActiveSync.

http://www.microsoft.com/windowsmobile/downloads/activesync38.mspx. Last
accessed on 2005.04.29.

[52] ”GNU LGPL”, http://es.wikipedia.org/wiki/LGPL. Last accessed on 2005.05.18.
[53] Bruce Perens, Sven Rudolph, Igor Grobmanm, James Treacy, and Adam Di Carlo, 18

December 2002, “Installing Debian GNU/Linux 3.0 for Intel x.86”,
http://www.debian.org/releases/stable/i386/install last accessed 2005.05.02

[54] Key agreement protocol. http://en.wikipedia.org/wiki/Key_agreement. Last accessed
2005.05.02

[55] What is pre-shared key or shared secret?. http://kb.indiana.edu/data/
aodl.html?cust=641840.37921.30 .Last accessed 2005.05.02

[56] Glossary. http://docs.sun.com/source/816-6393-10/Glossary.html. Last accessed
2005.05.02.

[57] Certification authority. http://www.atis.org/tg2k/_certification_authority.html. Last
accessed 2005.05.02.

[58] Transport Layer Security. http://searchsecurity.techtarget.com/sDefinition/
0,,sid14_gci557332,00.html. Last accessed on 2005.05.02.

[59] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, “STUN - Simple Traversal of
User Datagram Protocol (UDP) Through Network Address Translators (NATs)”, IETF
RFC 3489, http://www.ietf.org/rfcs/rfcs3489.html . Last accessed 2005.05.02.

[60] GloblalIPSound. http://www.globalipsound.com , last accessed 2005.04.29.
[61] Ethereal. http://www.ethereal.com/, Last accessed on 2005.05.03
[62] Richard Sharpe, Ed Warnicke, and Ulf Lampimg, “Ethereal user´s guide V2.00 for

Ethereal 0.10.5”, NS Computer Software and Services P/L, 2004. Last accessed on
2005.04.04.

[63] S.Baset, “The Skype Procol Analysis”, Department of Columbia Science, Columbia
university, New York last accessed 2005.04.04.

[64] ”Matlab 7.0.4. The Language of Technical Computing”,
http://www.mathworks.com/products/matlab/. Last accessed on 2005.05.16.

[65] Joe Barr, Monday October 25, 2004, ”CLI Magic: Looking for strings”,
http://enterprise.linux.com/enterprise/04/10/21/1240220.shtml?tid=47&tid=89. Last
accessed on 2005.05.18.

[66] Microsoft, http://msdn.microsoft.com/. Last accessed on 2005.05.19
[67] Jeff Prosise, ”Programming Windows With Mfc”, 2th Edition, Last accessed on

2005.05.19.
[68] Douglas Boiling, ”Programming Microsoft Windows CE .NET”, Third Edition. Last

accessed on 2005.05.19.
[69] Charles Petzold, ”Programming Windows, 5th Edition”. Last accessed on 2005.05.19.
[70] Taavet Hinrikus, SKYPE API ”Description of Skype API and how to use it”,

 74

http://skype.com/community/devzone/Skype%20API%20description%201.2.pdf. Last
accessed on 2005.05.19

[71] Freenet, http://www.freenet.co.uk/. Last accessed on 2005.05.24
[72] I2P, www.i2p.net Last accessed on 2005.05.24
[73] GNUnet, http://gnunet.org/. Last accessed on 2005.05.24
[74] Entropy, http://entropy.stop1984.com/ Last accessed on 2005.05.30
[75] CSD group 15, http://csd.ssvl.kth.se/~csd2005-team15/. Last accessed 2005.05.30
[76] Developer list, http://lists.minisip.org/pipermail/minisip-devel/. Last accessed on

2005.05.24
[77] Israel M. Abad Caballero master thesis, “Secure Mobile Voice over IP”, Royal

Institute of Technology (KTH), ftp://ftp.it.kth.se/Reports/DEGREE-PROJECT-
REPORTS/030626-Israel_Abad_Caballero-final-report.pdf. Last accessed on
2005.05.30

[78] Judah Levine, “Nist Internet Time service”, http://tf.nist.gov/service/its.htm. Last
accessed on 2005.05.30

[79] Bilge Cetin, Elena Martín, Guang Liang, Max Loubser, and Hanning Zhang”, CSD
group 14, http://csd.ssvl.kth.se/~csd2005-team14/. Last accessed 2005.05.30

 75

 Appendix A Study of the Skype protocol

 A.1 Experiment setup

The experiments were performed with two versions of Skype: 1.2.0.37 and 1.1.0.79.

Skype was installed on my laptop under Windows XP and on two more machines running
RedHat Linux 9. The Windows machine was an AMD Athlon 2500 with 512MB memory
while the others machines were Dell Power Server XX. Each machine has a 100 Mbps
Ethernet card and the Windows machine also has a wireless network interface.

Experiments were performed in only one network situation in which all the Skype users

were on at public IP addresses.

Ethereal was used to monitor the network traffic.

 A.2 Functions

Skype functions can be classified as startup, login, user search, connection

establishment/ tear down, media transfer, and presence messages. The following study will
discuss each of them in detail.

A.2.1 Startup

In the study performed at Columbia University [63] concerning the operation of the

Skype protocol, they ascerted that on normal startup, Skype client (SC) sends a HTTP 1.1
GET request to the Skype server (skype.com) to determine if a new version is available. They
also indicated that the request contains the keyword 'getlatestversion'.

However, in the measurements performed I verified this behavior depends on the

machine on which Skype client is running. When the Skype client runs on Linux the GET
message over the HTTP is sent. In the case of running of Windows, in the measurements
which were made this message never was sent.

A.2.2 Login

The Baset [63] says “the login is the most critical function on the Skype operation.

During this process SC advertises its presence to other peers and its buddies determine the
type of NAT and firewall is behind, and discovers online Skype nodes with public IPs”.

It was verified that the Skype client creates a table after the first log to use later during

the installation. This table is periodically updated with the IP address and port of the new
peers. During subsequent logins, the SC sends UDP packets to the nodes stored in the table
and it must receive a reply from at least one of them.

In any case, the Skype client must connect to a supernode to be able to login to the

network. To do that, the Skype client (SC) initially sends UDP packets to different nodes,

 76

hopefully at least one of them will respond. Then the SC establishes a TCP connection with
this supernode (SN), then they exchange some information over TCP which is assumed to be
the address of one or more several login servers so that the client can try the connect with one
of them.

The connection with the supernode follows one of two patterns depending on whether

the Skype client is running on Windows or Linux. These are the patterns of exchanges that I
found are in Figures 49 and 50.

 Figure 49. Connection with the supernode in Linux

The emphasized frames show the last frame exchanged with the supernode (SN) before

the TCP connection with the login server is made. It is possible to observe that there is a
certain parallelism between both cases as was expected. But even more interesting is the
difference in information exchanged between both these nodes (SC and SN) following this.
Thus, in the case of the client running over Linux, the amount of information exchanged is
much smaller. This is not because the client is running on Linux, but that accomplishment
corresponds to the case of having a single contact in our list of contacts, whereas in the case
of Windows we have approximately 20 contacts.

We are going to study in more detail the two transfer patterns with the goal of

determining the basis for their differences. First, observing the last transference in both
experiments I note that in both cases this transfer is equal and the explanation is these two
transfers corresponds to the cancellation command done in both experiments from the caller
before the call establishment was completed (i.e., a missed call). Second, we also can discard
the previous transfer since it is due, if the user is using Linux, to the search for the callee

 77

Skype user and, in the case of Windows, it is expected that the caller is informed about the
path to follow in order to complete the call because the called Skype client was in the buddy
list of the caller. In the first case, the Skype client did not have the client in his buddy list.

 Figure 50. Connection with the supernode in Windows

Thus, the real difference is in the remaining frames:

• Without the callee being in the buddy list of the caller:
• 23 Bytes sent.
• 115 Bytes received.
• With twenty users and the user in the buddy list:
• 240 Bytes sent.
• 1032 Bytes received.

It is conjectured that the Skype client receives these 1032 bytes containing the

information about the users´ (contacts) who are connected (because the user will send to the
connected contacts UDP messages some time later 101 bytes indicating he is online).

However, additional aspects were noticed. First of all, we must emphasize that the

discovery of more than one centralized element in the Skype network can be interpreted as a
modification of the previous structure. It was shown that whenever the users' login occurs, the
connection with the supernode node is established as well as a connection with, at least, one
other node which must provide the authentication information. The previous studies affirm

 78

that it is the server (with IP address 212.72.49.131 in the current version), which was called
the login server, i.e., the machine which authenticates the new user. However, we see that the
connection with this node is not present in all the logins (only in machines running Linux) so
it cannot be the login's server.

Instead of connecting with that machine, a TCP connection was observed with one of

the following three machines in all the measurements: 212.72.49.141, 195.215.8.141 or
212.72.49.142. In the packets captured in these measurements, these three centralized nodes
correspond to servers, but it is very probable that even more servers exist (considering the
number of Skype clients and that this number grows every day).

It also was observed than when the Skype client is running on Linux, the connection

with 212.72.49.131 is established and the command GET is sent from the user to this node. In
this situation we can assure that there are more than one centralized node in the network
(which is logical as the number of users surpasses the 3 million users). Therefore, the network
has evolved from a structure in which there was a single centralized element to a structure
composed of several login servers in order to take care of the users which may contact them.

Once we have determined the node which must be contacted to provide authentication,

we should study the information exchanged between the user and that node. The connection
with the login server always occurs after the connection with the supernode was established.
Therefore, I can propose that it is within the communication with the supernode that the
Skype client obtains the address of the login server. It is also thought that redundancy is
introduced in the communication between the Skype client (SC) and supernode (SN) which
sends the addresses of several login server, because if it is not possible to connect with the
first of them, then the next attempt could be done to the next in the list.

The traffic flow between the two nodes is shown in Figure 34. It is possible to

appreciate how within these 406 bytes the SC sends to SN there are the two groups of 5 bytes
exchanged previously with the difference that the last one of these 5 bytes in each group is
replaced by another byte. For a given user the first 15 bytes in this 406 bytes are constant.
Following with the same scheme in the 218 bytes of answer the four first bytes are always 17
03 01 00 and the last byte is replaced by another one.

Figure 51. Traffic between SC and login server for an incorrect login

If the login process is not correct, i.e., introducing some incorrect data, then the transfer

of information between these two terminals varies. Both packages of five bytes remain
unchanged and continue to be exchanged. Additionally, the Skype client will send the 406
bytes to the server as many times as the login process is tried. Nevertheless, if login is not
correct, then the login server will return a packet with just 18 bytes, rather than 218 bytes

 79

which again proves that this is the login process, Figure 51. Therefore, see a difference of 200
bytes between the cases of correct and incorrect login.

Additional, packet captures showing details can be found on the CD.

It must be noted that the TCP connection with the SN persists as long as the SN is alive.

If the SN becomes unavailable, then a TCP connection will be started with another SN.

As I have already indicated previously, in some cases (specifically a user running on

Linux machine) a HTTP connection is made to the IP address 212.72.49.131. Via this
connection a message GET containing the word "getlatestversion" is sent.

In previous versions of the Skype program, the information exchanged with the machine

follow this pattern:

Figure 52. Connection with a second centralized node (Old version of Skype)

I have already seen this operation has been modified, so that a communication with

other nodes of the network settles down which will make the authentication of the user before
connection HTTP with 212.72.49.131 settles down. The current transference of information is
as in Figure 35.

I believe that, the communication with this node constitutes a remnant of previous

versions that will be eliminated in future versions. Note that the server only replies with an
acknowledgement.

Request:

Hypertext Transfer Protocol
GET

http://ui.skype.com/ui/2/1.0.0.20/en/getlatestversion?ver=1.0.0.20&uhash=be29c465765bf4c
d4470b0ad662d3e39 HTTP/1.1\r\n

 80

Request Method: GET
connection: Keep-Alive\r\n
host: ui.skype.com\r\n
\r\nHypertext Transfer Protocol

Reply:

HTTP/1.1 200 OK\r\n
Date: Fri, 08 Apr 2005 14:53:21 GMT\r\n
Server: Apache\r\n
X-Powered-By: PHP/4.3.9\r\n
Cache-control: no-cache, must revalidate\r\n
Pragma: no-cache\r\n
Expires: 0\r\n
Content-Length: 7\r\n
Connection: close\r\n
Content-Type: text/html; charset=utf-8\r\n
Content-Language: en\r\n
\r\n
Data (7 bytes)

0000 31 2e 30 2e 30 2e 31 “1.0.0.1”

The parameter “uhash=be29c465765bf4cd4470b0ad662d3e39“ is constant if the Skype

user is fixed and it is the hash of the user ID, the password and the own value of the hash
function. Moreover, the hash value has 32 hexadecimal numbers so that the number of bits is
32*4= 128 bits. Then, the hash function used could be MD5.

The Skype operations explained up to this point are shown in the Figure 53.

A.2.3 User Search

Skype uses its Global Index technology (GI) to search for a user. Skype also claims in

[21] that the search is distributed and is guaranteed to find a user if they exist and have logged
in the last 72 hours.

The messages in Skype are encrypted so while the login process is possible to

understand, the search process is more difficult, because we do not know the details of the
technique Skype is using.

In any case, Skype provide the user with a dialog box by which to search for a user.

Once the start button is pressed, the behavior is similar to that which observed in the previous
study [63]. In that study, the investigators showed that the Skype client sends a packet TCP to
its SN (super node). This supernode SN responds by sending another packet of greater size
than the previous one which contains the IP:port pairs of four possible nodes to be contacted.
The situation was as in Figure 54.

 81

Figure 53. Skype scheme

 F igure 54. Communication during the user search process (Old version)

Currently, the system is based on the same decentralized process to request addresses

from the SN, followed by sending UDP packets later to the specified corresponding nodes
using the indicated IP addresses and ports. Nevertheless, it was observed the number of nodes
is not four in the previous study, but has increased -if necessary multiple queries are made to

 82

the super node.

The current situation is shown in the following Figures 55 and 56.

 Figure 55. Current user search

If additional nodes must be queried, then new messages will be sent from the SC to the

SN. The size of these replies alternates between 60 and 101 bytes. The size of the UDP
packets sent by SC will be either 85 or 89 bytes, but the reply is always 29 bytes. The SC
always sends several UDP packets with 85 bytes before sending packets with 89 bytes. I do
not know what is the reason for 4 bytes-difference between the two kinds of packets. It was
also observed in the subsequent captures that if the Skype user is not able to find the requested
user or when that user is found, a message with 16 bytes is sent to the super node (SN) and it
responds by sending another packet 93 bytes. It is not clear how this search terminates if it
fails to find a user.

 A.2.4. Call Establishment / Teardown

In this section we continue the comparison between the current operation of the

program and the previous version.

The study of the previous version showed two important ideas:
• Call signaling is always carried over TCP.
• For users that are not present in the buddy list, call placement is essentially equal to

user search plus call signaling.

Different measurements were made and they showed that the second aspect above was

always true. Nevertheless, it is necessary study the existing transfers between the different
involved terminals during the calls in order to be able to make confirm the previous study.

Considering online users with each one in the buddy list of the other, upon pressing the

“call” button we observe the traffic in Figure 57.

 83

Figure 56. Search scheme

As can be observed in the previous scheme as well as in the corresponding captures

available in the additional CD, we see TCP traffic between the machines, but we also see
UDP packets sent from one machine to another. I propose that the transfer of the minimum
data for the call establishment will be sent via TCP whereas other information that can
improve the communication with respect to previous versions is sent on UDP.

As commented previously, we can understand what is happening in some of the
transfers. Thus, the two transfers with sizes of 103 and 41 bytes respectively are used to carry
the warning message between the caller and callee users indicating the caller is online and the
reply. I assume this because when the user performs the login process a message with 101 or
103 bytes is sent to each one of his contacts and the reply from each one of them contains 41
bytes. In fact, this transfer does not appear in all the captures in the same position because if
the “warning message” was sent previously to your contacts then we already know that the
user to be called is online.

 84

 Figure 57. Call establishment

The timestamps in each packet that Ethereal provides permit us to state that the first

transfers do not really correspond to the call establishment as it was thought initially since the
duration of the process would be longer than 5 or 6 seconds. However, these messages are
present in all our measurements.

Then the TCP connection is established by sending three messages and next, fourteen

bytes in each direction are exchanged. As described in [63], these fourteen bytes perform the
mutual authentification.

The other transfers cannot be explained since we do not know the Skype protocol. In

any case in the scheme of the traffic between both terminals it is observed that the caller user

 85

always sends 4 bytes to the callee user. At first I thought about the possibility that these four
bytes corresponded to a encrypted IP address. Nevertheless, in the successive captures it was
verified the calls established in a same day present a first common byte. Also it was verified
the last 12 bits of this transference are constant (1101 0000 0000) and as a result of this
discovery I suppose that those four bytes constitute just a temporary information.

Finally it is shown two messages with 17 (or 16) and 13 (or 14) bytes sent between

them. These two packets correspond to the end of the call and their directions depend on the
user who decides to tear down the call. This situation agrees with the awaited one and
indicated in the study made in the University of Columbia [63].

The packet captures performed permit us to determine the average delay of the call

establishment process as well as the average of transmitted bytes number of transferred data.

 Table 3. Call establishment transmission

Average Time = 0,19007425 sec.
Average Data = 2723,75 bytes

With these two values the average bandwidth used in the establishment and tear down

processes can be calculated. Thus the average bandwidth is:

BWcall_establishment ≈ 114639 bps

Once I have the packet captures I can also calculate the average delay of the tear down

process as well as the average of transmitted bytes number of transferred data:

 Table 4. Tear down traffic.

 Average time = 0,15744885 sec.
 Average data = 30,25 bytes

 86

Then the average bandwidth is: BWcall_ending ≈ 1537 bps

There was not information in [63] about bandwidth used in the tear down process but

the average of bandwidth in the call establishment was 3 Kbytes/s. Then the current Skype
version utilizes a bandwidth almost five times bigger than in the previous.

A.2.5 Media Transfer and Codecs

The different packet captures sessions enabled me to see that the voice traffic is sent

over UDP packets (being possible to select the port to be used in the options of the Windows
version of the software). As described in [63] the traffic used for media transfer was 5 kbps by
sending packets of a size of 67 bytes, so it is between the limits indicated by Skype (3 – 16
kBps).

However, in the current Skype version I have found that the sizes of these packets are

not fixed, and it is not possible to discern a pattern in their variation although the media
traffic flows inside UDP packets.

Moreover, we can see that when the call is initialized but there is no voice flowing

between users, the bandwidth does not decrease. This indicates the current Skype version does
not utilize a voice activity detection mechanism.

The bandwidth used for media transmission in each communication was calculated

taking intervals in the communications with duration of approximately a second and
calculating the number of bytes transmitted. With these two values I could calculate the
bandwidth. To remove the dependence on the specific temporal period considered, I utilized
several periods of the same duration and the values obtained are:

• With media traffic exchanged:
BWmt ≈ 7892 Bytes/sec.
• Without media traffic exchanged (just silence):
BWwmt ≈ 7175 Bytes /sec.

These values present a variance since the packets size change from one to another

measurement. However, the comparison of these two bandwidths supports the previous
statement about the non-existence of a voice activity detection mechanism in the current
version of Skype. These packets will be confort noise packets to make the communication
more pleasant. In any case, the bandwidth used for voice transmission continues inside the
limits indicated by Skype (3 – 16 kBps)

TCP traffic was also observed during the measurements. TCP packets with a size of 18

bytes and their acknowledgements were exchanged alternatively between both users joining
the call. The interval between the sending of these messages in one direction and in the other
varies. In my opinion, these messages are used to maintain a control on the call, indicating the
type of information that will be sent in following UDP messages.

On average, the TCP traffic is:

 87

• Caller to Callee, Callee to Caller:
T1 ≈ 0,31 sec.
• Callee to Caller, Caller to Caller:
T2 ≈ 0,68 sec.

With respect to the rate of sending TCP messages, the average value obtained was:
 BWtcp ≈ 41 Bytes/sec.

In addition to the value of the bandwidth calculated above, delay and jitter in these

packet capture sessions were measured following the scheme in Figure 38.

The delay was measured looking in both computers when the same packets are sent

from one of the users and when is received in the other one. To calculate the jitter we have to
calculate the variance of the interarrival time. However, this is only possible if we have a
common time reference given by the NTP clock [78].

 Table 5. Some measures to calcule the delay and jitter

delay
0,372223 msec
0,32456 msec
0,459283 msec
0,32456 msec
0,455634 msec
0,567456 msec
0,343253 msec
0,62114 msec
0,376654 msec
Average = 0,4272 msec
Jitter = 0,10771 msec

But, as it was commented in section 7.1.3, these values correspond to the delay

introduced by the network. What we want to find is the time from the moment in which the
user speaks to the moment in which the other user listen the voice. Then, the scheme we
should follow is in Figure 39.

This noise can be some packets. If we record the communication and process it by

calculating the Fourier Transform, we should be able to obtain the frequency of the
occurrence of these packets.

However, it is possible to measure the delay in a easier way as was explained in section

7.1.3 with the Figure 39. Following that scheme, the result is shown in Figure 58.

 88

 Figure 58. End to End delay in the frequency domain.

This figure corresponds to values of:
fsample= 88223 Hz
f = 6*10-6

Delay =1,88 sec.

The average obtained in different experiments is:
Average Delay =0,89 sec.
Jitter = 0,014 sec.

Now we know the value of the delay and the jitter, and also what is the influence of the

network. A future work to consider could be to simulate longer distances to know which the
limit for the delay is.

Moreover, it is also interesting to know approximately the bandwidth used by Skype

when the user is online, but when not making calls. In the Skype website [21] is assured the
bandwidth used is between 0 and 0.5 Kbytes. Next I show the results corresponding to five
simulations without voice in Table 6, that is, without making calls.

We can see now that when there is not voice, the bandwidth used is around 0 to 0.5

kilobytes per second.

With respect to CODECs, the study made by the University of Columbia revealed that

codecs used could be three. These codecs are iLBC, iSAC or a third stranger. In this study it
was also mentioned the GlobalIPSound Company displays Skype in its website to like its
partner, in fact, it is also assumed the possibility that Skype uses its codecs.

 89

 Table 6. Traffic without making calls

Simulati Bytes Time Bandwidth
 1 1551 15,5472 sec. ≈ 99,82 Bps
 2 2670 15,3779 sec ≈ 173,63 Bps
 3 2340 15,2194 sec ≈ 153,75 Bps
 4 2090 16´081 sec. ≈ 129,97 Bps
 5 1673 14,7833 sec ≈ 113,17 Bps

The codecs mentioned in the [60] are:
• iLBC
• RCU
• Enhanced G.711
• iPCM_wb
• ISAC

Nevertheless, in [21] is stated the program uses broadband codecs, so that iLBC, RCU

and Enhanced G.711 will not be used because they are narrow codecs, that is to say, the
sampling frequency is 8000 Hz.

Therefore, we just have the possibility of the iPCM_wb and iSAC codecs.

Nevertheless, iPCM_wb has built-in voice activity detection functionality (VAD), something
that we have verified Skype does not incorporate. Consequently, we can affirm that codec
used is not iPCM_wb.

iSAC is codec “which maintain wideband communication over low and high bit rate

connections” [60]. This codec makes an automatic tuning of the transmission rate between
10kBps and 32kBps. This automatic tuning would explain the size variation in the exchanged
UDP messages between the users. The problem of this codification is that the rate of
transmission is between 10 and 32 KBps whereas Skype assures a rate located between 3 and
16 KBps. It supposes that either it is not a viable option unless they are used different codecs
based on the number of bytes to transmit at each moment and then iLBC could be used for
low rates and iSAC could be used by high rates.

But, apart from the information presented by Skype, I performed an experiment which

consists of recording a speech conversation and processing it using Matlab with the following
code:

clear all;
 descriptor = fopen('marco.wav');
 signal = fread(descriptor);
 media = mean(signal);
 %% marco.wav has 20 sec.

 for i=1:length(signal)
 signal(i) = signal(i)- media;

 90

 end;
 fsample =length(signal)/20;
 t = 0:20/length(signal):20-20/length(signal);

 figure(1);
 plot(t,signal);

 transf=fft(signal);
 transfMod=fftshift(transf);
 figure(2);
 f= -0.5:1/length(transfMod):0.5-1/length(transfMod);
 plot(f, abs(transfMod)/length(transfMod));
 potencia = abs(transfMod).*abs(transfMod)/length(transf)^2;

 figure(3);
 plot(f,potencia);

 figure(4);
 potencia2=transfMod.*conj(transfMod)/(length(transfMod)^2);
 plot(f,potencia2);

What this code does is to take the signal received, eliminates the DC level (not part of

the speech communication as voice does not have DC level) with a low band filter. The signal
obtained is in Figure 40.

 The next step is to extract the frequencies of the signal. To do that, we calculate the
Fourier transform of the signal and we display it centered in Figure 41.

In the previous figures we can see that the frequency axis is in digital frequency. In the

previous figures, the value 0,5 corresponds to the half of the sampling frequency and -0,5 to
minus half that frequency. By checking the number of samples of the signal and knowing that
the duration is 20 seconds, it is easy to calculate a sampling frequency of 22542 KHz.
Therefore, we prove that the signal contains frequencies upon almost 11,25 KHz so the codec
must be a broadband codec. Therefore, for low data rates the codec used is also broadband so
that iLBC never is used.

Moreover we can see in Figure 42 that the main power of the signal is located in the low

frequencies.

 91

 Appendix B Introduction to the Skype API in our interface

At the Skype website [21], it is possible to find an example of the API controlled by a

console so that the user might control it introduce with keyboard commands.

Unfortunately this API does not allow the use of the full functionality of Skype, shown

previously in this thesis. The aim of this document is neither to explain each of the commands
and options the API includes. Instead of that, we explain the options used to connect our
graphical user interface with Skype and show the results in the console to illustrate our
comments.

 Upon executing the API functions, in the console version, directly from our GUI, the
following message will pop up:

 Figure 59. Another program tries to connect with Skype.

Such a dialog allows us to control the connection with the Skype program. In our

interface we do not want to see this dialog every time we execute the program. Therefore,
once the graphical user interface is implemented we can select the first one of these choices in
the above dialog (which is called “Allow this program to use Skype”), then this dialog will
not appear again.

Furthermore, when we have accepted the connection by selecting the first or the second

option, the connection will be established. Using the console to utilize the API, the figure
below shows the result we obtained.

 92

Figure 60. Skype API controlled by a console.

In the case of working with the API from our interface, the same communication from

Skype will be received and will be saved in a file called “stateAPI.txt”, but it will not be
shown here because it is not useful for the reader.

When we are connected to Skype whatever we enter in the console (or executing via the

interface) will return the same result than executing the command from the Skype GUI will
cause.

Once I have explained the operation of our interface it is easy to find the set of

messages we need from the commands that the Skype API provides. We need four basic
messages, the first one to establish the connection with Skype and another three to retrieve the
information that we need to operate from this interface.

The first message is the “SkypeControlAPIDiscover” which is sent to all the windows

on the top level of the windowing system. Skype replies by sending the message
“SkypeControlAPIAttach” indicating the status of the connection, i.e. the status shown in the
figure above. The code to send this first message is:

if (SendMessage(HWND_BROADCAST,

uiGlobal_MsgID_SkypeControlAPIDiscover, (WPARAM)hWnd, 0)==0)
{
 Communication = fopen("Communication.txt", "w");
 fprintf(Communication,"failed message");
 fclose(Communication);
}//end Communication

Once we have established the connection to Skype, we can send additional messages.

 93

Firstly, we need to retrieve the client´s contacts. To do that, we have to send a string
“SEARCH FRIENDS” and send it to Skype. The result of this action is shown in the
following figure:

Figure 61. Reply to the SEARCH FRIENDS message

The code necessary to perform this (from the file SecondButton.cpp) is shown below:

char *szRetrieve= "SEARCH FRIENDS";

if(hGlobal_SkypeAPIWindowHandle!=NULL)
{
 // COPYDATASTRUCT is the structure that will contain the message
 COPYDATASTRUCT rCopyData;
 rCopyData.dwData=0;
 rCopyData.lpData=szRetrieve;
 rCopyData.cbData= strlen(szRetrieve)+1;
 // we create the SearchFriends.txt file to check that all is

correct
 messSent=fopen("SearchFriends.txt", "a");
 fprintf(messSent,"%s\n", rCopyData.lpData);
 // we check the string is correct
 fclose(messSent);

 if(rCopyData.cbData!=1)
 {
 // here is the command to send the message to Skype
 if(SendMessage(hGlobal_SkypeAPIWindowHandle,

WM_COPYDATA, (WPARAM)hWnd, (LPARAM)&rCopyData)==FALSE)
 {
 hGlobal_SkypeAPIWindowHandle=NULL;
 discInMessage=fopen("discInMessage.txt","w");
 fprintf(discInMessage,"!!! Disconnected\n");

 94

 fclose(discInMessage);
 }
 }
}// end hGlobal_SkypeAPIWindowHandle

As we can see in the figure above, Skype replies by sending a string listing the friends.

In our interface we simply save that string in a file called “MessaggeFromSkype.txt” to
process the information later. The code below stores the message received, i.e., the list of
contacts).

case WM_COPYDATA:
 if(hGlobal_SkypeAPIWindowHandle ==(HWND)wParam)
 {
 PCOPYDATASTRUCT poCopyData = (PCOPYDATASTRUCT) lParam;
 // it is not necessary to save each time the contacts -> “w”
 MessageFromSkype= fopen("MesaggeFromSkype.txt", "w");
 fprintf(MessageFromSkype,"Message from Skype(%u): %.*s\n",

poCopyData->dwData, poCopyData->cbData, poCopyData->lpData);
 fclose(MessageFromSkype);
 return 0;
 }

For each one of these contacts we will show it via our interface. To be able to show

contacts via our interface we have to process the information retrieved. First, I used two
functions called “eliminateHeader” and “eliminateComma”, which allow us to remove both
the commas and the “Message from Skype(0): USERS“. The result will be saved in a file
called “NewPruebaFile.txt”. The definitions of these functions are:

void eliminateHeader(FILE *fd, char *data)
{
 int cont;
 int exit=0;
 FILE *newFile;

 // fd should be opened and closed outside of this function in order
 // to be a more general function

 // 29 digits to delete Message from Skype(0): USERS in the string
 for (cont=0; cont < 29; cont++)
 {
 if (fread(&data[cont],sizeof(char),1, fd)==0)
 break;
 else if (data[cont]=='\n')
 break;
 }

 newFile=fopen("NewFile.txt","w");
 while(!exit)
 {
 if (fread(&data[cont],sizeof(char),1,fd)!=0)
 fprintf(newFile, "%c", data[cont]);
 else
 exit=1;
 cont++;

 95

 }
 fclose(newFile);
}

void eliminateComma(FILE *fd, char *data)
{
 int cont=0;
 int exit=0;
 FILE *newPruebaFile;

 newPruebaFile=fopen("NewPruebaFile.txt","w");

 while(!exit)
 {
 if (fread(&data[cont],sizeof(char),1,fd)!=0)
 {
 if(data[cont]==',')
 cont--;
 else
 fprintf(newPruebaFile, "%c", data[cont]);
 cont++;
 }
 else
 exit=1;
 }
 fclose(newPruebaFile);
}

The next step reads from “NewPruebaFile.txt” all the contacts and writes them to an

intermediate file one per line. This new file has the name “IntermediateFile.txt”. In order to
perform these actions we created two functions called readLine and readLineModified. First,
readLineModified is called to write the contacts to the IntermediateFile.txt and later readLine
will take each contact and store it in a char[] variable. The codes of these two functions are:

void readLineModified(FILE* fd, char* data)
{
 int exit=0;
 int numBytes=0;
 int iden=0;

 while (!exit){
 if (fread(&data[numBytes], sizeof(char), 1,fd)==0)
 exit = 1;
 else if (data[numBytes]==' '){
 exit=1;
 numBytes--;
 }
 numBytes++;
 data[numBytes]='\0';
 }
}

void readLine(FILE* fd, char* data){
 int exit=0;
 int numBytes=0;

 96

 while (!exit){
 if (fread(&data[numBytes], sizeof(char), 1, fd)==0)
 exit=1;
 else if (data[numBytes]=='\n'){
 exit=1;
 numBytes--;
 }
 numBytes++;
 }
 data[numBytes]='\0';
}

The format of every contact is now a char[], but if we want to display it via the visual

interface, we need to have them into TCHAR[] format. To do that it is used the ConvertCToT
function which is shown below. Once this is done, we can display all the contacts via the
interface.

void ConvertCToT(TCHAR* pszDest, const CHAR* pszSrc)
{
 for(int i = 0; i< strlen(pszSrc); i++)
 {
 pszDest[i] = (TCHAR) pszSrc[i];
 }
}

Following with the explanation given in section 6.3.2, the user might be interested in

calling one of his contacts. When working via the console, we utilize the command CALL
<username>, where username is the Skype client contact to be called. When using such a
command, the reply from Skype can vary depending on the state of the contact. We first
consider the case when the contact is ONLINE and accepts the call. Then, the speech
communication starts and will continue until the one of the users decides to end the call and
press the “HANG” button.

To start the communication when the user presses the “CALL” button, we read the

name of user from the editlist and create a CALL <username> string and we send to Skype.
The code necessary is:

char szCommand[128];
if(hGlobal_SkypeAPIWindowHandle!=NULL)
{
 COPYDATASTRUCT oCopyData;
 oCopyData.dwData=0;
 strcpy(szCommand, "CALL ");
 strcat(szCommand, szContact);

 oCopyData.lpData=szCommand;
 oCopyData.cbData= strlen(szCommand)+1;

 if(oCopyData.cbData!=1)
 {

if(SendMessage(hGlobal_SkypeAPIWindowHandle,
WM_COPYDATA, WPARAM)hWnd, (LPARAM)&oCopyData)==FALSE)

 {

 97

 hGlobal_SkypeAPIWindowHandle=NULL;
 }
 }
}//hGlobal_SkypeAPIWindowHandle != NULL

Figure 62. Call missed. The identifier of the call is 109

Figure 63. Call accepted by torobravo7. The identifier of the call is 114.

 98

Figure 64. Tear down of the call with torobravo7

When the call is accepted, the reply from Skype is stored in the file

“MessageFromSkype.txt” (note that this is different from “MesaggeFromSkype.txt”):

CALL 114 STATUS ROUTING
CALL 114 STATUS RINGING
CALL 114 STATUS INPROGRESS

To tear down the call we read the “MessageFromSkype.txt” (different from the

MesaggeFromSkype.txt) to obtain the identifier of the call and to create the command to close
the communication. This identifier is retrieved with a new function called “readIdentifierCall”
which is defined as:

void readIdentifierCall(FILE *fd, char *iden, char* data)
{
 int exit=0;
 int numBytes=0;
 int cont=0;
 bool bOtherOption=false;
 FILE *prueba;

 while (!exit)
 {
 if (fread(&data[numBytes],sizeof(char),1,fd)==0)
 {
 exit=1;
 }
 else if (data[numBytes]=='\n')
 {
 exit=1;
 }
 else if (bOtherOption && ((data[numBytes]>='0') &&

(data[numBytes]<='9')))

 99

 {
 iden[cont]=data[numBytes];
 cont++;
 }
 else if (bOtherOption && ((data[numBytes]<'0') &&

(data[numBytes]>'9')))
 {
 exit=1;
 }
 else if ((numBytes>1) && (data[numBytes - 1]==' ') &&

(data[numBytes]>='0') && (data[numBytes]<='9'))
 {
 iden[cont]=data[numBytes];
 bOtherOption= true;
 cont++;
 }
 numBytes++;
 }
 data[numBytes]='\0';
 iden[cont]='\0';
}

The string to send is SET CALL<identifier> STATUS FINISHED and the code which

performs this action is:

// less than 5 characters
char szIdentifier[5];
szIdentifier[0]= '\0';
szPrueba[0]='\0';

readIdentifierCall(MessageFromSkype, szIdentifier, szPrueba);
char szFinishCall[128];

sprintf(szFinishCall, "SET CALL %d STATUS FINISHED", szIdentifier);

COPYDATASTRUCT fCopyData;
fCopyData.dwData=0;
fCopyData.lpData=szFinishCall;
fCopyData.cbData= strlen(szFinishCall)+1;

if(fCopyData.cbData!=1)
{
 if(SendMessage(hGlobal_SkypeAPIWindowHandle, WM_COPYDATA,

(WPARAM)hWnd, (LPARAM)&fCopyData)==FALSE)
 hGlobal_SkypeAPIWindowHandle=NULL;
}// there is a command

 100

Figure 65. Tear down call by sending the SET CALL identifier STATUS MESSAGE

Now I must note that instead of calling a Skype contact it is also possible to call a

telephone number and this operation is the same as but simply exchanging the username for
the telephone number. However, as it has been indicated earlier, the user should have credit in
his or her SkypeOut account.

Actually, in my GUI there is another command sent to Skype in order to retrieve the

status of the user and display it after the user pressing the “CHECK” button. When the
“CHECK” button is pressed, the interface sends to Skype the message “GET USER <name>
ONLINESTATUS as shown in the following code:

ConvertCToT(szNameRetrieved, szContact);
sprintf(szState,"GET USER %d ONLINESTATUS", szAuxiliar);
int contador= strlen(szAuxiliar);

if (hGlobal_SkypeAPIWindowHandle!= NULL)
{
 COPYDATASTRUCT sCopyData;
 sCopyData.lpData= szState;
 sCopyData.cbData= strlen(szState)+1;

 if (sCopyData.cbData!=1)
 {

 if (SendMessage(hGlobal_SkypeAPIWindowHandle,
WM_COPYDATA, (WPARAM)hWnd, (LPARAM) &sCopyData)==FALSE)

 hGlobal_SkypeAPIWindowHandle=NULL;
 }
}

 Now, Skype will reply by sending the status of the user and which we will save in

“MessageFromSkype.txt”. To read that value we call the retrieveStatus defined in
fifthbutton.cpp as:

 101

void retrieveStatus(FILE* fd, char *data1, char *data2, int i)
{
 int numBytes= 0;
 int exit= 0;
 int cont=0;
 FILE* prueba3;

 while (!exit)
 {
 if (fread(&data1[numBytes],sizeof(char),1,fd)==0)
 {
 exit=1;
 }
 else if (data1[numBytes]=='\n')
 {
 exit=1;
 }
 // remove the first part of the string. We only want the

status
 else if (numBytes > (41 + i))
 {
 data2[cont]= data1[numBytes];

 cont++;
 }
 numBytes++;
 }
 data1[numBytes]='\0';
 data2[cont]='\0';
}

 102

 Appendix C Attacking Skype´s Security

To decipher the Skype protocol requires in several steps. Each one of these steps will

provide us information needed in following steps.

The first information we need is to know the behavior of the Skype protocol. To collect

this information I have done a study with Ethereal [61] to expand beyond the earlier study
[63]. It is important to note that this study used an earlier version of Skype.

What knowledge does this provide us? Both of these studies focused on the traffic sent

by the Skype client; this allows me to discover and determine centralized structures, pattern of
communications, as well find out which kind of information is exchanged with which other
nodes.

The second step used the program called “strings” [65]. This program permits us to

detect or find out possible strings (including the names of external functions used in the
operation of the program Skype). We execute this program giving it the Skype executable file,
and the program returns every string used as well as it address in memory. Thus, we learn the
memory region where the functions, dll libraries, etc. are.

The third step is to use a debugger. We could use the debugger and study the output the

debugger. The debugger will show the low level code of the program

In particular we can study the subroutines and other jumps. Running the program in the

debugger can enable us to see the call graph of subroutines.

Figure 66. Sources of information.

We can correlate this with Skype´s Internet packets. This will allow us to understand

better what is happening.

 103

Once we learn how to use these tools, it is now possible to select where to attack the
program. As it was explained in the previous study, we want to examine the login process
where four transfers between user and a centralized node which is the login server occur.

Figure 67. Login process in Skype

As a result of this transfer, there must be a copy of the RSA key as our program will

need to use it to communicate with the server in later transfers. Thus, this is the key to be
attacked or searched because we know that it is inside our computer. Finding this key will
enable us to decode the packets which are sent.

 104

 Appendix D Common Graphical Interface

As noted earlier, I have created two GUIs which allow us to use either in a (laptop) PC

or an HP iPAQ running Pocket PC. In the section 6.3.2, I have already explained the
operation of the GUI for the laptop (since the operation of the interface under Pocket PC is
very similar). In order to facilitate reading this code, I will expand my earlier explanation and
will include references to the code. Not all the code will be explained because writing a
program in Visual C++ requires generating code which defines the messages to control, the
loop that manages and captures those messages, a relation between the message and the
function to call when this message is captured, or the function to call when a identifier is
pressed, etc, but at least, the reader will know which part of the code performs each operation.
Neither it will be explained again the operation of the API since it was clarified in the
appendix B.

Here, only the GUI for a PC running Windows is explained, but the primary difference

from the GUI for the Pocket PC are:
• Different types of variables, with different sizes
• A lack of some functions for the Pocket PC
• Special code for this specific operating system

The knowledge necessary to implement the code was obtained mainly from the

Microsoft website [66], and from three books:
• Programming Windows With MFC, 2th Edition [67],
• Programming Windows CE .NET, Third Edition[68], and
• Programming Windows, 5th Edition [69].

The common interface appears on our screen as the ”main window” of our interface

which contains a main menu composed of four items: File, View, Contact, and Help. The
definition of this window is given in the file InterfacePC2.cpp with the following code:

 // Register application main window class.
 wc.style =0; // Window style
 wc.lpfnWndProc = MainWndProc; // Callback function
 wc.cbClsExtra = 0; // Extra class data
 wc.cbWndExtra = 0; // Extra window data
 wc.hInstance = hInstance; // Owner handle
 wc.hIcon = LoadIcon (NULL, szAppName) ; // Application icon
 // NULL = Standard
 // Icon
 wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
 wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
 wc.lpszMenuName = MAKEINTRESOURCE(ID_MENU); // Menu name
 wc.lpszClassName = szAppName; // Window class name

where it can be seen that this windows load a resource identified by ID_MENU, the

name of the window is defined by the string szAppName, and the procedure executed when

 105

creating the window is MainWndProc.

Once the definition is stored in the WNDCLASS variable wc, the window will be

created with:

 // Create main window.
 hWnd = CreateWindow (szAppName, TEXT ("InterfacePC2"),
 | WS_VISIBLE | WS_SYSMENU,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);

The definition of the resource is written in the file InterfacePC2.rc:

//---
 // Menu, the RC data resource is needed by the menu bar
 //

 ID_MENU MENU DISCARDABLE
 BEGIN
 POPUP "&File"
 BEGIN
 MENUITEM "Property Sheet", IDM_SHOWPROPSHEET
 MENUITEM "Modeless Dialog", IDM_SHOWMODELESS
 MENUITEM SEPARATOR
 MENUITEM "E&xit", IDM_EXIT
 END
 POPUP "&View"
 BEGIN
 MENUITEM "Tool Bar" IDM_TOOLBAR
 MENUITEM "Address Bar" IDM_ADDRESSBAR
 MENUITEM "State Bar" IDM_STATEBAR
 END
 POPUP "&Contact"
 BEGIN
 MENUITEM "Call to a contact" IDM_CALLCONT
 MENUITEM "Message" IDM_MESSAGE
 MENUITEM SEPARATOR
 MENUITEM "Answer" IDM_ANSWER
 MENUITEM "Ignore" IDM_IGNORE
 MENUITEM SEPARATOR
 MENUITEM "Hang" IDM_HANG
 END
 POPUP "&Help"
 BEGIN
 MENUITEM "&About...", IDM_ABOUT
 END
 END

Inside the ”File” item, we see a menu item called ”Property Sheet” which is linked to an

identifier IDM_SHOWPROPSHEET. That means when the user presses this menu item, a
new message is generated sending this identifier. Our interface must catch this message and
displays the property sheet structure. To do that we established a relation between the
identifier and the function as next shown:

 106

// Command message dispatch for MainWindowProc
 const struct decodeCMD MainCommandItems[] = {
 IDM_SHOWPROPSHEET, DoMainCommandShowProp,
 IDM_SHOWMODELESS, DoMainCommandModeless,
 IDM_EXIT, DoMainCommandExit,
 IDM_ABOUT, DoMainCommandAbout,
 IDM_HANG,DoMainCommandHang,
 IDM_CALLCONT, DoMainCommandCall,};

 Thus, the function that will be executed upon receiving the IDM_SHOWPROPSHEET

message is DoMainCommandShowProp and its code is:

LPARAM DoMainCommandShowProp(HWND hWnd, WORD idItem, HWND hwndCtl,
 WORD wNotifyCode)
{
 // five tabs
 PROPSHEETPAGE psp[5];
 PROPSHEETHEADER psh;
 INT i;

 memset (&psp, 0, sizeof (psp));
 // Fill in default values in the property page structures (psp =
 // propertysheet page).
 for (i = 0; i < dim(psp); i++) {
 psp[i].dwSize = sizeof (PROPSHEETPAGE);
 psp[i].dwFlags = PSP_DEFAULT;
 psp[i].hInstance = hInst;
 psp[i].lParam = (LPARAM)hWnd;
 }
 // Set the dialog box templates for each page.
 psp[0].pszTemplate = MAKEINTRESOURCE (ID_KEYPAD);
 psp[1].pszTemplate = MAKEINTRESOURCE (ID_EDITPAGE);
 psp[2].pszTemplate = MAKEINTRESOURCE (ID_SCROLLPAGE);
 psp[3].pszTemplate = MAKEINTRESOURCE (ID_STATPAGE);
 psp[4].pszTemplate = MAKEINTRESOURCE (ID_LISTPAGE);

 // Set the dialog box procedures for each page.
 psp[0].pfnDlgProc = FirstButtonProc;
 psp[1].pfnDlgProc = SecondButtonProc;
 psp[2].pfnDlgProc = ThirdButtonProc;
 psp[3].pfnDlgProc = FourthButtonProc;
 psp[4].pfnDlgProc = FifthButtonProc;

 // Initialize property sheet header structure.
 // Propertysheert header contains the different propertysheet pages

 psh.dwSize = sizeof (PROPSHEETHEADER);
 psh.dwFlags = PSH_PROPSHEETPAGE;
 psh.hwndParent = hWnd;
 psh.hInstance = hInst;
 psh.pszCaption = (LPSTR) "Property Sheet";
 psh.nPages = dim(psp);
 psh.nStartPage = 0;
 psh.ppsp = (LPCPROPSHEETPAGE) &psp;

 // On Pocket PC, make property sheets full screen.

 107

#if defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)
 psh.pfnCallback = PropSheetProc;
 psh.dwFlags |= PSH_USECALLBACK | PSH_MAXIMIZE;
#else
 psh.pfnCallback = NULL;
#endif
//defined(WIN32_PLATFORM_PSPC) && (_WIN32_WCE >= 300)

// Create and display property sheet.
 PropertySheet (&psh);
 return 0;
}

where PropertySheet() is the function that creates the Propertysheet defined in

DoMainCommandShowProp. Then the result when selecting the ”contact” tag in that
propertysheet structure is shown in Figure 27.

This second tab presents several editlist and fields in which the user can introduce his or

her own name and password. Again that tab corresponds to the loading of a resource when the
proper identifier is selected. The next code shows the resource corresponding to this tab:

 ID_EDITPAGE DIALOG discardable 0, 0, 150, 300
 STYLE WS_POPUP|WS_VISIBLE|WS_CAPTION|WS_SYSMENU|DS_MODALFRAME

 CAPTION "Contact"
 BEGIN

 LTEXT "Name of the user", IDC_NAMEUSER 5,10,60,10
 EDITTEXT IDC_SINGLELINE, 70,5,60,15
 LTEXT "Password", IDC_PASSWORD, 5,60,50,10,
 EDITTEXT IDC_PASSBOX, 70,55,60,15,ES_PASSWORD
 PUSHBUTTON "&Accept", IDC_ACCEPT, 30,100,40,15
 PUSHBUTTON "&Cancel", IDC_CANCEL, 80,100,40,15
 END

Thus we have two edittext variables that can be used where you can introduce the
username and the password of the client who is going to make calls using this interface. The
operation of this tab is controlled by the procedure called ”SecondButtonProc” loaded
previously in the propertysheet structure.

As I explained, when the user presses the “ACCEPT” button this data will be saved in

two files. The code shown below performs that functionality and it is part of the procedure
“SecondButtonProc”.

First we retrieve the data written inside the editlist with the function GetDlgItemText

and we save them in two strings: szNameUser and szPassword.
GetDlgItemText(hWnd, IDC_SINGLELINE, szNameUser, dim(szNameUser));
 GetDlgItemText(hWnd, IDC_PASSBOX, szPassword, dim(szPassword));

 108

Once we have these data we store them in two text files named “NameUser.txt” and
“Password.txt” shown below:

if((result = fopen("NameUser.txt","w"))== NULL)
 {
 return FALSE;
 }
 else
 {
 ConvertTToC(szContact, szNameUser);
 fprintf(result,"%s", szContact);
 fclose(result);
 }// end NameUser
 if((result = fopen("Password.txt","w"))== NULL)
 {
 return FALSE;
 }
 else
 {
 ConvertTToC(szPass, szPassword);
 fprintf(result,"%s", szPass);
 fclose(result);
 }// end Password

The ConvertTToC function translates TCHAR[] variables to char[] variables. It is

needed because the values represented in the editlist are TCHAR[] but in the text file we have
to save a char[] variable. The definition of the function is:

void ConvertTToC(CHAR* pszDest, const TCHAR* pszSrc)
 {
 for(int i = 0; i < _tcslen(pszSrc); i++)
 pszDest[i] = (CHAR) pszSrc[i];
}

Next we calculate in a randomly way which VoIP program we will call when making a

call (that is, Minisip or Skype):

 srand((unsigned)time(NULL));
 randomValue = rand();
 randomVal = fopen("RandomValue.txt", "a");
 if (randomValue > threshold)
 {
 fprintf(randomVal,"The program selected was Skype\n");
 IsSkypeSelected=true;
 }
 else
 {
 fprintf(randomVal,"The program selected was Minisip\n");
 IsSkypeSelected=false;
 }
 fprintf(randomVal,"%d\n", randomValue);
 fclose(randomVal);

After selecting the program to be used we save this information in the RandomValue.txt
file to use later when analyzing the data. We now know which user makes which call and with

 109

which underlying program.
If the user decides not to continue, he can close the interface, or start another

registration by pressing the “Cancel” button. When pressing the ”Cancel” button a new dialog
informing the user about the situation will pop up. The code to perform this action is quite
simple:

 Figure 68. Dialog displayed when the CANCEL button is pressed.

The editlists are initiallized and the dialog is called:

 SetDlgItemText (hWnd, IDC_SINGLELINE,TEXT(""));
 SetDlgItemText (hWnd, IDC_PASSBOX,TEXT(""));

MessageBox (hWnd, TEXT (" Press the ACCEPT button to start again
the experiments"), "InterfacePC2", MB_ICONWARNING) ;

However, if the user selects the ”ACCEPT” button a message to retrieve the contacts is
sent since the connection has been established.

Now it is the time to continue with the experiment and we go to the tab called
”Contacts”. The result is shown in Figure 28.

Once we have retrieved our contacts, we have to display them in our interface. First, we
have to initialize the two icons to present the state of the user:

 //INITIATE THE BITMAPS
 hbmpConnected= LoadBitmap(hInst, MAKEINTRESOURCE(IDB_CONNECTED));
 hbmpDisconnected=LoadBitmap(hInst, MAKEINTRESOURCE
 hListBox= GetDlgItem(hWnd,IDC_MULTILIST);

Then, we have to read the contacts stored in the file ”IntermediateFile.txt” as was
explained in appendix B. We will read each of the contacts and translate them to TCHAR[]
format to display in our interface. When we have read one of our contacts and we have its
TCHAR[] representation we establish a connection between the contact, the icon indicating its
status (initially offline) and the listbox of our interface with the function ”AddItem”. Then we
set the focus to be the handle of that listbox and send the message to incorporate the contact in
the correct place.

After that, we increment the number of users read, and finally display the contact via
our interface. The initial state is shown in the previous figure with no users connected.

if ((fileContacts = fopen("IntermediateFile.txt", "r"))!= NULL)
 {
 while(!feof(fileContacts))

 110

 {
 szContact[0]= '\0';
 readLine(fileContacts, szContact);
 {
 i=0;
 while (szContact[i]!='\0')
 {
 i++;
 }
 for (cont=i; cont < length(szContact); cont ++)
 szContact[cont]='\0';
 ConvertCToT(szNameRetrieved, szContact);

 // INITIALIZE THE LIST BOX TEXT AND ASSOCIATE A BITMAP

 AddItem(hListBox,szContact,hbmpDisconnected);
 SetFocus(hListBox);
 SendMessage(hListBox,LB_SETCURSEL,0,0);
 SendDlgItemMessage(hWnd, IDC_MULTILIST,
 disconnected++;
 }// There is no contact
 }//end fileContacts
 fclose(fileContacts);

 wsprintf (szTitleUsers, TEXT ("FRIENDS (%d/%d)"), connected,
 SendDlgItemMessage(hWnd, IDC_NUMBERUSER, LB_ADDSTRING, 0,

} else return FALSE;

The reason to put all the users in the offline at the beginning is that Minisip does not

indicate the current state of the user. When the user wants to make a call, he will enter the
name of the user in the editlist and press the “Check” button. At that time the program will
check if the selected user is available (on-line) or not. Next, the “CALL” button can be
pressed, and two situations are possible:

• It is possible to establish the connection since the user is connected
• It is not possible to establish the call because the user is not available.
 In the second case, the dialog in Figure 29 will be shown.

Nevertheless whether the user is available, we will call him and the icon corresponding

to that user will change its color to show him online. Moreover the position of such user will
be located at the end of the list and the number of users connected will be increased in one as
in Figure 30.

 The code to perform all this process is shown below:

if (strcmp(data2,"ONLINE")!=0)
 // show a dialog
 MessageBox (NULL, TEXT ("This user is not connected"),"ERROR",
 else
 {

 111

 // it is possible to call the user
 hListBox= GetDlgItem(hWnd,IDC_NUMBERUSER);
 wsprintf (szTitleUsers, TEXT ("FRIENDS (%d/%d)"), connected,
 SendMessage(hListBox, LB_DELETESTRING, 0, 0);
 connected++;
 wsprintf (szTitleUsers, TEXT ("FRIENDS (%d/%d)"), connected,
 SendDlgItemMessage(hWnd, IDC_NUMBERUSER, LB_ADDSTRING, 0,
 hListBox= GetDlgItem(hWnd,IDC_MULTILIST);
 int index = SendMessage(hListBox, LB_SELECTSTRING,-1,(LPARAM)

 szNameContact);
 SendMessage(hListBox, LB_DELETESTRING, (WPARAM)index, 0);
 AddItem(hListBox,szContact,hbmpConnected);
 SetFocus(hListBox);
 SendMessage(hListBox,LB_SETCURSEL,0,0);
 }// USER SKYPE ONLINE
 fclose(MessageFromSkype);
}// USER IN MessageFromSkype

The code which defines the tab is included in ”interfacePC2.rc” and is shown below
here:

ID_LISTPAGE DIALOG discardable 0, 0, 150, 300
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU | DS_MODALFRAME
CAPTION "Contacts"
BEGIN
 LISTBOX IDC_NUMBERUSER, 5,5,125,18
 LISTBOX IDC_MULTILIST, 5,25,125,60,LBS_HASSTRINGS|

 EDITTEXT IDC_NAMECONTACT, 5,85,125,15

 PUSHBUTTON "&Call", IDC_ACCEPT, 5,105,40,15
 PUSHBUTTON "&Hang", IDC_CANCEL, 55,105,40,15
 PUSHBUTTON "&Check", IDC_CHECK, 105,105,40,15
END

My common interface also provides a keypad to make calls similar the one presented in

Skype. This keypad allows the user to enter a PSTN number by directly entering the phone
number or by entering a contact name or a SIP URI. The dialog and the code to build are
shown in Figure 31.

ID_KEYPAD DIALOG discardable 0, 0, 150,300
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU | DS_MODALFRAME
CAPTION "Key pad"
{
 PUSHBUTTON "7", 55, 30, 55, 20, 20
 PUSHBUTTON "4", 52, 30, 30, 20, 20
 PUSHBUTTON "1", 49, 30, 5, 20, 20
 PUSHBUTTON "0", 48, 30, 80, 20, 20
 EDITTEXT 27, 45, 110, 90, 15

 PUSHBUTTON "8", 56, 60, 55, 20, 20
 PUSHBUTTON "5", 53, 60, 30, 20, 20
 PUSHBUTTON "2", 50, 60, 5, 20, 20
 PUSHBUTTON "9", 57, 90, 55, 20, 20

 112

 PUSHBUTTON "6", 54, 90, 30, 20, 20
 PUSHBUTTON "3", 51, 90, 5, 20, 20

 LTEXT "Phone Number", IDC_NUMBER, 5, 110, 40, 130,

 PUSHBUTTON "Call", IDD_CALL, 60, 80, 20, 20
 PUSHBUTTON "Hang", IDD_HANG, 90, 80, 20, 20
}

Using this keypad is as easy as dialing a telephone and pressing the “CALL” button on

a typical VoIP phone. The code to control the keypad is included in the file firstButtonProc:

 // 48 is the value of the identifier of the “0” button
 szBuffer[j] = (TCHAR)('0' + (LOWORD(wParam) - 48));
 j++;
 szBuffer[j] = '\0';
 SetDlgItemText (hWnd, VK_ESCAPE, szBuffer) ;

Once the number is entered the user presses the “CALL” button and control is taken by

the API function which will send the appropriate command to Skype to start the code.

The call will continue until the user presses the “HANG” button. Then, a dialog will

pop up to permit us evaluate the call from the worst quality 1 to the best one 5 (this dialog
will appear as well in the contacts tag when finishing the call). That dialog is shown in Figure
32.

The code to display the dialog and the definition of this dialog are:

g_hwndMlDlg=CreateDialog(hInst,TEXT("Valuation"),hWnd,

Valuation DIALOG discardable 5, 5, 120, 145
STYLE WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU |

 DS_MODALFRAME
CAPTION "Communication valuation"
BEGIN
 LTEXT "Your communication has finished", -1, 4, 6, 115, 20,
 LTEXT "Please rate the communication (1-5)?:" -1, 4, 30, 115, 20,

 PUSHBUTTON "-", 27, 25, 74, 70, 15
 PUSHBUTTON "1", 49, 15, 95, 15, 15
 PUSHBUTTON "2", 50, 35, 95, 15, 15
 PUSHBUTTON "3", 51, 55, 95, 15, 15
 PUSHBUTTON "4", 52, 75, 95, 15, 15
 PUSHBUTTON "5", 53, 95, 95, 15, 15

 CTEXT "Thank you for your help!", -1, 20, 120, 90, 20,
END

The operation consists of introducing the evaluation form for the call, then the value

will be taken from the dialog and saved in a file. This is done with the procedure shown
below:

 113

BOOL CALLBACK ValuateDlgProc (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam)
{
//definition of variables
static BOOL bNewNumber = TRUE ;
static UINT iNumber, iFirstNum ;
HWND hButton ;
FILE *result;

switch (wMsg) {
 case WM_CHAR:
 if (hButton = GetDlgItem (hWnd, wParam))
 {
 // Take the handler of the control indicated in wParam
 SendMessage (hButton, BM_SETSTATE, 1, 0) ;
 // This message is sent by an application to change the
 Sleep (100) ;
 SendMessage (hButton, BM_SETSTATE, 0, 0) ;
 }
 else
 {
 MessageBeep (0) ;
 break ;
 }
 case WM_COMMAND:
 SetFocus (hWnd);
 if ((LOWORD (wParam)== IDOK)|(LOWORD (wParam) == IDCANCEL))
 {
 DestroyWindow (hWnd);
 bNewNumber = TRUE;
 g_hwndMlDlg = 0; // 0 means dlg destroyed.
 return TRUE;
 }

 if (isdigit (LOWORD (wParam))) // decimal digit
 {
 if (bNewNumber)
 {
 iFirstNum = iNumber ;
 iNumber = 0 ;
 }
 // hexadecimal function

 ShowNumber(hWnd, iNumber = 16* iNumber + wParam - (isdigit
 (wParam) ? '0':'A' - 10)) ;

 if((result = fopen("valor.txt","w"))== NULL)
 {
 fprintf(result, "test \n");
 return FALSE;
 }
 else
 {
 fprintf(result, "%d", iNumber);
 fclose(result);
 }
 DestroyWindow (hWnd);
 g_hwndMlDlg = 0; // 0 means dlg destroyed.

 114

 return TRUE;
 }
 }//switch
 return FALSE;
}
As described in section 6.3.2, it is also possible to make the call from the main menu.

However, it is not necessary to explain the operation from the main menu since the code used
is almost the same. The main difference is that we have to create a new function inside the
InterfacePC2.cpp to call dialogs which are controlled by the functions explained previously in
this appendix.

Finally, the header for all the functions and procedures I have written, along with the

structures generated, and the identifiers defined have been included in a file named
“InterfacePC2.h”.

www.kth.se

IMIT/LCN 2005-13

