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Course Qutline

Jul 20: What is a cyber-physical system?
Jul 20: Event-based control of networked systems
Jul 22: Cyber-secure networked control systems

Aug 5?: |IAS Lecture on “Cyber-physical control for
sustainable freight transportation”

Cyber-physical Systems

Machine
Computer Computer
o '/

Machine

Human €omputer
Human
A

Cyber-physical systems are engineered systems
whose operations are monitored and controlled
by a computing and communication core
embedded in objects and structures in the
physical environment.
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Cyber-physical Systems Applications

Transportation network

Cyber-Physical Systems Challenges

Societal Scale

* Global and dense instrumentation of physical phenomena

e Interacting with a computational environment: closing the loop

e Security, privacy, usability

Distributed Services

¢ Self-configuring, self-optimization

* Reliable performance despite uncertain components, resilient aggregation
Programming the Ensemble

¢ Local rules with guaranteed global behavior

*  Distributing control with limited information

Network Architectures

¢ Heterogeneous systems: local sensor/actuator networks and wide-area networks
* Self-organizing multi-hop, resilient, energy-efficient routing

e Limited storage, noisy channels

Real-Time Operating Systems

e Extensive resource-constrained concurrency

*  Modularity and data-driven physics-based modeling

1000 Radios per Person

* Low-power processors, radio communication, encryption

¢ Coordinated resource management, spectrum efficiency Sastry & J, 2010
I
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Cyber-Physical Control Challenges

How to analyze, design, and implement control systems with

* Guaranteed global objective from local interactions

* Physical dynamics coupled with information interactions

* Tradeoff computation-communication-control complexities
* Robustness to external disturbances and other uncertainties
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Event-based control of networked systems




Outline

* |ntroduction
¢ Stochastic event-based control

* Optimal event-based control

* Distributed event-based control
* Event-based anti-windup

* Conclusions
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Feedback Control System

Actuator Plant Sensor

Controller g

Networked Control System
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Time-Triggered Control System

Actuator Sensor

Network Network

Event-Based Control System

Actuator Sensor

Network Network

Controller
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Event-Based Control System
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Event-Based Multi-Agent System

Goal: Guarantee Control Performance
under Limited Resources

Resources

* Sensing
* Sensor communication

Network

Actuation

(Computing)




Outline

* |ntroduction

¢ Stochastic event-based control

* Optimal event-based control

* Distributed event-based control
* Event-based anti-windup

* Conclusions

Event-based control loop

Wireless network

Rstrém, 2007, Rabi and 1., WICON, 2008
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When to transmit?|

* Event detector mechanism on sensor side
— E.g., threshold crossing

Wireless network

How to control?

* Execute control law at actuator side
— E.g., piecewise constant controls, impulse control

Rabi et al., 2008

Example: Fixed threshold with impulse control

* Event-detector implemented as fixed-
level threshold at sensor

* Event-based impulse control better
than periodic impulse control

Wireless network

Periodic Control Event-Based Control
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t Astrém & Bernhardsson, IFAC, 1999
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Control generators and event detectors

1. Fixed threshold

1. Impulse
2. Zero order hold 2. Time-varying
3. Higher order hold 3. Adaptive
Plant model
Plant dr = udt + dv,

Stochastic differential equation, interpreted as

2(s+7) — a(r) = / T byt + /T T ()

v is a Wiener process (or Brownian motion)

See Pksendal (2003) for an introduction to stochastic differential equations

with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

20/07/15
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Wiener process

A Wiener process v(t) fulfills
1. v(0)=0
2. v(t) is almost surely continuous

3. v(t) has independent increments o
with v(t)-v(s) ~ N(0O,t-s) for t>s=0

Remark The variance of a Wiener process is growing like

E(V(t+s) = W(1))* =|s|

Plant model

Plant dx = udt + dv,
Stochastic differential equation, interpreted as
s+T s+T
z(s+71)—x(r)= / u(t)dt + / du(t)
with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

When s > 0 is a small, the change of x(7) is
normally distributed with mean su(7) and variance s.

20/07/15
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Plant model and control cost

Plant dr = udt + dv,

vis a Wiener process:  E(V(t+ s) — v(1))* = ||

. 1 r
Cost function V= TE/ 22 (t)dt.
0

Periodic impulse control

Impulse applied at events o

”W\‘u W
w(t) = —a(t)d(t — ty), £ g Vg
Periodic reset of state every event.
State grows linearly as K fl
E(v(t+ s) = V(0)° =s|
between sample instances, because dx = udt + dv,
Average variance over sampling period’ is %’2 so the

cost is

. 1
lp[H = ;11

Rstrom, 2007

20/07/15
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Periodic ZoH control

Traditional sampled-data control theory gives that
h
V= %/U E2*(t)dt is minimized for the sampled system
x(t 4+ h) = x(t) + hu(t) + e(t),

with
1’*1—:3+\/§T
= R

U = —

derived from
S=d"S®+Q, - L"RL, L=R Y I'"S®»+Ql,), R=Qy+TITSr,
The minimum gives the cost

3+ ,\/gh
6

Vezon =

Rstrom, 2007

Event-based impulse control
with fixed threshold

Suppose an event is generated whenever 1

|z(te)| = a x ONWMWM

generating impulse control
ll(f) — —«1’(1‘]‘-)(5(1‘ _ Tk). 0 5 10 15 20

One can show that the average time 100

between two events is u o i | | | |

hg == FE(Tya) = E(I%j:d) =a? . ‘

and that the pdf of = is triangular: ° t
fx) = (a—|z|)/a®

The cost is 5

v _a®  hg
EIH*G* A

Rstrom, 2007
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Pdf f(z)=(a—|z[)/a® isthe solution to the forward
Kolmogorov forward equation (or Fokker—Planck

equation)
of  10* 10f, . 16 ) »
7{ = éi)\r{;(r) - %(%(d)o_r + %g—f(—d)ol., f(=a) = fla) =0,
Comparison
PZOH PIH EIH
2 \ 2 l 2
\/\/‘/ A \Wr ARG I T
-2 / -2 -2
0 5 10 0 5 10 0 5 10
u u,/1000 u,/1000
2 2
2 1 | 1
0 AT Y
. NN
= -2 -2
0 5 10 0 5 10 0 5 10

Rstrom, 2007
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Outline

* |ntroduction
¢ Stochastic event-based control

* Optimal event-based control

e Distributed event-based control
* Event-based anti-windup
e Conclusions

Event-based ZoH control
with adaptive sampling

Wireless network

. T
How choose {U;} and {7;} to minimize v = %E/ 2 (t)dt.
0

Rabi et al., 2008

20/07/15
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Optimal control
with one sampling event

day = ugdt + dB; . f\
OM OA 4

ww U

T .

min J= min E :cfds 70 -

Uo,U1,7 Uo,Uy,7 0

T T
E/ a:gds + E/ m?ds]
0 T

= min
UO7UlaT

A joint optimal control and optimal stopping problem

Rabi et al., 2008

dr; = wdt + dBy

. . T 2
min J= min E rsds
Uo,U1,m Uo,Ur,T 0

If 7 chosen deterministically (not depending on x¢)
and xg = O:
_3.’L'T/2

Us =0 Ui = -— ™ =1T/2

If 7 is event-driven (depending on z;) and xzg = O:

3x*
Uo=0 Ut = _2(T—T*)

™ =inf{t: 27 > V3(T —t)}

Envelope defines optimal level detector

20/07/15
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Optimal level detector

Dynamic level detector

Wireless network

dxy = wdt + dBy
T
min J= min E x

Eds
UO7U1 T UOaUl 5T 0 v

o] T T

Proof

T o : T 2 T 5
min J= min E [ z2ds = min E/ wsds+E/ @2ds
U07U177 UOleyT 0 UO7U17T 0 T

T
E{/ mgds
T

= /TTE{[:CE + U2t — )%+ (B — Br)? + 22,U1(t — 1)

t t
T,xT,Ul} - [zt2x7+/ Ulds+/ st}
T T

+2$T(Bt - BT) + 2Ul(t - T)(Bt - B’T)]} dt

&3 52
=[EBi=0,EB? =t,6:=T—1|= 5:c$+§U12+5+52:cTU1

2 2
4 2 V3 2
355'7'
H imal | U =Ui(arT—7) = —5———
ence, optimal contro 1 1(zr 7) 2(T — 1)

19



T — 2
JUo,Uf,7) = E [ ds+E{ a2 2”}

If 7 chosen deterministically (not depending on ;)
and zg = 0:

_ 2
(o U3,0) =% T3+ "y g+ 22
Hence, 31
U =0 U{:_%/Q *=1T/2
which gives
572
J(UE, U*, >
(Up, U1, ) 16

If 7 is event-driven (depending on z;) and zg = O:
(T—r)z} —

2

U273 /3 (T —7)Up\
+° E{( > T3 )(T—r)}

2
= % - gE{wg(T— T)}

because from symmetry U* = 0.
Find 7 that maximizes f(zr,7)=E{a2(T - 1)}

T T —T1
J(Uo, U, 7) = E/ mfds+E{ 2 z2 +

20/07/15

20



Find 7 that maximizes f(zr,7)=E{a2(T - 1)}
Suppose there exists smooth g(z,t) such that
g(z,t) > 2*(T — 1)

1
—gzz(x,t) + gt (x,t) =0

2
Then, for0<t<7<T,

fGr,m) = E {21~ 1)} < E{g(ar. )} = 9@, t) + E [ dg(ar,7)

= [Ito formula] = g(z¢,t) + E /tT (%gm + gt) dt

= g(xtat)
Hence, g is an upper bound for the expected reward.

We next show that equality can be achieved.

(T —t)?
:")

4
_ Tt 2

is a solution to
1
ng:r(xat) + gt(x, t) =0

Moreover,

oan )= (T=0) = 5 s (””— - -0+ - t)2)

4
t
3
_ 1 Lo 2) _
21+ V3) <f3 (r-v7)=0
if wt2 =V3(T —t).
Hence, the optimal sampling time is
™ =inf{t: 7 > V3(T —t)}

which gives
2

T
J(Us, UL, ") =3

20/07/15
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Optimal level detector

Dynamic level detector

Wireless network

dxy = wdt + dBy

. . r 2
min J= _min E rgds
UO7U17T UOaU17T 0 v

Multiple samples
Extension to N>1 samples

. T
JIn (;EO,M, {T},\:l) =E [/ ;l"fds ;z’o]
0

through nested single sample
problems

Extension to variable budget
sampling, allowing number of
samples to depend on x. U

Extensions to lossy communication

Rabi and J., 2009

20/07/15
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Joint Optimal Event-Generation and Control

Control without Event Scheduling:
Classical LQG

The controller minimizing _.ﬂ—y
N-1

J=E |25Qoxn + Z (2T Qs + Ungus)}

s=0

is given by

U = —LkQA’,kuc 5 u | )
Li = (Q2+ BTSy11B) ' BT S 1A
where

Sk =Q1+ATS; 1A — AT S, 1B(Qa + BT S, 11 B) ' BT Sy 1A

Fgk = Elzg[(y}6ut™"] is the minimum mean-square error (MMSE) estimate

Kalman, 1960

20/07/15

23



Certainty Equivalence

Definition Certainty equivalence holds if the closed-
loop optimal controller has the same form as the de-
terministic optimal controller with x; replaced by the
estimate f;, = E[x/IC].

N C

Theorem|[Bar-Shalom—Tse] Certainty equivalence holds
if and only if E[(zx — E[z|I£])?|If] is not a function of
past controls {u}f~! (no dual effect).

Here x, is the plant state and I the information at the controller

Feldbaum, 1965; Astrém, 1970; Bar-Shalom and Tse, 1974

Stochastic Control Formulation

Plant:
X1 = Axg+ Bug +wy
Scheduler:
S
P [ oection maters |
S _ _ _ Decision makers
T = ({00 81 ]
Controller:
C
we = gr(I)

I = [0, (83 ]

Cost criterion: * Non-classical information pattern
¢ Hard to find optimal solutions in general

N—1
_ T T T
J(f,8) = ElxyQoxn + Z‘b (g Qs +ug Qaus)| 8 Special cases lead to tractable problems
S=

Cf., Witsenhausen, Hu & Chu, Varaiya & Walrand , Borkar, Mitter & Tatikonda, Rotkowitz etc

20/07/15
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Example

Plant
Thy1 = Tp +up +wy, o =2, Bwi = 0.7

Certainty equivalent controller
up® = =K (Blae{yr} 6, {un}o '] + Blwel{ye}s, {ur ks )

0.3

Event-generator encodes state as
1, if z1 € (00, —0)

E(zk) =492, if 2 € (—6,0) 02

3, if z € (6,00)

Cost for time-horizon N =1 i

2

qa 2 |

J(ug) = 02, + qu + + —— | E |27 |20, w cE .
(0) w qug p q 1 [1|0 { Ug U

Rabi et al, 2015

Condition for Certainty Equivalence

Corollary: The optimal controller for the system {?P,S(f),C(g)}, with
respect to the cost ] is certainty equivalent if the scheduling decisions
are not a function of the applied controls.

Certainty equivalence achieved at the cost of optimality

50
Bar-Shalom & Tse, 1974; Ramesh et al., 2011

20/07/15
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Architecture with Certainty Equivalent Controller

Ramesh et al., 2012, 2013

QOutline

* |ntroduction
¢ Stochastic event-based control
* Optimal event-based control

e Distributed event-based control

* Event-based anti-windup
* Conclusions
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Distributed Event-Based Control

How to implement event-based

control over a distributed system?

Local control and communication,

but global objective

Approach: Consider a prototype distributed control problem
and study it under event-based communication and control

Average Consensus Problem

Multi-agent system model

m Group of N agents
a(t) = ui(t)

m Communication graph G
A: undirected, connected

Adjacency matrix A with
a;; = 1 if agents ¢ and j adjacent,
otherwise a;; = 0

Degree matrix D is the
diagonal matrix with elements equal to
the cardinality of the neighbor sets N;

Objective: Average consensus
t— o0 1 N
;l?i(t) — a4 = N Zi:l :I?i(O)

06

)

Consensus protocol
ui(t) = =3 jen, (@i(t) — 2;5(t))
Closed-loop dynamics
#(t) = —Lx(t)
with Laplacian matrix L = D — A

Event-based implementation? |  oati-saper & Murray, 2004

20/07/15
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Event-Based Average Consensus

Event-based scheduling of measurement broadcasts:

agent ¢

Event-based broadcasting
B5(t) = zi(t}), t € [th,th 4
0<ti<ti<ti<-...

m Closed-loop

m Disagreement

§(t)=xz(t)—al, 178(t)=0  Seybothetal, 2013

Trigger Function for Event-Based Control

Trigger mechanism: Define trigger functions f;(-) and trigger when

fi [ towa(t).2:(0), | 2500 | >0

JEN;
Defines sequence of events:  t} ,, = inf{t: t >}, f;(t) > 0}

Extends [Tabuada, 2007] single-agent trigger function to multi-agent systems

Find f; such that

o |z;(t) —z;(t)] > 0,t— o0

e 10 Zeno (no accumulation point in time)
e few inter-agent communications

Cf., Dimarogonas et al., De Persis et al., Donkers et al., Mazo & Tabuada,
Wang & Lemmon, Garcia & Antsaklis, Guinaldo et al.
Seyboth et al, 2013

20/07/15
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Event-Based Control with Constant Thresholds
() = u(t), u(t) = —Li(t) (1)
Theorem (constant thresholds)

Consider system (1) with undirected connected graph G. Suppose that
fi(ei(t)) = |ei(t)| — co,

with co > 0. Then, for all zo € RN, the system does not exhibit Zeno
behavior and for t — oo,

An(L) H—0—O®
[6@)]| < m\/ﬁco- 9’

Proof ideas:
m Analytical solution of disagreement dynamics yields

t
15(8)]| < e=2@*5(0)| + An (L) / e DE=) | o(s) | ds
0

m Compute lower bound 7 on the inter-event intervals  Seyboth et al, 2013

Event-Based Control with
Exponentially Decreasing Thresholds
(t) = u(t), u(t) = —Lz(t) (1)
Theorem (exponentially decreasing thresholds)

Consider system (1) with undirected connected graph G. Suppose that

fi(t,ei(t)) = |ei(t)] — cre™,

with ¢; > 0 and 0 < a < Xo(L). Then, for all zo € RN, the system does
not exhibit Zeno behavior and ast — oo,

[6®)I — 0.

Remarks

e Asymptotic convergence: |z;(t) — x;(t)] = 0, t — 0o

e )\y(L) is the rate of convergence for continuous-time consensus,
so threshold need to decrease slower

Seyboth et al, 2013

20/07/15
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Event-Based Control with

Exponentially Decreasing Thresholds and|Offset

(t) = u(t), u(t) = —Li(t) (1)

Theorem (exponentially decreasing thresholds with offset)

Consider system (1) with undirected connected graph G. Suppose that

fi(t, ei(t)) = les(t)] — (co + c1e7),

with cg,c1 > 0, at least one positive, and 0 < o < A\o(L). Then, for all
zo € RY, the system does not exhibit Zeno behavior and for t — oo,

18] < *A%’x/ﬁ

Seyboth et al, 2013

Example

agent 2 agent 1
=)
N

ent 3

ag

-0 - T

= ‘g’ 0 Evvrvvsll N R — o
= 4  — :

& - -0.2

<

< - 02

2 -] o ) S ——
g § Oppnieey

£ -02

Seyboth et al, 2013
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Example: Threshold Tuning

‘ ) @
@(t) = —La(t) .9 OO,
lei(t)] < co + cre™ @)

les(t)] < 0.050 les(t)] < 0.001

events of agent i S
events of agent 7

time ¢

Seyboth et al, 2013

Example: Threshold Tuning

O
i(t) = —Li(t) ’o &—®

lei(t)] < o+ cre™@t @)

les(t)] < 0.001 + 0.249 e~ 0-9A2(L)¢ les(t)] < 0.001

06

events of agent @ I
- N WA O ®

time ¢ time ¢

Seyboth et al, 2013
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events of agent i

lei(t)] < 0.001 + 0.249 ¢=0-9%2(L)t

Example: Threshold Tuning

i(t) = —Li(t)

Pecse

@

lei ()] < 0.250 ¢=0-9%2 (L)t

time ¢

Seyboth et al, 2013

Example: Event- vs Time-Triggered Sampling

sl

samples

events

0.5

time-scheduled
event-scheduled

0 1

I 7

]

3 .

4

3

3

< 0

1 P ¢ o

Bpt--%-x---xl- - % T T +

Qmex - - x K XK -X K - - SRS TR T EEEE S £ UEES SRS 3

K e SRR 06 - XK He - KK R K KK KK

P N P ' LRI e

Tpex -x-- - -- Red MK - HHK KKK K KR %- o

0 5 10 15 20
time ¢

Graph:
@)

.eee

@

Sampling periods:
m Time-scheduling:
7s = 0.350
Tmaz = 0.480

m Event-scheduling:
Tmean = 1.389

Tmaz - largest stabilizing sampling period, see G. Xie et al., ACC2009

Seyboth et al, 2013
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1 !
time-scheduled
: event-scheduled
SToosl\
50.5 :
0 L 1
5% 5 5
E %- MIIOO
o, O
5 2000000 XX KX HKIHIKXHK XX KX KKXKKNIKNNKXX
g 17 P
Bfocs -2 - o -1 R [
2 Awex-x- - - M- XX K- LMK SR XX X% X
B OB FRd X% NN N D MK WX - - -
D 2RX K R X - R SRR XM K-
O {Ex-ox---- R R Horoo-o R RREREEEE
0 5 10 15 20

Example: Event- vs time-triggered sampling

Graph:
O—@—0B@—0—6

Sampling periods:

m Time-scheduling:
7. = 0.400

Tmaz = 0.553

m Event-scheduling:
Tmean = 1.724

Seyboth et al, 2013

Example: Event- vs time-triggered sampling

1 !
time-scheduled
: event-scheduled
s : -
05 SR EEE R LR RRIEREERERE
0
5
2 2
= 3
20 9 o
g 2 ,
g 1 ; X ;
Swoocx % -x-x- Tx x Xl- XX N - I % - - %
12 A 20¢- HXK K X K- - X% KK - - - KK - K- XK - X -
B SO0 M RHI0E - S
gz-xx»x-x-uwv-, ------------ e K - e o
D ] 00000 K- X HHNK 2 <206 - H XHHEOL - - X K X I0CH - 2K - X - K 3¢
0 5 10 15 20
time ¢

Graph:
B
o
@G—3
Sampling periods:

m Time-scheduling:
7s = 0.250
Trmaz = 0.400

m Event-scheduling:
Tmean = 1.053

Seyboth et al, 2013
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Event-Based Formation Control

event-counter

t=0000s | #1

#1 #1

H A b NS 0 = N W

disagreement ||5]|
o (5] 3

5 -4 -3 2 -1 0 1 2 3 0 5 10 15 20
X time t [s]

* Non-holonomic mobile robots under feedback linearization
* Event-based communication based on threshold for double-integrator network

Seyboth et al, 2013

Extensions

* How to estimate A,(L) in a distributed way?,
— Aragues et al., 2014
* How to handle general agent dynamics?
— Guinaldo et al. 2013
* How to handle network delays and packet losses?
— Guinaldo et al., 2014
* Pinning (leader-follower) control and switching networks
— Adaldo et al., 2015
* Event-triggered pulse width modulation
— Meng et al., 2015

* Event-triggered cloud access
— Adaldo et al., 2015

34
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Event-triggered Cloud Access

Agent dynamics with unknown drift disturbance

() =wi(t) +@it), i=1,...,N, @
Agents exchange state, control, disturbance, and \ /
timing data through a shared data base PRI & SN P PSS SN

Schedule next data base access time based on 7
dynamic estimates and event-based triggering fcn

Data base access times

k| ng oY% Bk Ik Isk
0| 000 000 0.00 000 0.00
1| 501 6.21 7.41 8.51 10.11
5
3
4
5

211272 1472 1672 1881 21.31
312332 2582 28.02 3041 3261
413492 3723 39.63 41.92 4422
5] 46.53 4884

Adaldo et al., 2015

QOutline

* Introduction

* Stochastic event-based control
* Optimal event-based control

* Distributed event-based control

* Event-based anti-windup

¢ Conclusions
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Event-Based Wireless Pl Control

yv(t) ¢d(t)
PI u(t w_(g Event

controller Flant generator:
Digital communication network
'[Z(tu |
1
u(t) y
P s
controller , T
ml‘(tk) \ ME
Wireless 7”:(tt) ®_ |l :
network Event v B
generator

Event-Based PI Control with Saturation

¢w(t) ¢d( )
PI

u()[ e, ﬁ(tlz =()[ Event
g controller_2 Z_ Plant _29enerator'§
(1) a(t);

: Digital communication network

Lehmann et al., 2012
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Event-Based Pl Control with Saturation

#w(t d(t)

PI z(Y)| Event
™ controller FEL generator|:
(1) (1)

I Digital communication network

» Industrial applications are generally affected by actuator limitations.

1. Does actuator saturation affect event-triggered PI control?
2. Under what conditions can we guarantee stability?
3. How to overcome potential effects of actuator saturation?

0 120
Pl |u(B)] % |Ell =(H[ Event
Exa m p | e .| controllerH { H HELL ’_glgen\;ratorh
fa(t) (1),
a(t) 0.1z(¢) + u(t) + 0.1d(t), z(0)=0
y(t) = =(t)

Exogenous signals:

v

i

v

Actuator saturation:

v

0.4, for w(t) > 0.4;
w(t) =< wu(t), for —0.4<wu(t)<0.4;
—0.4, foru(t) < —0.4;

Pl controller

v

i) = y(t)—w(t), @x(0)=0
u(t) = —ar(t) - L6(y(t) — w(t))
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ia(1)

w(?)

( ) ( 2
Pl ult () Event
s Pt S ponrtr
: ¢ 1.5
: — — S 1
Digital communication network =
=
0

Event generator invokes a sensor
transmission whenever output error
reach a predefined fixed threshold:

Example: Without Saturation

d(t

a(t);

3 TRl

events

Motivating Example

¢w([,) ‘d(l)
Pl [w(B] oy |ult z({)[ Event
controller —/{ _2 Plant 'Igenerator

Uer (1)
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events

Motivating Example

0
PI

#ao

By
1" | controller Uy
H

Plant

=(O["Event |
enerator:

(2=0.2)

[ AT RN

0 10 tins 20 30

I L

Motivating Example

0
PI

*d( t)

Ry
i | controller
i

Plant

=(O["Event |
enerator|:

Need to take saturation and wind-up into account
when designing event-based control systems

0 tin s 30

u(t) (e=0.2) |}
u(t) (¢=0.45)
Uer (1)

li] s

20/07/15

39



Mathematical Model

» Plant:
z(t) = Az(t)+ Bu(t)+ Ed(t), x(0)=zg
u(t) = sat(u(t))
uQ, for w;(t) > wuo
sat(ui(t)) = ui(t), for —ug <wu(t) <wg Vie{l,2,..,m}
—up, for ui(t) < —Ug
» Event generator: ||x(t) — x(tx)| =€
» Pl controller:
z1(t) = x(t)—e(t) —w(t), x1(0) =z
u(t) = Kizi(t) + Kp(x(t) —e(t) —w(t))
» State error: e(t) = x(t) — x(tx)
» For the sake of simplicity: w(t) =d(t) =0

w(t)

10
ol . T 8] =()[ Event
Stability Regions  lews] 0 [ il

(1) (1)

: Digital communication network _

e=0 (CT control)

LMI condition to estimate
region of stability

wot

Lehmann et al., 2012
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Simulations

Stable trajectory

¢w( t)

Event }

generator|

fa(1)

I Digital communication network

0
([t a(t (t
>| contpr:)ller|12| X H Plant [~

(1)}

Unstable trajectory

\V

20

Stability region

|
2 -5

Pl
5’ controller

¢d( f)

Plant

x(t

Event

generator(:

(1)

2(t,);

: Digital communication network
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Anti-Windup for Event-Based Control

I-Windup

¢y(t
Pl

4
" | controller

a(t

x(t

Event |
generator]:

2(t):

' Digital communication network

Cf., anti-windup for conventional control systems [Astrém & Hagglund, 1995]

Stability Regions with Anti-Windup

= [ w = ot

8
=}

Pl

ia(t)

1 1 ] 1 1
(28 — wW V] —
]

ﬁ Uy u
i controller '!I
' HEL

Digital communication network

Anti-windup increases
the region of stability
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System Evolution with Anti-Windup

Pl

i”| controller '
H h

a(t)

! . : N );
1 i ; i i : Digital communication network >
1

: : : ; Anti-windup improves
1 the system response

AW i {
NoAWE || ' [P 11 T
0 2 4time(s)6 8 10

(solid line: no anti windup, dotted line: anti windup)

Event-Based Communication for Anti-Windup

u(t)| v a(t)

=

b(u)

Anti-windup event generated
when actuator saturates (ETAW)

ng #Kﬂ
PI

it (D[~ Event

controller Plant enerator| !
A ]

i : T

. o
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Outline

* Introduction

* Stochastic event-based control
* Optimal event-based control

* Distributed event-based control
* Event-based anti-windup

e Conclusions

Open Problem on Event-Based Control:
Where and When to Take Actions?

_I’ Sensor node makes local decisions on when to communicate

Plant 1

Planti
Plant M
Wireless network

Network
manager

Network manager allocates communication slots

Y
i ;
tate ) | H
| feedback Estimator i
1

Controller 1

Controlleri | Controller requests sensor data
Controller M I
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Conclusions
Event-based control to handle limited CPS resources
Hard to jointly optimize event condition and control law
Certain architectures lead to strong results
Event-based control of multi-agent systems

Event-based revisions of classical control architectures:
event-based anti-windup, feedforward, cascade control

http://people.kth.se/~kallej
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Additional material

e Distributed event-based control
* Event-based anti-windup

Extension to double-integrator agents

Multi-agent system model Objective: Average consensus
L) =G G(t) =T £ XL, G0)=b
Cz'(t? :.ui(t) &(t) 23 L3N 6(0) + bt
® communication graph G
@
Consensus protocol ’9 (4) (5)
u(t) = —L&(t) — pL(t) @

Closed-loop dynamics

0-[5 4l

r
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Event-based implementation

Multi-agent system model Consensus protocol
. &i(t) = G(t) u(t) = —L&(t) — pLC(t)
Gi(t) = u;(t)
m communication graph G 0
Pecec
@

u(t) = —L (é(t) +diag(t —tL, ..t — tkN)é(t)) — uLé(t)
&(t) = &i(th), Gi(t) = Gi(td) for t € [ti, th 4]

Measurement errors

moeeq(t) = (&(t) + (t— )G (1) — &(1)

A

moeci(t) = G(t) — G(t)

Event-based control for double-integrator agents

28 - i((?) - ult) = —L (£(1) + diag(t — th. ..t — ¥)C(0)) —puLl(t)  (2)

Theorem (double-integrator agents)

Consider system (2) with undirected connected graph G. Suppose that

il

ec’i(t

filtcestt)eca(0) = |

with cg,c1 > 0, at least one positive, and 0 < a < |R(A3(L"))|. Then, for
all &, Co € RY, the system does not exhibit Zeno behavior and for
t — oo,

An (L)
6@ < OV B e )] v2N.
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Mathematical model

Augmented state vector:
_ ([ =)
Za(t) = < x1(t) )

State-space model of the event-triggered Pl-control loop:

Ta(t) = Az,(t) + Brsat(Kizi(t) + Kp(x(t) — e(t))) — Fie(t)

z,(0) = ma

¢w( ) ‘d( t) ¢w( ) ¢e( t) w( t)‘e( t)‘d( t)
u P

1(2 Uy — | B(

Pla(t U(E)[ Uy |
> controller —4_ Plant x(t !9 r controller —4_

( tk)i

IS
p=4
=
r

t
Plant:(l(t))

x(t)

Transformation of saturation nonlinearity

o(u) = sat(u) —u

sat(u) o(u)
HUT o(u)=sat(u)-u T u

U “Uy ‘ U

Transformed state-space model of the event-triggered Pl-control loop:

x.(t) = Aiza(t)+ Bio(Kx.(t) — Kpe(t)) — Fre(t)
z,(0) = ma

= A+ BKp BK B BK
AI:< I P OI>*BI:(O>-FI:( IP>K:(KP KI)

Nonlinearity transformation enables tighter stability conditions [Tarbouriech et al, 2006]
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Theorem: Region of stability

If there exist a symmetric positive definite matrix W, a positive definite
diagonal matrix S, a matrix Z, a positive scalar n and two a priori fixed
positive scalars 7; and 7 satisfying

WA}F+AIW+7’1W BiS-WKT 7T _FR
* —28 —Kp <0
* * —1moR

—110 + 719 < 0

w  zF
[ Zlg] >0z € 1. m
*  nug

thenfore e W= {e:eTRe ="'} (R=1,5"! = &2) the ellipsoid
E ={z,: xl Pz, = n~'}, with P = W1, is a region of stability.

» Computational tool to estimate region of stability for saturated event-based control
» Extends results for continuous-time systems [Tarbouriech; Zaccarian & Teel, 2011]

Anti-windup for event-based PI control
w(f)

(1) | [ K | y at
m(r -
®(u)

» Adapted dynamics of the controller state:
@i(t) = () —e(t) —w(t) + Keawd(u), ®1(0) =z10

» Transformed state-space model of the event-triggered Pl-control loop:

Za.(t) = Arza(t) + Bio(Kzx,(t) — Kpe(t)) — Fie(t), ©.(0) = xao

- [A+BKp BKi\. B\ BKp )\ |
AI=( I 0 )-BI:<KSM>=FI:< I >,K=(KP K1)
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