

Short Course: **Topics on Cyber-Physical Control Systems**

Karl H. Johansson

ACCESS Linnaeus Center & School of Electrical Engineering
KTH Royal Institute of Technology, Sweden

Slides and paper available at http://people.kth.se/~kallej

Department of Electronic & Computer Engineering Hong Kong University of Science and Technology, July 2015

KTH Royal Institute of Technology

- Sweden's largest and oldest technical university
- 1/3 of of Sweden's engineering education and research
- Located in the scientific and industrial hub of Stockholm:
 - Royal Academy of Sciences, Karolinska Inst, Stockholm U,...
 - Ericsson, ABB, Scania, Spotify, Skype, King, Mojang,...

ACCESS Linnaeus Center

- Cross-disciplinary research center on networks
- 36 faculty, 25 postdocs, >100 PhD students
- Focusing on the fundamentals and applications of networked systems

Course Outline

Jul 20: What is a cyber-physical system?

Jul 20: Event-based control of networked systems

Jul 22: Cyber-secure networked control systems

Aug 5?: IAS Lecture on "Cyber-physical control for

sustainable freight transportation"

Cyber-physical Systems

Cyber-physical systems are engineered systems whose operations are <u>monitored and controlled</u> by a <u>computing</u> and <u>communication</u> core <u>embedded</u> in objects and structures in the physical environment.

Cyber-Physical Systems Challenges

Societal Scale

- Global and dense instrumentation of physical phenomena
- Interacting with a computational environment: closing the loop
- Security, privacy, usability

Distributed Services

- Self-configuring, self-optimization
- Reliable performance despite uncertain components, resilient aggregation

Programming the Ensemble

- Local rules with guaranteed global behavior
- Distributing control with limited information

Network Architectures

- Heterogeneous systems: local sensor/actuator networks and wide-area networks
- Self-organizing multi-hop, resilient, energy-efficient routing
- Limited storage, noisy channels

Real-Time Operating Systems

- Extensive resource-constrained concurrency
- · Modularity and data-driven physics-based modeling

1000 Radios per Person

- Low-power processors, radio communication, encryption
- Coordinated resource management, spectrum efficiency

Sastry & J, 2010

Cyber-Physical Control Challenges

How to analyze, design, and implement control systems with

- Guaranteed global objective from local interactions
- Physical dynamics coupled with information interactions
- Tradeoff computation-communication-control complexities
- Robustness to external disturbances and other uncertainties

Event-based control of networked systems

Outline

- Introduction
- Stochastic event-based control
- Optimal event-based control
- Distributed event-based control
- Event-based anti-windup
- Conclusions

Acknowledgements

Presentation based on joint papers with students

Antonio Adaldo, Georg Kiener, Chithrupa Ramesh, Georg Seyboth

postdocs

Daniel Lehmann, Davide Liuzza, Maben Rabi and colleagues

Dimos Dimarogonas, Henrik Sandberg

Funding sources:

Goal: Guarantee Control Performance under Limited Resources

Resources

- Sensing
- Sensor communication
- Network
- Actuation
- (Computing)

Outline

- Introduction
- Stochastic event-based control
- Optimal event-based control
- Distributed event-based control
- Event-based anti-windup
- Conclusions

Event-based control loop

Åström, 2007, Rabi and J., WICON, 2008

When to transmit?

- Event detector mechanism on sensor side
 - E.g., threshold crossing

How to control?

- Execute control law at actuator side
 - E.g., piecewise constant controls, impulse control

Rabi et al., 2008

Example: Fixed threshold with impulse control Event-detector implemented as fixedlevel threshold at sensor Event Detector Control Event-based impulse control better than periodic impulse control Event-Based Control 200 200 100 100 -100 -100 -200 L 5 10 15 20 Åström & Bernhardsson, *IFAC*, 1999

Control generators and event detectors

- 1. Impulse
- 2. Zero order hold
- 3. Higher order hold

- 1. Fixed threshold
- 2. Time-varying
- 3. Adaptive

Plant model

Plant

$$dx = udt + dv,$$

Stochastic differential equation, interpreted as

$$x(s+\tau) - x(\tau) = \int_{\tau}^{s+\tau} u(t)dt + \int_{\tau}^{s+\tau} dv(t)$$

with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

v is a Wiener process (or Brownian motion)

See Øksendal (2003) for an introduction to stochastic differential equations

Wiener process

A Wiener process v(t) fulfills

- 1. v(0)=0
- 2. v(t) is almost surely continuous
- 3. v(t) has independent increments with v(t)- $v(s) \sim N(0,t-s)$ for $t>s\geq 0$

Remark The variance of a Wiener process is growing like

$$E(v(t+s) - v(t))^2 = |s|$$

Plant model

Plant

$$dx = udt + dv$$

Stochastic differential equation, interpreted as

$$x(s+\tau) - x(\tau) = \int_{\tau}^{s+\tau} u(t)dt + \int_{\tau}^{s+\tau} dv(t)$$

with one ordinary (Lebesgue) integral and one stochastic (Ito) integral.

When s>0 is a small, the change of $x(\tau)$ is normally distributed with mean $su(\tau)$ and variance s.

Plant model and control cost

Plant

$$dx = udt + dv,$$

v is a Wiener process:
$$E(v(t+s)-v(t))^2=|s|$$

$${\bf Cost \ function} \qquad \quad V = \frac{1}{T} E \int_0^T x^2(t) dt.$$

Periodic impulse control

Impulse applied at events t_k

$$u(t) = -x(t_k)\delta(t - t_k),$$

Periodic reset of state every event.

State grows linearly as

$$E(v(t+s) - v(t))^2 = |s|$$

between sample instances, because dx = udt + dv, Average variance over sampling period h is $\frac{1}{2}h$ so the cost is $V_{PIH} = \frac{1}{2}h.$

Åström, 2007

Periodic ZoH control

Traditional sampled-data control theory gives that $V = \frac{1}{h} \int_0^h Ex^2(t) \, dt$ is minimized for the sampled system

$$x(t+h) = x(t) + hu(t) + e(t),$$

with

$$u = -Lx = \frac{1}{h} \frac{3 + \sqrt{3}}{2 + \sqrt{3}} x$$

derived from

$$S = \Phi^T S \Phi + Q_1 - L^T R L, \quad L = R^{-1} (\Gamma^T S \Phi + Q_{12}^T), \quad R = Q_2 + \Gamma^T S \Gamma,$$

The minimum gives the cost

$$V_{PZOH} = \frac{3 + \sqrt{3}}{6}h$$

Åström, 2007

Event-based impulse control with fixed threshold

Suppose an event is generated whenever

$$|x(t_k)| = a$$

generating impulse control

$$u(t) = -x(t_k)\delta(t - t_k),$$

One can show that the average time between two events is

$$h_E := E(T_{\pm d}) = E(x_{T_{\pm d}}^2) = a^2$$

and that the pdf of x is triangular:

$$f(x) = (a - |x|)/a^2$$

The cost is

$$V_{EIH} = \frac{a^2}{6} = \frac{h_E}{6}$$

Åström, 2007

Pdf $f(x)=(a-|x|)/a^2$ is the solution to the forward Kolmogorov forward equation (or Fokker–Planck equation)

$$\frac{\partial f}{\partial t} = \frac{1}{2} \frac{\partial^2 f}{\partial x^2}(x) - \frac{1}{2} \frac{\partial f}{\partial x}(d) \delta_x + \frac{1}{2} \frac{\partial f}{\partial x}(-d) \delta_x, \qquad f(-a) = f(a) = 0,$$

Outline

- Introduction
- Stochastic event-based control
- Optimal event-based control
- Distributed event-based control
- Event-based anti-windup
- Conclusions

Event-based ZoH control with adaptive sampling

How choose $\{U_i\}$ and $\{\tau_i\}$ to minimize $V = \frac{1}{T}E\int_0^T x^2(t)dt$.

Rabi et al., 2008

Optimal control with one sampling event

$$dx_t = u_t dt + dB_t$$

$$\min_{U_0,U_1,\tau}J=\min_{U_0,U_1,\tau}\mathsf{E}\int_0^Tx_s^2ds$$

$$= \min_{U_0, U_1, \tau} \left[\mathbf{E} \int_0^\tau x_s^2 ds + \mathbf{E} \int_\tau^T x_s^2 ds \right]$$

A joint optimal control and optimal stopping problem

Rabi et al., 2008

$$\begin{split} dx_t &= u_t dt + dB_t \\ \min_{U_0, U_1, \tau} J &= \min_{U_0, U_1, \tau} \mathbf{E} \int_0^T x_s^2 ds \end{split}$$

If τ chosen deterministically (not depending on x_t) and $x_0 = 0$:

$$U_0^* = 0$$
 $U_1^* = -\frac{3x_{T/2}}{T}$ $\tau^* = T/2$

If τ is event-driven (depending on x_t) and $x_0 = 0$:

$$U_0^* = 0$$
 $U_1^* = -\frac{3x_{\tau^*}}{2(T - \tau^*)}$

$$\tau^* = \inf\{t : x_t^2 \ge \sqrt{3}(T - t)\}$$

Envelope defines optimal level detector

$$\begin{aligned} & \text{Proof} \\ & \underset{U_0,U_1,\tau}{\min} J = \underset{U_0,U_1,\tau}{\min} \, \mathbf{E} \int_0^T x_s^2 ds = \underset{U_0,U_1,\tau}{\min} \left[\mathbf{E} \int_0^\tau x_s^2 ds + \mathbf{E} \int_\tau^T x_s^2 ds \right] \\ & \mathbf{E} \left\{ \int_\tau^T x_s^2 ds \big| \tau, x_\tau, U_1 \right\} = \left[x_t = x_\tau + \int_\tau^t U_1 ds + \int_\tau^t dB_s \right] \\ & = \int_\tau^T \mathbf{E} \left\{ \left[x_\tau^2 + U_1^2 (t - \tau)^2 + (B_t - B_\tau)^2 + 2x_\tau U_1 (t - \tau) + 2x_\tau (B_t - B_\tau) + 2U_1 (t - \tau) (B_t - B_\tau) \right] \right\} dt \\ & = \left[\mathbf{E} B_t = 0, \, \mathbf{E} B_t^2 = t, \, \delta := T - \tau \right] = \delta x_\tau^2 + \frac{\delta^3}{3} U_1^2 + \frac{\delta^2}{2} + \delta^2 x_\tau U_1 \right] \\ & = \frac{\delta}{4} x_\tau^2 + \delta \left(\frac{x_\tau \sqrt{3}}{2} + \frac{\delta U_1}{\sqrt{3}} \right)^2 + \frac{\delta^2}{2} \end{aligned}$$
Hence, optimal control $U_1^* = U_1^* (x_\tau, T - \tau) = -\frac{3x_\tau}{2(T - \tau)}$

$$J(U_0, U_1^*, \tau) = \mathbf{E} \int_0^{\tau} x_s^2 ds + \mathbf{E} \left\{ \frac{T - \tau}{4} x_{\tau}^2 + \frac{(T - \tau)^2}{2} \right\}$$

If τ chosen deterministically (not depending on x_t) and $x_0 = 0$:

$$J(U_0, U_1^*, \theta) = \frac{\theta^3}{3}U_0^2 + \frac{\theta^2}{2} + \frac{T - \theta}{4}(U_0^2\theta^2 + \theta) + \frac{(T - \theta)^2}{2}$$

Hence,

$$U_0^* = 0$$
 $U_1^* = -\frac{3x_{T/2}}{T}$ $\tau^* = T/2$

which gives

$$J(U_0^*, U_1^*, \tau^*) = \frac{5T^2}{16}$$

If τ is event-driven (depending on x_t) and $x_0 = 0$:

$$J(U_0, U_1^*, \tau) = \mathbf{E} \int_0^\tau x_s^2 ds + \mathbf{E} \left\{ \frac{T - \tau}{4} x_\tau^2 + \frac{(T - \tau)^2}{2} \right\} = \dots$$
$$= \frac{T^2}{2} + \frac{U_0^2 T^3}{3} - \mathbf{E} \left\{ \left(\frac{x_\tau \sqrt{3}}{2} + \frac{(T - \tau)U_0}{\sqrt{3}} \right)^2 (T - \tau) \right\}$$
$$= \frac{T^2}{2} - \frac{3}{4} \mathbf{E} \left\{ x_\tau^2 (T - \tau) \right\}$$

because from symmetry $U^* = 0$.

Find au that maximizes $f(x_{ au}, au) = \mathbf{E} \left\{ x_{ au}^2 (T - au) \right\}$

Find τ that maximizes $f(x_{\tau},\tau) = \mathbf{E}\left\{x_{\tau}^{2}(T-\tau)\right\}$

Suppose there exists smooth g(x,t) such that

$$g(x,t) \ge x^2(T-t)$$
$$\frac{1}{2}g_{xx}(x,t) + g_t(x,t) = 0$$

Then, for $0 \le t \le \tau \le T$,

$$\begin{split} f(x_{\tau},\tau) &= \mathbf{E}\left\{x_{\tau}^2(T-\tau)\right\} \leq \mathbf{E}\left\{g(x_{\tau},\tau)\right\} = g(x_t,t) + \mathbf{E}\int_t^{\tau}dg(x_{\tau},\tau) \\ &= [\text{Ito formula}] = g(x_t,t) + \mathbf{E}\int_t^{\tau}\left(\frac{1}{2}g_{xx} + g_t\right)dt \\ &= g(x_t,t) \end{split}$$

Hence, g is an upper bound for the expected reward.

We next show that equality can be achieved.

$$g(x_t, t) = \frac{\sqrt{3}}{1 + \sqrt{3}} \left(\frac{x_t^4}{6} + x_t (T - t)^2 + \frac{(T - t)^2}{2} \right)$$

is a solution to

$$\frac{1}{2}g_{xx}(x,t) + g_t(x,t) = 0$$

Moreover,

$$g(x_t, t) - x_t^2(T - t) = \frac{1}{2(1 + \sqrt{3})} \left(\frac{x_t^4}{3} - \frac{2}{\sqrt{3}} x_t^2 (T - t) + (T - t)^2 \right)$$
$$= \frac{1}{2(1 + \sqrt{3})} \left(\frac{x_t^4}{\sqrt{3}} - (T - t)^2 \right) = 0$$

$$if x_t^2 = \sqrt{3}(T-t)$$

Hence, the optimal sampling time is

$$\tau^* = \inf\{t : x_t^2 \ge \sqrt{3}(T - t)\}$$

which gives

$$J(U_0^*, U_1^*, \tau^*) = \frac{T^2}{8}$$

Joint Optimal Event-Generation and Control

Control without Event Scheduling: Classical LQG

The controller minimizing

$$J = \mathbb{E}\left[x_N^T Q_0 x_N + \sum_{s=0}^{N-1} (x_s^T Q_1 x_s + u_s^T Q_2 u_s)\right]$$

is given by

$$u_k = -L_k \hat{x}_{k|k}$$
,
 $L_k = (Q_2 + B^T S_{k+1} B)^{-1} B^T S_{k+1} A$

where

$$S_k = Q_1 + A^T S_{k+1} A - A^T S_{k+1} B (Q_2 + B^T S_{k+1} B)^{-1} B^T S_{k+1} A$$

 $\hat{x}_{k|k} = \mathbb{E}[x_k|\{y\}_0^k u_0^{k-1}]$ is the minimum mean-square error (MMSE) estimate

Kalman, 1960

Certainty Equivalence

Definition Certainty equivalence holds if the closed-loop optimal controller has the same form as the deterministic optimal controller with x_k replaced by the estimate $\hat{x}_{k|k} = \mathrm{E}[x_k|\mathbb{I}_k^{\mathbb{C}}]$.

Theorem[Bar-Shalom–Tse] Certainty equivalence holds if and only if $E[(x_k - E[x_k|I_k^c])^2|I_k^c]$ is not a function of past controls $\{u\}_0^{k-1}$ (no dual effect).

Here x_k is the plant state and I_k^c the information at the controller

Feldbaum, 1965; Åström, 1970; Bar-Shalom and Tse, 1974

Stochastic Control Formulation

Plant:

$$x_{k+1} = Ax_k + Bu_k + w_k$$

Scheduler:

$$\begin{aligned} & \delta_k = f_k(\mathbb{I}_k^{\mathbb{S}}) \in \{0, 1\} \\ & \mathbb{I}_k^{\mathbb{S}} = \left[\{x\}_0^k, \{y\}_0^{k-1}, \{\delta\}_0^{k-1}, \{u\}_0^{k-1} \right] \end{aligned}$$

Controller:

$$u_k = g_k(\mathbb{I}_k^{\mathbb{C}})$$

$$\mathbb{I}_k^{\mathbb{C}} = \left[\{y\}_0^k, \{\delta\}_0^k, \{u\}_0^{k-1} \right]$$

Cost criterion:

$$J(f,g) = \mathbf{E}[x_N^T Q_0 x_N + \sum_{s=0}^{N-1} (x_s^T Q_1 x_s + u_s^T Q_2 u_s)]$$

- Non-classical information pattern
- Hard to find optimal solutions in general
- Special cases lead to tractable problems

Cf., Witsenhausen, Hu & Chu, Varaiya & Walrand , Borkar, Mitter & Tatikonda, Rotkowitz etc

Example

Plant

$$x_{k+1} = x_k + u_k + w_k, \quad x_0 = 2, Ew_k^2 = 0.7^2$$

Certainty equivalent controller

$$u_k^{\text{CE}} = -K_k^{\text{CE}} \left(E[x_k | \{y_k\}_0^k, \{u_k\}_0^{k-1}] + E[w_k | \{y_k\}_0^k, \{u_k\}_0^{k-1}] \right)$$

Event-generator encodes state as 0.3

$$\xi(x_k) = \begin{cases} 1, & \text{if } x_k \in (\infty, -\theta) \\ 2, & \text{if } x_k \in (-\theta, \theta) \\ 3, & \text{if } x_k \in (\theta, \infty) \end{cases}$$

Cost for time-horizon N = 1

$$J(u_0) = \sigma_w^2 + qu_0^2 + \left(p + \frac{qa^2}{q+1}\right) \mathbb{E}\left[x_1^2 \left| x_0, u_\mathrm{i} \right| \right]$$

Optimal performance is not obtained by a certainty equivalent controller

Rabi et al, 2015

Condition for Certainty Equivalence

Corollary: The optimal controller for the system $\{\mathcal{P}, S(f), \mathcal{C}(g)\}$, with respect to the cost J is certainty equivalent if the scheduling decisions are not a function of the applied controls.

Certainty equivalence achieved at the cost of optimality

Bar-Shalom & Tse, 1974; Ramesh et al., 2011

50

Architecture with Certainty Equivalent Controller

Ramesh et al., 2012, 2013

Outline

- Introduction
- Stochastic event-based control
- Optimal event-based control
- Distributed event-based control
- Event-based anti-windup
- Conclusions

Distributed Event-Based Control

- How to implement event-based control over a distributed system?
- Local control and communication, but global objective

Approach: Consider a prototype distributed control problem and study it under event-based communication and control

Average Consensus Problem

Multi-agent system model

lacksquare Group of N agents

$$\dot{x}_i(t) = u_i(t)$$

Communication graph G
 A: undirected, connected

Adjacency matrix A with $a_{ij} = 1$ if agents i and j adjacent, otherwise $a_{ij} = 0$

Degree matrix D is the diagonal matrix with elements equal to the cardinality of the neighbor sets N_i

Objective: Average consensus

$$x_i(t) \stackrel{t \to \infty}{\longrightarrow} a = \frac{1}{N} \sum_{i=1}^{N} x_i(0)$$

Consensus protocol

$$u_i(t) = -\sum_{j \in N_i} (x_i(t) - x_j(t))$$

Closed-loop dynamics

$$\dot{x}(t) = -Lx(t)$$

with Laplacian matrix $oldsymbol{L} = D - A$

Event-based implementation?

Olfati-Saber & Murray, 2004

Event-Based Average Consensus

Event-based scheduling of measurement broadcasts:

Event-based broadcasting

$$\hat{x}_i(t) = x_i(t_k^i), t \in [t_k^i, t_{k+1}^i]$$

$$0 \le t_0^i \le t_1^i \le t_2^i \le \cdots$$

Consensus protocol

$$u_i(t) = -\sum_{j \in N_i} \left(\hat{x}_i(t) - \hat{x}_j(t) \right)$$

Measurement errors

$$e_i(t) = \hat{x}_i(t) - x_i(t)$$

Closed-loop

$$\dot{x}(t) = -L\hat{x}(t) = -L(x(t) + e(t))$$

Disagreement

$$\delta(t) = x(t) - a\mathbf{1}, \qquad \mathbf{1}^T \delta(t) \equiv 0$$
 Seyboth et al, 2013

Trigger Function for Event-Based Control

Trigger mechanism: Define trigger functions $f_i(\cdot)$ and trigger when

$$f_i\left(t, x_i(t), \hat{x}_i(t), \bigcup_{j \in N_i} \hat{x}_j(t)\right) > 0$$

Defines sequence of events: $t_{k+1}^i = \inf\{t: \, t > t_k^i, f_i(t) > 0\}$

Extends [Tabuada, 2007] single-agent trigger function to multi-agent systems

Find f_i such that

- $|x_i(t) x_j(t)| \to 0, t \to \infty$
- no Zeno (no accumulation point in time)
- few inter-agent communications

Cf., Dimarogonas et al., De Persis et al., Donkers et al., Mazo & Tabuada, Wang & Lemmon, Garcia & Antsaklis, Guinaldo et al.

Seyboth et al, 2013

Event-Based Control with Constant Thresholds

$$\dot{x}(t) = u(t),$$
 $u(t) = -L\hat{x}(t)$

Theorem (constant thresholds)

Consider system (1) with undirected connected graph G. Suppose that

$$f_i(e_i(t)) = |e_i(t)| - c_0,$$

with $c_0 > 0$. Then, for all $x_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and for $t \to \infty$.

$$\|\delta(t)\| \le \frac{\lambda_N(L)}{\lambda_2(L)} \sqrt{N} c_0.$$

(1)

Proof ideas:

Analytical solution of disagreement dynamics yields

$$\|\delta(t)\| \le e^{-\lambda_2(L)t} \|\delta(0)\| + \lambda_N(L) \int_0^t e^{-\lambda_2(L)(t-s)} \|e(s)\| ds$$

lacktriangle Compute lower bound au on the inter-event intervals Seyboth et al, 2013

Event-Based Control with Exponentially Decreasing Thresholds

$$\dot{x}(t) = u(t), \qquad u(t) = -L\hat{x}(t) \tag{1}$$

Theorem (exponentially decreasing thresholds)

Consider system (1) with undirected connected graph G. Suppose that

$$f_i(t, e_i(t)) = |e_i(t)| - c_1 e^{-\alpha t},$$

with $c_1 > 0$ and $0 < \alpha < \lambda_2(L)$. Then, for all $x_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and as $t \to \infty$,

$$\|\delta(t)\| \to 0.$$

Remarks

- Asymptotic convergence: $|x_i(t) x_j(t)| \to 0, t \to \infty$
- $\lambda_2(L)$ is the rate of convergence for continuous-time consensus, so threshold need to decrease slower

Seyboth et al, 2013

Event-Based Control with Exponentially Decreasing Thresholds and Offset

$$\dot{x}(t) = u(t), \qquad \qquad u(t) = -L\hat{x}(t) \tag{1}$$

Theorem (exponentially decreasing thresholds with offset)

Consider system (1) with undirected connected graph G. Suppose that

$$f_i(t, e_i(t)) = |e_i(t)| - (c_0 + c_1 e^{-\alpha t}),$$

with $c_0, c_1 \geq 0$, at least one positive, and $0 < \alpha < \lambda_2(L)$. Then, for all $x_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and for $t \to \infty$,

$$\|\delta(t)\| \le \frac{\lambda_N(L)}{\lambda_2(L)} \sqrt{N} c_0.$$

Seyboth et al, 2013

Event-Based Formation Control

- Non-holonomic mobile robots under feedback linearization
- · Event-based communication based on threshold for double-integrator network

Seyboth et al, 2013

Extensions

- How to estimate $\lambda_2(L)$ in a distributed way?
 - Aragues et al., 2014
- How to handle general agent dynamics?
 - Guinaldo et al. 2013

- How to handle network delays and packet losses?
 - Guinaldo et al., 2014
- Pinning (leader-follower) control and switching networks
 - Adaldo et al., 2015
- Event-triggered pulse width modulation
 - Meng et al., 2015
- Event-triggered cloud access
 - Adaldo et al., 2015

Event-triggered Cloud Access

· Agent dynamics with unknown drift disturbance

$$\dot{x}_i(t) = u_i(t) + \omega_i(t), \quad i = 1, \dots, N,$$

- Agents exchange state, control, disturbance, and timing data through a shared data base
- Schedule next data base access time based on dynamic estimates and event-based triggering fcn

Adaldo et al., 2015

Outline

- Introduction
- Stochastic event-based control
- Optimal event-based control
- Distributed event-based control
- Event-based anti-windup
- Conclusions

Event-Based PI Control with Saturation

- Industrial applications are generally affected by actuator limitations.
 - 1. Does actuator saturation affect event-triggered PI control?
 - 2. Under what conditions can we guarantee stability?
 - 3. How to overcome potential effects of actuator saturation?

Example

► Plant:

$$\dot{x}(t) = 0.1x(t) + \tilde{u}(t) + 0.1d(t), \quad x(0) = 0$$

$$y(t) = x(t)$$

Exogenous signals:

$$w(t) = \bar{w} = 1.5$$
$$d(t) = \bar{d} = 0.1$$

Actuator saturation:

$$\tilde{u}(t) = \left\{ \begin{array}{ll} 0.4, & \text{for } u(t) > 0.4; \\ u(t), & \text{for } -0.4 \leq u(t) \leq 0.4; \\ -0.4, & \text{for } u(t) < -0.4; \end{array} \right.$$

► PI controller

$$\dot{x}_{\rm I}(t) = y(t) - w(t), \quad x_{\rm I}(0) = 0$$

$$u(t) = -x_{\rm I}(t) - 1.6(y(t) - w(t))$$

Mathematical Model

► Plant:

$$\begin{split} \dot{\boldsymbol{x}}(t) &= \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\tilde{\boldsymbol{u}}(t) + \boldsymbol{E}\boldsymbol{d}(t), \quad \boldsymbol{x}(0) = \boldsymbol{x}_0 \\ \tilde{\boldsymbol{u}}(t) &= \operatorname{sat}(\boldsymbol{u}(t)) \\ \operatorname{sat}(u_i(t)) &= \begin{cases} u_0, & \text{for } u_i(t) > u_0 \\ u_i(t), & \text{for } -u_0 \leq u(t) \leq u_0 \quad \forall i \in \{1, 2, ..., m\} \\ -u_0, & \text{for } u_i(t) < -u_0 \end{cases} \end{split}$$

- ▶ Event generator: $\| {m x}(t) {m x}(t_k) \| = \bar e$
- PI controller:

$$\dot{x}_{\mathrm{I}}(t) = x(t) - e(t) - w(t), \quad x_{\mathrm{I}}(0) = x_0$$

 $u(t) = K_{\mathrm{I}}x_{\mathrm{I}}(t) + K_{\mathrm{P}}(x(t) - e(t) - w(t))$

- ▶ State error: $e(t) = x(t) x(t_k)$
- For the sake of simplicity: w(t) = d(t) = 0

Anti-Windup for Event-Based Control I-Windup u(t) u(t

Outline

- Introduction
- Stochastic event-based control
- Optimal event-based control
- · Distributed event-based control
- Event-based anti-windup
- Conclusions

Open Problem on Event-Based Control: Where and When to Take Actions? Sensor node makes local decisions on when to communicate Network manager allocates communication slots Controller i Controller M Controller M Controller M

Conclusions

- Event-based control to handle limited CPS resources
- Hard to jointly optimize event condition and control law
- Certain architectures lead to strong results
- Event-based control of multi-agent systems
- Event-based **revisions** of classical control architectures: event-based anti-windup, feedforward, cascade control

http://people.kth.se/~kallej

Additional material

- Distributed event-based control
- Event-based anti-windup

Extension to double-integrator agents

Multi-agent system model

$$\dot{\xi}_i(t) = \zeta_i(t)$$

$$\dot{\zeta}_i(t) = u_i(t)$$

lacksquare communication graph G

Consensus protocol

$$u(t) = -L\xi(t) - \mu L\zeta(t)$$

Closed-loop dynamics

$$\begin{bmatrix} \dot{\xi} \\ \dot{\zeta} \end{bmatrix} = \underbrace{\begin{bmatrix} 0 & I \\ -L & -\mu L \end{bmatrix}}_{\Gamma} \begin{bmatrix} \xi \\ \zeta \end{bmatrix}$$

Objective: Average consensus

$$\zeta_i(t) \xrightarrow{t \to \infty} \frac{1}{N} \sum_{i=1}^N \zeta_i(0) = b$$

$$\xi_i(t) \xrightarrow{t \to \infty} \frac{1}{N} \sum_{i=1}^N \xi_i(0) + bt$$

Event-based implementation

Multi-agent system model

$$\dot{\xi}_i(t) = \zeta_i(t)$$

$$\dot{\zeta}_i(t) = u_i(t)$$

 \blacksquare communication graph G

Consensus protocol

$$u(t) = -L\xi(t) - \mu L\zeta(t)$$

$$\begin{split} u(t) &= -L\left(\hat{\xi}(t) + \mathrm{diag}(t-t_k^1,...,t-t_k^N)\hat{\zeta}(t)\right) - \mu L\hat{\zeta}(t) \\ &\hat{\xi}_i(t) = \xi_i(t_k^i),\, \hat{\zeta}_i(t) = \zeta_i(t_k^i) \text{ for } t \in [t_k^i,t_{k+1}^i] \end{split}$$

Measurement errors

- $e_{\xi,i}(t) = (\hat{\xi}_i(t) + (t t_k^i)\hat{\zeta}_i(t)) \xi_i(t)$
- $\bullet e_{\zeta,i}(t) = \hat{\zeta}_i(t) \zeta_i(t)$

Event-based control for double-integrator agents

Theorem (double-integrator agents)

Consider system (2) with undirected connected graph G. Suppose that

$$f_i(t, e_{\xi,i}(t), e_{\zeta,i}(t)) = \left\| \begin{bmatrix} e_{\xi,i}(t) \\ \mu e_{\zeta,i}(t) \end{bmatrix} \right\| - \left(c_0 + c_1 e^{-\alpha t} \right),$$

with $c_0, c_1 \geq 0$, at least one positive, and $0 < \alpha < |\Re(\lambda_3(\Gamma))|$. Then, for all $\xi_0, \zeta_0 \in \mathbb{R}^N$, the system does not exhibit Zeno behavior and for $t \to \infty$,

$$\|\delta(t)\| \le c_0 c_V \frac{\lambda_N(L)}{|\Re(\lambda_3(\Gamma))|} \sqrt{2N}.$$

Mathematical model

Augmented state vector:

$$m{x}_{\mathrm{a}}(t) = \left(egin{array}{c} m{x}(t) \ m{x}_{\mathrm{I}}(t) \end{array}
ight)$$

State-space model of the event-triggered PI-control loop:

$$\begin{aligned} \dot{\boldsymbol{x}}_{\mathrm{a}}(t) &= \boldsymbol{A}_{\mathrm{I}}\boldsymbol{x}_{\mathrm{a}}(t) + \boldsymbol{B}_{\mathrm{I}}\mathrm{sat}(\boldsymbol{K}_{\mathrm{I}}\boldsymbol{x}_{\mathrm{I}}(t) + \boldsymbol{K}_{\mathrm{P}}(\boldsymbol{x}(t) - \boldsymbol{e}(t))) - \boldsymbol{F}_{\mathrm{I}}\boldsymbol{e}(t) \\ \boldsymbol{x}_{\mathrm{a}}(0) &= \boldsymbol{x}_{\mathrm{a}0} \end{aligned}$$

Transformation of saturation nonlinearity

$$\phi(\boldsymbol{u}) = \operatorname{sat}(\boldsymbol{u}) - \boldsymbol{u}$$

Transformed state-space model of the event-triggered PI-control loop:

$$\dot{x}_{\mathrm{a}}(t) = \bar{A}_{\mathrm{I}}x_{\mathrm{a}}(t) + B_{\mathrm{I}}\phi(Kx_{\mathrm{a}}(t) - K_{\mathrm{P}}e(t)) - F_{\mathrm{I}}e(t)$$
 $x_{\mathrm{a}}(0) = x_{\mathrm{a}0}$

$$\bar{A}_{\mathrm{I}} = \begin{pmatrix} A + BK_{\mathrm{P}} & BK_{\mathrm{I}} \\ I & O \end{pmatrix}; B_{\mathrm{I}} = \begin{pmatrix} B \\ O \end{pmatrix}; F_{\mathrm{I}} = \begin{pmatrix} BK_{\mathrm{P}} \\ I \end{pmatrix}; K = \begin{pmatrix} K_{\mathrm{P}} & K_{\mathrm{I}} \end{pmatrix}$$

Nonlinearity transformation enables tighter stability conditions [Tarbouriech et al, 2006]

Theorem: Region of stability

If there exist a symmetric positive definite matrix W, a positive definite diagonal matrix S, a matrix Z, a positive scalar η and two a priori fixed positive scalars τ_1 and τ_2 satisfying

$$\begin{bmatrix} \boldsymbol{W}\bar{\boldsymbol{A}}_{\mathrm{I}}^{T} + \bar{\boldsymbol{A}}_{\mathrm{I}}\boldsymbol{W} + \tau_{1}\boldsymbol{W} & \boldsymbol{B}_{\mathrm{I}}\boldsymbol{S} - \boldsymbol{W}\boldsymbol{K}^{T} - \boldsymbol{Z}^{T} & -\boldsymbol{F}_{\mathrm{I}} \\ \star & -2\boldsymbol{S} & -\boldsymbol{K}_{\mathrm{P}} \\ \star & \star & -\tau_{2}\boldsymbol{R} \end{bmatrix} < 0$$

$$\begin{aligned} & -\tau_1 \delta + \tau_2 \eta < 0 \\ \begin{bmatrix} \boldsymbol{W} & \boldsymbol{Z}_i^T \\ \star & \eta u_0^2 \end{bmatrix} \geq 0, i \in 1, ..., m \end{aligned}$$

then for $e \in \mathcal{W} = \{e : e^T R e = \delta^{-1}\}$ $(R = I, \delta^{-1} = \bar{e}^2)$ the ellipsoid $\mathcal{E} = \{x_a : x_a^T P x_a = \eta^{-1}\}$, with $P = W^{-1}$, is a region of stability.

- · Computational tool to estimate region of stability for saturated event-based control
- Extends results for continuous-time systems [Tarbouriech; Zaccarian & Teel, 2011]

Anti-windup for event-based PI control

► Adapted dynamics of the controller state:

$$\dot{\boldsymbol{x}}_{\mathrm{I}}(t) = \boldsymbol{x}(t) - \boldsymbol{e}(t) - \boldsymbol{w}(t) + \boldsymbol{K}_{\mathrm{sat}} \phi(\boldsymbol{u}), \quad \boldsymbol{x}_{\mathrm{I}}(0) = \boldsymbol{x}_{\mathrm{I0}}$$

► Transformed state-space model of the event-triggered PI-control loop:

$$\dot{x}_{\rm a}(t) = \bar{A}_{
m I} x_{
m a}(t) + B_{
m I} \phi (K x_{
m a}(t) - K_{
m P} e(t)) - F_{
m I} e(t), \ x_{
m a}(0) = x_{
m a0}$$

$$ar{A_{
m I}} = \left(egin{array}{cc} A + BK_{
m P} & BK_{
m I} \ I & O \end{array}
ight); B_{
m I} = \left(egin{array}{cc} B \ K_{
m sat} \end{array}
ight); F_{
m I} = \left(egin{array}{cc} BK_{
m P} \ I \end{array}
ight); K = \left(egin{array}{cc} K_{
m P} & K_{
m I} \end{array}
ight)$$