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Distributed Macro Calibration in Sensor Networks 

Milos S. Stankovic, Srdjan S. Stankovic and Karl Henrik Johansson 

Abstract-In this paper a novel consensus-based distributed 
algorithm for blind macro-calibration in sensor networks is 
proposed. It is proved, on the basis of an originally developed 
methodology for treating higher order consensus schemes, that 
the algorithm achieves asymptotic agreement for sensor gains 
and offsets in the mean square sense and with probability one. 
In the case of a given reference, all sensors are asymptotically 
calibrated. Simulation results illustrate properties of the algo
rithm. 

I. INTRODUCTION 

Recently, wireless sensor networks (WSN) have emerged 
as an important research area (see, e.g., [1], [2], [3]). Diverse 
new applications have sparked the recognition of new classes 
of problems for the developers. Calibration represents one 
of the most important challenges in this respect, having in 
mind that numerous WSNs are today characterized by a large 
number of sensors. Relatively small sensor systems are built 
for micro-calibration, in which each device is individually 
tuned in a carefully controlled environment. Larger sensor 
networks, however, demand new methods of calibration, 
since many devices can often be in partially unobservable 
and dynamic environments, or may even be inaccessible. 
Macro-calibration is based on the idea to calibrate a network 
as a whole by observing only the overall system response, 
thus eliminating the need to directly calibrate each and every 
device. The usual prerequisite is to frame calibration as 
a parameter estimation problem, in which the parameters 
have to be chosen in such a way as to optimize the overall 
system response [4]. Automatic methods for jointly cali
brating sensor networks in the field, without dependence 
on controlled stimuli or high-fidelity ground truth data, is 
of significant interest. This problem is referred to as blind 
calibration [5]. One approach to blind calibration of sensor 
networks is to begin by assuming that the deployment is very 
dense, so that neighboring nodes have (in principle) nearly 
identical readings. There are also methods trying to cope 
with situations in which sensor network deployments may 
not meet the density requirements [6]. 

In this paper we propose a novel collaborative blind 
macro-calibration method for sensor networks based on 
distributed on-line estimation of the parameters of local 
linear calibration functions (adjusting both gains and offsets). 
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It is assumed that the sensors form a network based only 
on communications between neighboring nodes, that the 
real measured signal is not directly accessible and that no 
reference sensor is identified. It will be demonstrated that 
the overall network behavior can be treated as a generalized 
consensus problem, in which all the equivalent sensor gains 
and offsets should converge asymptotically to equal values. 
Classical results related to different versions of the dynamic 
consensus algorithm are not applicable to this case (see, e.g., 
[7]). Note also that, to the authors' knowledge, consensus has 
been applied to the calibration problems only in [8], [9], but 
within different contexts. 

Using basic arguments derived from stability of diag
onally dominant dynamic systems decomposed into non
overlapping subsystems [10], [11], it is proved that the pro
posed algorithm provides asymptotic consensus in the mean 
square sense and with probability one under mild conditions 
involving signal properties and real sensor characteristics. In 
the case when at least one node is selected as reference, the 
algorithm provides convergence to the desired parameters in 
the mean square sense and with probability one. Simulation 
results illustrate the efficiency of the proposed algorithm. 

The outline of the paper is as follows. In Section II 
we formulate the calibration problem and introduce the 
basic algorithm. Section III is devoted to the algorithm's 
convergence analysis under different assumptions on the 
measured signals and network structure. In Section IV we 
present simulation results. 

II. PROBLEM FORMULATION AND THE BASIC 

ALGORITHM 

Consider n distributed sensors measuring the same 
discrete-time signal x(t), t = . . .  , -1,0, I, . . .  , which is 
supposed to be a realization of a random process {x( t)}. 
Assume that the i-th sensor generates at its output the signal 

Yi(t) = CtiX(t) + (3i (1) 

where the gain Cti and the offset (3i are unknown constants. 
By sensor calibration we consider application of the cali

bration function which produces the overall output 

Zi(t) = aiYi(t)+bi = aiCtix(t)+ai(3i+bi = giX(t)+ k (2) 

The calibration parameters ai and bi have to be chosen in 
such a way as to set the equivalent gain gi as close as possible 
to one and the equivalent offset fi as close as possible to 
zero. 

We assume that the observed sensors form a network with 
a predefined structure, represented by a directed graph 9 = 

(U, V), where U is the set of nodes (one node corresponds 
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to one sensor) and V the set of arcs. The adjacency matrix 
C = [Cij], i,j = 1, ... ,n, is defined in such a way that 
Cij = 1 when the j-th sensor can send its message to the 
i-th sensor; otherwise, Cij = O. 

The aim of this paper is to propose an algorithm for 
distributed real-time estimation of the calibration parameters 
ai and bi which provides: a) asymptotically equal outputs 
Zi (t) of all the sensors in the case when no reference signal 
or ideal sensor is given or identified; b) ideal asymptotic 
calibration of all the sensors (gi = 1 and fi = 0) in the case 
when at least one sensor is a priori known to have ideal (or 
desired) characteristics. In the first case it is expected that 
the majority of well calibrated sensors correct the behavior 
of those that are not, on the basis of global consensus. 

a) Assuming first that no reference is given, the distributed 
calibration algorithm is derived starting from minimization 
of the set of instantaneous criteria 

Ji = L lij(Zj(t) - Zi(t))2, (3) 
JEN, 

i = 1, . . .  ,n, where Hi is the set of neighboring nodes of 
the i-th node (the sensors able to send information to the i-th 
sensor), and lij are nonnegative scalar weights reflecting the 
relative importance of the neighboring nodes. If ei=[ai bi]T, 
we obtain that 

gra deJi = L lij(Zj(t) - Zi(t)) [Yiit) ] . (4) 
JEN, 

The last equation gives rise to the standard possibility to re
place ei by its estimate ei (t) and gra deJi by its realizations, 
and to construct in such a way the following recursions of 
stochastic gradient type: 

ei(t + 1) = ei(t) + Mt) L lijEij(t) [Yiit) ] ,  (5) 
JEN, 

where ei(t)=[iii(t) bi(t)]T, Oi(t) > 0 is a time varying 
gain influencing convergence properties of the algorithm, 
Eij(t) = Zj(t) - Zi(t) and Zi(t) = iii(t)Yi(t) + bi(t), with 
the initial conditions ei(O) = [1 O]T, i = 1, ... , n. Notice 
that each iteration of the algorithm subsumes reception of 
the current outputs of the neighboring nodes, as well as 
the local measurement. The main idea is to ensure that the 
estimates of all the local gains 9i (t) = iii (t )O;i and offsets 
Ji (t) = iii (t) (3i + bi (t) tend asymptotically to the same 
values 9 and J, implying Zj(t) = Zi(t), i,j = 1, ... ,n, 
i.e., minimization of all the criteria Ji. 

Introduce 

and 

A [ 9i (t) 1 [O;i 0 ] A 

Pi(t) = A = (3. 1 ei(t), 
fi(t) , 

(6) 

Eij(t) = [ x(t) 1 ] (Pj(t) - Pi(t)), (7) 

so that (5) becomes 

Pi(t + 1) = Pi(t) + Oi(t) L lij1>i(t)(Pj(t) - Pi(t)), (8) 
JEN, 
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where 

1>i(t) = [ O;iYi(t)X(t) O;iYi(t) 1 
[1 + (3iYi(t)]X(t) 1 + (3iYi(t) 

(9) 

[ O;i(3iX(t) + O;Tx(t)2 O;i(3i + O;Tx(t) 1 
- (1 + (3;)x(t) + O;i(3iX(t)2 1 + (3; + O;i(3iX(t) 

, 

with the initial conditions Pi(O) = [O;i (3iV, i = 1, ... ,n. 
Recursions (8) can be represented in the following compact 
form 

p(t + 1) = [1 + (ll(t) 012)B(t)]p(t), (10) 

where p(t) [Pl(t)T . . .  Pn(t)T]T, ll(t) = diag{OI(t), 
. . .  ,On(t)}, 

B(t) = 1>(t)(f 0 12), 
1>(t) = diag{1>I(t), ...  ,1>n(t)}, 0 denotes the Kronecker's 
product, 12 is the 2 x 2 unit matrix and 

- L 11j 112 lIn 
j,#1 

f =  121 L 12j 12n 
j,#2 

Inl In2 - L Inj 
j,#n 

where lij = 0 if j rt. Hi. The initial condition is P(O) 
[pl(O)T . . .  Pn(O)T]T, in accordance with (8). The desirable 
asymptotic value of p( t) should be based on such a specific 
type of consensus which implies that the components of p(t) 
with odd indices (representing gains) and the components 
with even indices (representing offsets) have equal values. 

b) In the case when it is a priori known that one of the 
sensors has ideal (or desirable) characteristics, the whole 
calibration network can be "pinned" to that sensor. Choosing 
the k-th sensor, k E {I, . . .  ,n} , as ideal, we simply eliminate 
the k-th recursion, i.e., in (5) we set 

(11) 

with ek(O) = [6 ] ,O;k = 1, (3k = 0, and leave the remaining 

recursions unchanged (any predefined O;k and (3k can be 
chosen). The corresponding modification in the compact 
form (10) simply consists of setting to zero all the block 
matrices in the k-th block row of B (t). It will be proved 
below that the resulting algorithm ensures convergence of 

Pi(t), i = 1, ... ,n, i i- k, to the same ideal vector 

Pk(O) = [6 ] . 
III. CONVERGENCE ANALY SIS 

We are concerned with the structural properties of the 
algorithm and we assume no communication and/or mea
surement errors; also, we assume that: 

AI) Oi(t) = 0 = const, i = 1, ... , n; 
A2) {x(t)} is i.i.d., with E{x(t)} x < 00 and 

E{x(t)2} = 82 < 00. 
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Assumption A2) is not essential. It only allows a more 
direct insight into the basic structural properties of the 
algorithm, and will be relaxed at the end of the section. 

Based on AI) and A2) we obtain 

15(t + 1) = (I + oB)15(t), (12) 

where 15(t) = E{p(t)}, 15(0) = p(O), B = <l>(f 0 12) and 
<l> = E{ <T>(t)} = diag{ <l>1 . . .  <l>n }, with 

<l>. 
- [ 

ad3ix + a;82 ad3i + a;x 1 
t 

- (1 + (3;)x + ai(3i82 1 + (3; + ai(3ix 
. 

We first pay attention to the asymptotic properties of (12). 
The well known results related to the classical consensus 
schemes, e.g., [7], cannot be directly applied here, having in 
mind the specific structure of B composed of 2 x 2 block 
matrices. Our analysis will be based on several basic lemmas 
derived using the results related to the diagonal dominance 
of matrices decomposed into blocks [10], [11] . 

Lemma 1: {lO], {12] A matrix A = [Aij], where Aij E 
cmxm, i,j = 1, ... n, has quasi-dominating diagonal blocks 
if the test matrix W E Rnxn, with the elements 

wij = 1 (i = j); wij = -IIAii1Aijll (ioFj) 
is an M-matrix (11 .11 denotes an operator norm). As a con
sequence, A is nonsingular. If A - AI has quasi-dominating 
diagonal blocks for all A E C+, then A is Hurwitz (C+ 
denotes the set of complex numbers with nonnegative real 
parts). • 

Lemma 2: If A has quasi-dominating diagonal blocks and 
Aii, i = 1, ... ,n, are Hurwitz, A is also Hurwitz. 

Proof If Aii is Hurwitz, then there exists a positive 
definite matrix D, such that AiiD + DAii = -Q D, where 
Q D is positive definite. Define the following operator norm 
of a matrix X E emxm 

IIXII = sup IIXxIID/llxIID, 
x#O 

where x E em, and Il xiiD = (x* D-1x)�, while D > 0 is 
such that QD > O. Using this norm in the definition of the 
corresponding matrix W in Lemma 1, for its off-diagonal 
elements we have 

* -h -1 -1 x* AijAijx Amax(AijAii D Aii Aij) = max 
* A A*' (13) x#O x iiD iix 

According to Lemma 1, A is Hurwitz if A - AI has quasi
dominating diagonal blocks for all A E C+, which is satisfied 
if the following holds 

X*(Aii - AI)D(Aii - AI)*X 2: x* AiiDAiiX (14) 

for all A E C+ since this guarantees that the corresponding 
matrix W(A) (with the above norm) is an M-matrix for all 
A. Let A = CJ + j fL be a complex number with a nonnegative 
real part. Then, we have 

H = X*(Aii - AI)D(Aii - AI)*X 
2: x* AiiDAiiX + X*(AiiDj - DAidfL)XfL 

- X*CJ(AiiD + DAii)x + p,2 Amin(D)x*x. (15) 
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As X*(AiiD - DAii)x = 0 and X*CJ(AiiD + DAii)x :s; 0 
for CJ 2: 0 according to the assumption of the Lemma, we 
have that H 2: x* AiiDAiix, Hence, the result follows. • 

We now come back to the matrix B in (12), and analyze 
its properties under the following standard assumption: 

A3) the graph 9 has a spanning tree. 
This assumption implies, according to the results in, e.g., 

[7], that the matrix f has one eigenvalue at the origin and 
the other eigenvalues have negative real parts. 

Lemma 3: Let assumption A3) be satisfied and let the 
i-th node be a center node of g. Then, the matrix f' E 
R (n-1) x (n-1) , obtained from f by deleting its i-th row and 
its i-th column, is nonsingular. 

Proof Let Wr = [wL], where wL = 0 for i = j, 
and wL = CL7=1,#i lij)-l'ij for i oF j. This matrix 
is row stochastic and cogredient (amenable by permutation 
transformations) to 

W[ = [:f :6]' 
(16) 

where wf E Rn1 xnl is an irreducible matrix, wi E 
Rn2xnl oF 0 and wJ' E Rn2xn2 is such that maXi Ai 
{WJ'} < 1. Eliminating one of the center nodes from 9 
means deleting the i-th row and the i-th column of wI, 
where 1 :s; i :s; n1. As matrix wf in (16) corresponds to 
a closed strong component of g, it is easy to observe that 
deleting one node from it (together with the corresponding 
edges) results into a graph containing, in general, '" closed 
strong components ('" 2: 1). However, there is at least 
one row in each of the weighted adjacency matrices of 
these closed strong components in which the sum of all the 
elements becomes strictly less than one (as a consequence of 
the elimination of the edges leading to at least one node per 
the resulting strong component). Using the arguments from 
[10], [13], it is possible to conclude that the matrix 1 -W[-, 
where W[- is obtained from wf after deleting its i-th row 
and i-th column, is an M-matrix. Consequently, in general, 
one concludes that 1 - wI-, where wI- is obtained from 
wI after deleting its i-th row and i-th column, is also 
and M-matrix, and, therefore, f' is nonsingular according 
to Lemma 1. • 
Consequently, matrix B from (12) has at least two eigen
values at the origin. In order to analyze its remaining 
eigenvalues, select one node of the graph 9 from the set 
of center nodes, i.e., of the nodes from which all the 
nodes in the graph are reachable (suppose without loss of 
generality that its index is 1), and delete the corresponding 
two rows and two columns from B. The remaining (2n -
2) x (2n - 2) matrix is B- = [BijJ, i,j = 1, ... , n - 1, 
where Bij = - 2::�=2,k#H1 IHl,k<l>Hl for i = j and 
Bij = IHl,j+1 <l>Hl for i oF j. According to Lelmna 1, 
the corresponding test matrix is Wr- = [w�-J, i, j = 
1, . .  ' ;" n - 1, where ��- = 1 for � = j and w�
-(2::k=2,k#HI IH1,k) li+1,]+l for t oF J. 

Lemma 4: Let Assumption A3) be satisfied and let 
A4) -<l>i is Hurwitz, i = 1, . . .  , n. 
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Then, matrix B in (12) has two eigenvalues at the origin 
and the remaining eigenvalues have negative real parts. 

Proof Using the result of Lelmna 3, we conclude, 
according to Lenuna 1, that B- has quasi-dominating diag
onal blocks (W- is in this case an M-matrix). According to 
Lemma 2, this fact together with Assumption A4) directly 
implies that B- has all the eigenvalues with negative real 
parts. Thus, the result. • 

Lemma 5: Let T [ i< i2 : T2nX(2n-2) ] , where 

i1 [1 0 1 0 . . .  1 O ]T, i2 [0 1 0 1 . . .  0 I]T 
and T2nx2n-2 is an 2n x (2n - 2) matrix, such that 
span{T2nX(2n-2) }= span{B}. Then, T is nonsingular and 

T-1 BT = [. O ;;�
2
�:� .�.�., ?2.

X.�:.�? ) -] , (17) 

where B* is Hurwitz and OiXj represents an i xj zero matrix. 
Proof The eigenvalue of B at the origin has both 

algebraic and geometric multiplicity equal to two: i1 and 
i2 represent two corresponding linearly independent eigen
vectors. The rest of the proof follows from the Jordan 
decomposition of B. Notice that 

[ 
7rl 

1 T-1 
- ········*2······-- ... . .... . ...... . .. - , 

S(2n-2)x2n 
(18) 

where 7rl and 7r2 are the left eigenvectors of B corresponding 
to the eigenvalue at the origin and S(2n-2) x2n is defined 
in accordance with (17). Thus, B* is Hurwitz according to 
Lemma 4. • 

Theorem 1: Let Assumptions AI), A2), A3) and A4) be 
satisfied. Then there exists a positive number 0' > 0 such that 
for all 0 :s: 0' in (12) limHoo P(t) = Poo= [P�l . . .  P�n]T, 

. h -T -T .. 1 Wit Pooi = Pooj' Z,) = , ... , n. 
Proof Using Lemma 5, we define 

p(t) =[Pl(t) P2(t) · · ·  P2n(t)]T =T-lp(t). From (12) 
we obtain 

p(t + 1)[1] = p(t)[l]; j)(t + 1)[2] = (I + oB*) p(t)[2], (19) 

where p(t)[l] = [Pl(t) P2(t)]T, p(t) [2] = [P3(t) · · ·  P2n(t)]T. 
Having in mind the above results, we see immediately that 
for 0 small enough all the eigenvalues of 1 + oB* lie within 
the unit circle. Therefore, limHoo p( t) [2] = 0, so that 

lim p(t) = pT = [p(O)[l]TO . . .  O]T. t--+oo 00 

Consequently, 

Having in mind the definition of i1 and i2, we conclude 
that Pool = . . .  = Poo(2n-l) and P002 = . . .  = Poo(2n) · 
Obviously, this also shows that limHoo (I + oB)t = il7rl + 
i27r2. Thus, the result follows. • 

We analyze convergence of the basic recursion in (10) 
using the following lenuna. 
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Lemma 6: Matrix B (t) in (10) satisfies for all t 

T-l B(t)T = [-O(;:?�:�·�·�·'??��m:?�-] , (21) 

where T is defined in (18) and B(t)* is an (2n - 2) x (2n - 2) 
matrix. 

Proof It is possible to observe immediately that vectors 
il and i2 are eigenvectors for both B and B(t), taking into 
account (12) and (10). 

Let w = [WI · · ·  W2n ]  be a left eigenvector of B corre
sponding to the zero eigenvalue. Then, wB = 0 gives : 

-[w2i-l(ai/Ji + /J'fx) + w2i(1 + /J'f + ai/Jix)]· 
. "L.7=1,#i '/ji + "L.�=1,I#i[w21-l(al/Jl + /J[X) + 

W21(1 + /J[ + al/Jlx)hli = 0, (22) 

-[w2i-l(ai/Jix + ;J'fs2) + w2i((1 + /J'f)x + ai/Jis2)] 
"L.7=1,#i'/ji + "L.�=1#i[w21-1(al/Jlx + ;Jfs2)+ 

W21((1 + /Jf)x + al/Jls2)hli = 0, (23) 

for i = 1, . . .  ,n. It is straightforward to conclude from (22) 
and (23) that wB = 0 ===? wB(t) = 0, having in mind that 
the components of v(t) = wB(t) are 

V2i-l(t) = -[w2i-l(ai/Ji + ;J'fx(t)) + w2i(1 + /J'f+ 
ai/Jix(t))] "L.7=1,#i ,/ji + "L.�=1#i[w21-1(al/Jl+ 

/J[x(t)) + W21(1 +;Jf + al/Jlx(t))hli = 0, (24) 

V2i(t) = -[w2i-l(ai/Jix(t) + /J'fX(t)2)+ 
w2i((1 + /J'f)x(t) + ai/Jix(t)2)] "L.7=1,#i '/ji+ 

"L.�=1#i[w21-1(al/Jlx(t) + /J[x(t)2)+ 
W21((1 + /Jf)x(t) + al/Jlx(t)2)bzi = 0, (25) 

i = 1, . . .  ,n. Therefore, we have 7rlB(t) = 0 and 7r2B(t) = 
0, and the result follows taking into account (18). • 

Theorem 2: Let Assumptions AI), A2), A3) and A4) be 
satisfied. Then there exists a positive number 0" > 0 such 
that for all 0 :s: 0" 

(26) 

in the mean square sense and with probability one, where 
i1 = [1 0 1 0 . . .  1 O ]T, i2 = [0 1 0 1 . . .  0 I]T, and 7rl 
and 7r2 are the left eigenvectors of B corresponding to the 
eigenvalue at the origin. 

Proof Using Lemma 6, we define p(i) = T-lfJ(t), 
where T is chosen according to Lemma 5, and obtain, 
similarly as in (19), that 

p(t + 1)[1] 
p(t + 1)[2] 

= p(t)[l]; 
(I + oB(t)*)p(t)[2], 

(27) 

where p(t)[l] = [Pl(t) p2(t)]T, p(t) [2] = [P3(t) · · ·  P2n(t)]T. 
Recalling that B* in (18) is Hurwitz, we observe that there 
exists such a positive definite matrix R* that 

B*T R* + R* B* = -Q*, (28) 
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where Q* is positive definite. Define q(t) 
E{p(t)[2]TR*p(t)[2]}, and let AQ = mini Ai{Q*} and 
k' = maxi Ai{E{B(t)* B(t)*T}}  (k' < 00 under the 
adopted assumptions). From (27) we obtain 

q(t+1) = E{p(t)[2]T E{(I +B(t)*f R*(I +B(t)*)}p(t)[2]} 
(29) 

and, further, 

AQ 2 ,maxi Ai { R*} q(t + 1) ::; (1 - 0 maxi Ai{R*} + 0 k mini Ai{R*} )q(t), 
(30) 

having in mind that E{B(t)*} = fr. Consequently, there 
exists such a 0" that for 0 < 0", i = 1, ... , n, the term 
in the brackets at the right hand side of (30) is less than 
one. Therefore, q(t) tends to zero exponentially, implying 
that p( t) [2] converges to zero in the mean square sense, and, 
with probability one (having in mind that the sequence {q(t)} 
is summable). Coming back to the first equation in (27) we 
obtain the result in the same way as in Theorem 1. • 
The following theorem deals with the important case in 
which the network is "pinned" to a selected node taken as a 
reference. 

Theorem 3: Let Assumptions AI), A2), A3) and A4) be 
satisfied. Assume also that the k-th node is one of the center 
nodes of 9 and that the corresponding sensor has ideal 

characteristics: Pk = [6 ] ' Then it is possible to find such 

a positive number 0'" > 0 that for all 0 ::; 0"', i = 1, ... , n, 
the algorithm (5) combined with (11) provides convergence 
of Pi(t), i = 1, ... , n, i i=- k, to Pk in the mean square sense 
and with probability one. 

Proof Assume without loss of generality that k = 1. 
From (8) we obtain, after introducing ri(t) = Pi(t) - PI, 

ri(t + 1) =(1 - 0 L l'ijcI>i(t))ri(t) 
JEN, 

+ 0 L I'ij cI>i (t)rj (t), 
jENi,#l 

i = 2 ,  . . .  , n, and, in a compact form, 

(31) 

(32) 

where r(t) = h(t)T . .  · rn(t)TV, cI>-(t) = diag{cI>2(t), 
...  ,cI>n(t)} and r- = bij], i,j = l, . . .  ,n -1, where 

I'ij = - L�=2,k#HI I'HI,k for i = j and I'ij = I'HI,j+1 
for i i=- j. According to Lemma 3, r- is an M-matrix, having 
in mind that the first node is assumed to be a center node. 
As a consequence, <1'>- (r- ® 12) is Hurwitz. Therefore, the 
methodology of the proofs of Theorems 1 and 2 can be 
directly applied, leading to the conclusion that r(t) converges 
to zero in the mean square sense and with probability one 
for sufficiently small values of the gain 0 > O. • 
Let us now analyze convergence of the proposed algorithm 
in the case of correlated signal x(t): 

A2') Process {x(t)} is weakly stationary with E{x(t)} = 

X, E{x(t)x(t - d)} = m(d), m(O) = s2, Ix(t)1 ::; K < 00 

(a.s.) and 

a) IE{x(t)IFt-T} - xl = 0(7), (a .s .) (33) 
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b) IE{x(t)x(t - d)IFt-T} - m(d)1 = 0(7), (a .s .) (34) 

for any fixed d E {O, I, 2 ,  . . .  }, 7 > d, where Ft-r denotes 
the minimal CT-algebra generated by {x(t - 7),X(t - 7 -
1), . . .  , x (O)} (0(7) denotes a function that tends to zero as 
7 --+ (0). 

Theorem 4: Let Assumptions AI), A2'), A3) and A4) 
be satisfied. Then it is possible to find such a positive 
number 0" > 0 that for all 0 ::; 0", i = 1, ... , n, in (10) 
limH<XJ p(t) = (il7rl + i27r2)P(0) in the mean square sense 
and with probability one. 

Proof Following the proof of Theorem 2, we first 
compute p(i) = T-1p(t), and obtain the same relations as 
in (27). Iterating back the second one, one obtains 

t-r 
p(t + 1)[2] = II (I + oB(s)*)p(t - 7)[2]. (35) 

s=t 
After calculating E {p( t + 1) [2]T R* p( t + 1) [2]} using (35), we 
extract the term linear in 0 and replace B(t)* = fr + B(t)*, 
where E{B(t)*} = O. According to A4'), 

IE{p(t - 7)[2]T E{B(s)*IFt-r-dp(t - 7)[2]}1 
::;¢(s - t + 7 + l)q(t - 7), (36) 

where ¢(t) > 0, limH<XJ ¢(t) = O. Therefore, it is possible 
to find such 70 > 0 that for all 7 ?: 70 

t-r 
(7 + l)Amin(Q*) - L ¢(s) > AO > 0, (37) 

s=t 
since Amin (Q*) > 0 by definition. Therefore, 

2(r+l) 
q(t + 1) ::; (1 - AOO + L ksoS)q(t), (38) 

s=2 
where I ks I < 00 due to signal boundedness. It follows from 
(38) that it is possible to find such a 0" > 0 that for all 
o ::; 0": 1 - AOO + L;�2

+1) ksos < 1. The result follows 
now in the same way as in Theorem 2. • 

IV. SIMULATION RESULT S 

In order to illustrate properties of the proposed algorithm, 
a sensor network with ten nodes has been simulated. A 
fixed randomly selected communications structure has been 
adopted, as well as parameters (Xi and /3i randomly selected 
around one and zero, with variance 0.3. 

In Fig. 1 the equivalent gains (Ii (t) and offsets ii (t) 
generated by the proposed algorithm are presented for a 
preselected gain 0 = 0.01. It is clear that the consensus 
is achieved quickly, and that the asymptotic values are close 
to the optimal values. Fig. 2 depicts the situation when the 
first node is assumed to be a reference node with (Xl = 1 
and /31 = O. Convergence to the optimal values is obvious. 

Fig. 3 is added as an illustration of the possibilities of 
the proposed algorithm in the important case when the 
measurements are corrupted by additive zero-mean noise, 
with variance randomly chosen within the interval (0,0.3). 
Time-varying decreasing gains Oi(t) = 0.01/to.6 have been 
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adopted, as well as a modification oriented towards elimi
nating nonzero correlation terms by introducing appropriate 
instrumental variables. This important scenario was treated 
in details in [14] and the obtained results appear to be very 
promising. 

V. CONCLUSION 

In this paper a distributed blind calibration algorithm based 
on consensus has been proposed for sensor networks. It is 
proved, on the basis of a novel methodology of treating 
higher order consensus schemes using the results related 
to diagonal dominance of matrices decomposed into blocks, 
that the algorithm achieves asymptotic agreement for sensor 
gains and offsets in the mean square sense and with proba
bility one. When a reference is given, all offsets and gains 
converge to the given values in the mean square sense and 
with probability one. 

The results open up a possibility of extending applicability 
of the proposed algorithm to the practically important case 
when communication errors and measurement noise are 
present [14], and to the case when the nodes are measuring 
spatially varying signals. Also, it is possible to assume that 
the obtained recursions at each node are asynchronous, which 
allows applicability of the proposed scheme to the important 
problem of time synchronization in sensor networks. 
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