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Abstract: Emerging driver assistance systems, such as look-ahead cruise controllers
for heavy duty vehicles, require high precision digital maps. This contribution
presents a road grade estimation algorithm for fusion of GPS and vehicle real-time
sensor data, with measurements from previous runs over the same road segment.
The resulting road grade estimate is thus enhanced using measurements from
additional traversals of known roads. Distributed data fusion is utilized to ensure
that the storage requirement of known roads does not increase when additional
measurements are processed. The implemented algorithm, which is based on
extended Kalman filtering and smoothing, is described in detail. Experiments on
a Scania test vehicle show the advantages and some of the challenges with the
proposed approach.
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1. INTRODUCTION

Several algorithms in today’s heavy duty vehicle
(HDV) embedded systems are based on state in-
formation of the vehicle. Such state estimates are
traditionally obtained from one or more sensors
in the vehicle. In addition to the traditional ap-
plications new advanced driver assistance systems
under development predict the future dynamics of
the vehicle. These predictions combine the current
state of the vehicle with, stored or sensed, infor-
mation about the road ahead e.g., the topology,
the curvature or the traffic situation.

Prediction of the behavior of the vehicle over
significant distances requires high quality map
data. Highway speed optimization for heavy duty
vehicles often requires prediction of the vehicle
dynamics for the next kilometer or more. The
problem essentially becomes open loop since the

control decisions have to be made before any con-
clusive feedback is available. Some domain knowl-
edge about road construction may be applied, but
high quality maps with road grade information
will still be needed.

The maps can either be bought or obtained by
own measurements. In order to obtain adequate
data quality from a single drive over the road
it is necessary to use sophisticated measurement
equipment. Combining sensor fusion, based on
several ordinary sensors, and data fusion of multi-
ple measurement runs obtained for the same road
segment, it is possible to approach the required
quality level. This contribution considers a system
for HDVs suitable for an optimizing cruise control.
HDVs often travel the same highways frequently,
and may thus collect overlapping data sequences
from several measurements within a reasonable
time frame.



Many current vehicles include a GPS sensor of
some kind, and it is foreseen that the market
penetration for Global Navigation Satellite Sys-
tems (GNSS) will increase substantially in the
coming decade. Future standard sensors can also
be expected to offer enhanced performance. This
contribution is focused on describing and evaluat-
ing the performance of a sensor and data fusion
road grade estimation system based on standard
mounted HDV sensors and an additional GPS
sensor.

1.1 Related Work

How knowledge about the upcoming road topol-
ogy can be used for optimizing the vehicle’s
speed profile with respect to fuel consumption
has been presented in several recent contributions
e.g., (Lattemann et al., 2004; Terwen et al., 2004;
Fröberg et al., 2006; Hellström et al., 2006; Hell-
ström et al., 2007; Fröberg and Nielsen, 2007).
In this line of work knowledge about the road
grade ahead of the truck is assumed to be known
e.g., via a map. As previously mentioned, this
contribution considers the task of developing a
system for creating road grade maps for this type
of application. The idea is to create a system that
merges sensor data from several data sequences
measured on a road segment into a map.

Similar ideas have been presented by Schroedel
et. al. (Schroedl et al., 2004) and Brüntrup et.
al. (Brüntrup et al., 2005) where data mining is
used to automatically create road network maps
from a (large) collection of individual GPS traces.
Neither of these sources however explicitly address
road grade estimation or the possibility to use a
vehicle model to improve estimation quality.

There are several different methods proposed in
the literature for estimation of the road grade.
One way is to use a sensor that is directly related
to the grade. Such a solution is presented by
Bae et al (Bae et al., 2001) where the grade is
determined using a GPS receiver by calculating
the ratio between the vehicle’s vertical velocity
and its horizontal velocity. A GPS receiver needs
good satellite coverage to obtain decent estimates.
This is however, a constraint that is difficult to
sustain in areas with buildings, trees, tunnels
or other large objects. There are also methods
that recursively estimates the road grade with-
out using direct sensor information. Lingman and
Schmidtbauer (Lingman and Schmidtbauer, 2001)
presents a method where the road grade is esti-
mated using a Kalman filter-based on measured
or estimated propulsion force, estimated retarda-
tion forces and measured velocity. Vahidi et. al.
(Vahidi et al., 2005) presents a similar method
where the grade is estimated using Recursive

Least Squares-based on a simple motion model.
An advantage with these methods is that no extra
sensors are required. There are however certain
occasions when these two methods fail, or have
major difficulties, to deliver reliable estimates e.g.,
when the friction brakes are applied or when
gearshifts are performed.

1.2 Contribution

This paper presents a novel method to estimate
the road grade-based on standard mounted HDV
sensors and a GPS unit. A major contribution is
the spatial sampling of the sensor fusion estimate
which through the estimate error covariance ma-
trix enables data fusion of an arbitrary number
of measurement series at difference time instants.
The only information that needs to be retained for
each sample point in addition to the state estimate
is the error covariance matrix estimate. Using this
method map data storage requirements for a fixed
road will not grow when additional measurements
are added. The method is able to work reliably
even if either the GPS data or the vehicle model
data temporarily becomes unavailable. This could
happen due to signal masking or brake applica-
tion. If both signals are lost simultaneously the
error covariance estimate will be large, and the
section will not have significant impact on already
stored map data. The results obtained from the
described method are compared to independently
collected road grade data sequences from a spe-
cialized measurement vehicle.

1.3 Outline

Models and measurements utilized in the filter are
described in Section 2. Section 3 gives a review
of the used filtering methods together with a
description of how the covariance matrices for the
filter are chosen. Section 4 shows results where the
road grade estimation algorithm has been applied
on data collected during a drive on a Swedish
highway. The paper is concluded in Section 5

2. MODELS AND MEASUREMENTS

This section describes the models and measure-
ments used for road grade estimation.

2.1 Models

In order to do model-based sensor fusion it is
necessary to establish some basic relationships
between the various signals that are available for
measurement and the quantities to be estimated.
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Fig. 1. Longitudinal forces acting on the vehicle.

The model is divided into two parts. The first
one describes the longitudinal movement of the
vehicle. The second part describes the topology of
the road by relating the altitude with the grade
and the speed of the vehicle.

Information about the road grade can be obtained
from the engine loading and velocity behavior of
the vehicle. A principal sketch of the longitudinal
forces acting on a HDV is shown in Figure 1.
Fengine is the net pull force produced by the
engine, Fbrake is the applied brake force, Fairdrag

is the air drag, Froll is the rolling resistance
and Fgravity is the gravity induced force. Using
Newton’s law of motion the force balance for the
HDV in Figure 1 is given by

mtv̇ = Fengine − Fbrake − Fairdrag − Froll − Fgravity

(1)
where mt is the total accelerated mass, v is
the velocity and α denotes the road grade. The
longitudinal forces are given by

Fengine =
itifηtηf

rw
M

Fairdrag =
1

2
cwAaρav

2

Froll = mgcr

Fgravity = mg sinα

where rw is the wheel radius. The transmission
and final drive gear ratios it and if , and the
corresponding efficiencies ηt and ηf are vehicle
parameters. The net engine torque output M is
measured. cw is the air drag coefficient, Aa is the
vehicle front area and ρa is the air density. Gravity
is denoted by g and m is the vehicle mass. cr
is a coefficient of rolling resistance. The braking
torque Fbrake is hard to measure or model, and it
is most often zero, therefore it is excluded from
the model from now on. Considering also engine
inertia Je and wheel inertia Jw in addition to the
vehicle mass, and assuming no slip (v = rwωw),
the total accelerated mass is

mt =
Jw

r2
w

+m+
i2t i

2
f ηtηfJe

r2
w

. (2)

Equations (1) and (2) can be combined into

v̇ =
r2
w

Jw +mr2
w + i2t i

2
f ηtηfJe

(Fengine

− Fairdrag − Froll − Fgravity)

(3)

Details of this model can be found in (Kiencke and
Nielsen, 2003)

Two states are used to describe the topology of
the road, the altitude z and the grade α. The
dynamics for these two states are

ż(t) = v(t) sinα(t)

α̇(t) = 0
(4)

Since the data fusion method used utilizes spa-
tially sampled measurements the time domain re-
lations (3) and (4) have to be expressed in the
spatial domain instead. This can be achieved by
replacing the independent variable t with the dis-
tance s, and using the following relation

∂v(t)

∂t
=

∂v(t)

∂s(t)

∂s(t)

∂t
︸ ︷︷ ︸

v(t)

.

A combination of the spatial versions of (3)-(4)
together with a first order Euler approximation
yields a discrete spatially sampled model with
sampling distance ∆s as
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wvk
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︸ ︷︷ ︸

wk

(5)

where process noise wk has been added to capture
the uncertainty in the model. Subscript k denotes
the discrete sample number. The change in veloc-
ity ∆vk during the travel from the previous sample
point is given by

∆vk = c1
Mk−1

vk−1
− c2vk−1 − c3

1

vk−1
− c4

sin(αk−1)

vk−1

where c1, ..., c4 are vehicle parameters.

2.2 Measurements

This section describes the measured quantities
and their relation to the states in (5). A data
sequence from a measurement run on a typical
Swedish highway is shown in Figure 2.

The GPS is used to record latitude, longitude,
traveled distance, altitude and the number of ac-
tive satellites. The latitude, longitude and trav-
eled distance signals are used to resample the
recorded measurements from the original time in-
dexed to a distance indexed form. The altitude
signal is used in the road grade estimation with
the following sensor model

zGPS
k = zk + ezGPS

k . (6)

Here ezGPS
k is used to represent stochastic mea-

surement noise.

From standard internal sensors in the vehicle the
velocity, net engine torque, brake system usage,
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Fig. 2. Example source data sequence measured on
a segment of highway E4 south of Södertälje.
The first plot shows the GPS altitude signal.
The second plot shows the number of active
satellites. Plot number three shows the engine
torque. The bottom plot shows the measured
mean front axle speed.

current gear and gear shifts are recorded. The
vehicle velocity is denoted vveh and is obtained
either from the tachograph or the wheel speed
sensors. These sensors count the number of revolu-
tions per time unit of either a wheel or the output
shaft from the gear box. This gives a rotational
speed that is scaled with an applicable gear ratio
and wheel radius to obtain a corresponding road
velocity of the vehicle. There is typically an offset
in this scaling factor. One reason for this is that
the wheel radius varies over time due to load,
wear or differences in tire pressure. We will, due
to space limitations, assume this offset known,
and discard estimation of this quantity in this
contribution. The sensor model for the vehicle
velocity is given by

vveh
k = vk + δv

k + evveh
k (7)

where δv
k is due to the offset in the scaling factor

and evveh
k is the measurement noise.

By combining (6) and (7), the relation between
the measurements and the states is given by

yk =

[
vveh
k

zGPS
k

]

=

[
vk + δv

k

zk

]

︸ ︷︷ ︸

h(xk)

+

[
evveh
k

ezGPS
k

]

︸ ︷︷ ︸

ek

. (8)

3. ROAD GRADE ESTIMATION

Combining the previous sections the measure-
ments and the state update are described by the
state-space system

xk = f(xk−1) + wk

yk = h(xk) + ek
(9)

cf., (5) and (8). It is assumed that the noise
sources wk and ek can be represented by zero-
mean white Gaussian noise processes. With this
assumption, extended Kalman filtering (Haykin,
2001) provides a method for estimation of the
state vector xk based on the measurements yk.
This method will be used to create an initial
estimate of the road grade for each measurement
run. The extended Kalman filter is defined by
the system equations (9) together with the co-
variances for wk and ek. Section 3.1 describes
the filter recursions in extended Kalman filtering.
The considered application suggests that the data
processing can be completed with some time de-
lay. It is then useful to create an acausal filter
to compensate for the filtering delay and utilize
data from future sample points. Such a smoothing
algorithm is described in Section 3.2. The noise co-
variances are tuning variables in the filter that can
be adjusted to describe the reliability of different
parts of the system or the measurement equations.
This reliability typically changes over time and it
is therefore very useful to use time-varying covari-
ances. The choice of covariance matrices for road
grade estimation is discussed in Section 3.3. To
fully utilize the information contained in several
measurements a data fusion scheme is required.
This step is described in Section 3.4. An overview
of the data flow in the proposed method is given
in Figure 3

3.1 Extended Kalman Filtering

In extended Kalman filtering the non-linear sys-
tem is linearized around the current trajectory.
The standard recursions for Kalman filtering are
then applied on the linearized system. These re-
cursions are described by two update steps: a time
update and a measurement update. In the first
step, the time update, the state estimate x̂k−1 and
the error covariance Pk−1 are updated according
to

Fk :=
∂f

∂x
(x̂k−1)

x̂k := Fkx̂k−1

Pk := FkPk−1F
T
k +Qk

whereQk is the covariance of the process noise wk.
For a stationary noise process wk, the covariance
matrix is set to a constant in the extended Kalman
filter: Qk = Q. Here Qk is updated according to
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Fig. 3. Overview of filter architecture for road
grade estimation. Information from the vehi-
cle’s data bus is integrated using an extended
Kalman filter, followed by a smoothing al-
gorithm. The smoothed data is then merged
with pre-existing data sequences. Information
is delivered to the data bus from on-board
embedded systems and a GPS-receiver. The
grade estimate is denoted α̂.

how well different driving conditions are described
by the vehicle model. How the piece-wise constant
matrix Qk is updated and at which events is
further described in Section 3.2

The second step is a measurement update where
the estimate is corrected based on the measure-
ments according to

Hk :=
∂h

∂x
(x̂k)

Kk := PkH
T
k (HkPkH

T
k +Rk)

−1

x̂k := x̂k +Kk(yk − h(x̂k))

Pk := Pk −KkHkPk

where Rk is the covariance of the measurement
noise ek. The covariance of the matrix Rk is
updated at discrete events similar to Qk.

3.2 Smoothing

By completing the measurement of a road segment
before application of the sensor and data fusion,
smoothing can be used to compensate for the
filtering delay and include information from future
sampling points in each estimate. In this work
the Rauch-Tung-Striebel fixed point smoothing
algorithm has been used. The algorithm is more

Table 1. Recorded events which are
taken into account when determining
the time varying process noise covari-
ance (Qk) and measurement noise co-

variance (Rk).

Event Effect

Friction brake use Driveline torque unknown

Auxiliary brake use Uncertain driveline torque

Gear shifts Unmodelled driveline dynamics

GPS signal masking No or low quality GPS data

extensively discussed in for example (Kailath et
al., 2000).

The smoothing is applied as a backwards recur-
sion when the complete filtered estimate for a road
segment has been collected. The filtered estimates
x̂k and the estimated error covariance matrices
Pk are used in the process. The smoothed state
estimates x̂s

k and corresponding smoothed esti-
mated error covariance matrices P s

k are later used
in the data fusion step of the grade estimation
method described in Section 3.4. The final state
of the filter recursion is used as initialization for
the smoothing backwards recursion

F s
k := PkF

T
k P

−1
k+1

x̂s
k := x̂k + F s

k(x̂
s
k+1 − x̂k+1)

P s
k := Pk + F s

k(P
s
k+1 − Pk+1)F

s
k
T
.

3.3 Covariance Matrices

The implementation is now straightforward, with
the exception of choosing noise covariances. As
described earlier, the time-varying covariance ma-
trices Qk and Rk are chosen to give the filter a de-
sired behavior. This section describes one way for
choosing the update of these covariances, specific
to road grade estimation.

To simply the design it is assumed that the co-
variance matrices are diagonal. To handle certain
events e.g., braking (which change the system
characteristics in (5) and (8)), the covariance ma-
trices are made dependent of such events. The
considered events are listed in Table 1. For de-
tection of these events the recorded signals from
the vehicle, described in Section 2.2, are used.
The estimated time varying error covariance Pk
will contain confidence information for estimate
at each sample point. This information is useful
in the data fusion described in Section 3.4.

Signal masking in the GPS-receiver, i.e. reduced
number of available satellites due to obstacles in
the vicinity has severe effects on the quality of the
measurements of the GPS-receiver. Especially the
precision of the altitude estimate is dependent on
the number available satellites (and also their rel-
ative positions, although this effect is not consid-
ered here). Thus the size of the variance of ezGPS



can be varied according to the current number of
available satellites e.g., being inverse proportional
to this number. Furthermore, when the satellite
count drops below four altitude determination is
not possible with GPS, and a very high variance
is set. In this way the estimate will not depend on
corrupt GPS measurements during periods with
low satellite coverage.

A similar reasoning can be applied for braking and
shifting, with the addition that these affect the
vehicle behavior and thus the process noise as well.
It is difficult to estimate the brake force that acts
on the vehicle. As a consequence, the equation for
the longitudinal dynamics (3) becomes uncertain.
A way to handle this is to increase the process
noise wv

k , whenever the friction brakes are applied.
Using wheel rotation to determine the vehicle
speed also becomes less reliable during braking,
since the amount of slip changes and even lockups
can occur. During gear shifts the produced torques
in the driveline are difficult to model. Oscillations
which are not included in the relatively simple
model (3) can be introduced.

The physical relationship between the altitude
and the slope suggests an approximate relation-
ship between their process covariances. For the
rest of the entries an educated guess based on
known sensor characteristics and logged data se-
quences, yielding desirable filter performance has
to be made.

3.4 Data Fusion

There are several possible approaches to merging
overlapping data sequences from multiple runs.
One large filter could be constructed, which takes
all measurements into account when estimating
a road grade profile. Such an approach would
require all measurement data to be saved and
reprocessed after a new measurement run.

In this work a distributed Kalman filter is used
to incrementally create a total estimate based on
one estimate from previous measurements and one
new measurement run. This limits the storage
requirement to the current set of state estimates
and their estimated error covariances. When a
new measurement sequence becomes available it is
be used to find a new estimate of the grade profile,
with an associated error covariance, using the gen-
eral fusion formula described in e.g., (Gustafsson,
2000)

P f
k := ((P 1

k )
−1 + (P 2

k )
−1)−1

x̂f
k := P f

k((P
1
k )

−1x̂1
k + (P 2

k )
−1x̂2

k).

Here x̂f
k, P

f
k denotes the resulting fused state and

error covariance, and x̂1
k, P

1
k and x̂2

k, P
2
k denote

the source quantities. Two of the states used in
the road grade estimation, zk and αk, are directly
related to the road. The third state, vk, describes
the measurement vehicle, and is not constant
between measurements. Only the states describing
the road are used in the data fusion process, giving

x̂f
k =

[
ẑf
k α̂f

k

]T
. If two overlapping data sequences

are being merged x̂1
k, P

1
k and x̂2

k, P
2
k consist of

the relevant elements of the smoothed estimates
x̂s
k and P s

k. If a new measurement is merged
with an existing map (based on two or more
previously merged overlapping data sequences)
one of the source estimates is the smoothed new
measurement data, and the other source estimate
is the map.

The estimated error covariance of the fused esti-
mate will be lower than that of any of the source
data sets. If the errors in different measurement
runs are not independent as assumed, the fused
P f
k will be an underestimate. Segments of each

source estimate with high error covariance esti-
mates will have less weight in the calculation. As
a result measurements obtained during periods
of braking or loss of satellite coverage in one of
the data sequences will not destroy higher quality
information in the other. A problem to consider is
that inherently difficult sections, such as downhill
tunnel segments will still be very hard to estimate
accurately, since any measurement will most likely
contain low-quality estimates.

4. EXPERIMENTAL RESULTS

In this section we will present results where ex-
tended Kalman filtering as described in Section 3
has been applied to data sequences collected dur-
ing a test drive. The experimental setup is de-
scribed in Section 4.1 and the experimental results
are presented in Section 4.2.

4.1 Experimental Setup

The experiments have been performed with a
Scania R420 tractor. All the data have been
collected from the vehicle’s CAN bus, except
for the GPS data. The measurement vehicle is
equipped with a GPS, but it was not used, since
it does not provide a CAN interface.

The used receiver was a Racelogic VBOX III GPS,
and it was connected to the measurement com-
puter together with the vehicle CAN bus through
a common CAN interface. A data sequence mea-
sured during a drive on a typical Swedish highway
is shown in Figure 2. The objective is to use
multiple such measurements to estimate the road
profile.
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Fig. 4. The filtered (dashed) and smoothed (dot-
ted) grade estimates are shown together
with a reference data sequence (solid). The
smoothed estimate clearly deviates less from
the reference. The lack of filtering delay in
the smoothed estimate is an important part
of the enhancement.

4.2 Results

The proposed road grade estimation method has
been applied on data sequences collected from the
Swedish highway E4 from Södertälje to Nyköping.
So far two measurements have been combined
using the extended Kalman filtering, RTS smooth-
ing and distributed data fusion method described.

When estimation results are compared to inde-
pendent data collected with a specialized mea-
surement vehicle the benefit of the smoothing step
can be clearly seen. Figure 4 shows the filtered and
smoothed road grade estimates for a road segment
together with the reference data sequence.

While single measurements can suffer from un-
certainties due to GPS reception issues, braking,
gearshifting etc. the combined result from many
measurement should be more reliable.

Estimated error covariances for the road grade
state, the estimated road grade, the data fusion
weights for the measurements and the number of
active satellites at each sample point are shown
in Figure 5. Fewer satellites gives a higher error
covariance estimate, and thus a lower weight in
the data fusion step. However, since the used
measurements are from a highway with good GPS
reception and favorable conditions they receive
almost equal weight.

5. CONCLUSIONS

The proposed method used on overlapping vehi-
cle and GPS data sequences can produce results
which are very similar to single pass reference
measurements using a specialized measurement
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Fig. 5. The first plot shows the final calculated
road grade estimate for two measurements.
The second plot shows the weight factors in
the data fusion step for the first (solid) and
second (dashed) measurement. The third plot
shows the (3,3) element (grade estimate error
covariance) of the estimated smoothed state
error covariance matrices for the two mea-
surements. The last plot shows the number of
satellites available during the measurements.

vehicle. Multiple measurement runs can help off-
set GPS signal disturbances that are not directly
related to limited coverage in one area. The use of
a vehicle model in the filter effectively attenuates
high frequency noise from the GPS altitude signal.
The vehicle model also reduces the influence of
physically unrealistic level changes in the GPS
signal on the grade estimate.

The GPS altitude information on the other hand
reduces the appearance of a grade estimate bias
from modeling or model parameter errors. A com-
parison of estimated road grade and altitude pro-
files obtained with the GPS enabled and disabled
is shown in Figure 6. The filter without GPS
information is initialized at the same altitude as
the GPS filter in order to make the comparison.

The scheme to vary the process noise and mea-
surement error covariance matrices depending on
additional information from the measurement al-
lows the filter to use the best information from
multiple overlapping data sequences for estimat-
ing a particular road section. The performance
of the algorithm depends on the accuracy of the
altitude measurement of the GPS. An area of
future work is to compare the performance when
using a standard quality vehicle mounted GPS to
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Fig. 6. The first plot shows the road grade esti-
mates for with (solid) and without (dashed)
the GPS enabled. Without the GPS a slight
model or parameter error causes an underes-
timate of the road grade. The second plot ver-
ifies the conclusion by showing the estimated
altitude with (solid) and without (dashed)
GPS enabled.

the GPS unit used here. Convergence properties
for the fused data, when using sensors of varying
quality, are also of great interest. The method
should also be further tested on more challenging
data sets, with higher noise

As more and more roads are added the error
covariance estimate of the database may decay to
a level where new information only has marginal
impact. This will be a problem in case of changes
to the actual road profile. In order to build a
complete system for online map creation this
problem will have to be addressed.

In order to use the presented methods each mea-
surement has to be synchronized to the others
in such a way that the used measurement points
represent common real world locations. Using the
high frequency sampled raw GPS data sequences
finding a common starting point with adequate
precision is straightforward. From this point the
GPS traveled distance measurement is used to
index and resample the data sequence at even
spacings. This approach works as long as the
vehicle paths from the two runs are close, and
the measurement error in the traveled distance is
small. Experience shows that 10-15 km long high-
way road profiles can be used. To enable online
map creation, it is necessary to solve this issue,
and it is a topic for future work.
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L. Nielsen (2007). Look-ahead control for
heavy trucks to minimize trip time and fuel
consumption. Accepted to 5th IFAC Sym-
posium on Advances in Automotive Control.
Monterey Coast CA, USA.

Hellström, Erik, Anders Fröberg and Lars Nielsen
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