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Abstract— This paper considers distributed nonconvex op-
timization for minimizing the average of local cost functions,
by using local information exchange over undirected communi-
cation networks. Since the communication channels often have
limited bandwidth or capacity, we first introduce a quantization
rule and an encoder/decoder scheme to reduce the transmission
bits. By integrating them with a distributed algorithm, we then
propose a distributed quantized nonconvex optimization algo-
rithm. Assuming the global cost function satisfies the Polyak–
Łojasiewicz condition, which does not require the global cost
function to be convex and the global minimizer is not necessarily
unique, we show that the proposed algorithm linearly converges
to a global optimal point. Moreover, a low data rate is shown to
be sufficient to ensure linear convergence when the algorithm
parameters are properly chosen. The theoretical results are
illustrated by numerical simulation examples.

I. INTRODUCTION

Distributed optimization, which can be traced back to
[1], [2], has received a growing and renewed interest over
the last decade due to its wide applications in resource
allocation, machine learning, and sensor networks, just to
name a few. Various distributed optimization algorithms have
been developed, see, e.g., [3], [4]. The basic convergence
results of distributed optimization algorithms usually guar-
antee sublinear convergence to the optimal point for the case
where the local cost functions are convex, see, e.g., [5]–[8].
When the local cost functions are strongly convex, linear
convergence results are established [9]–[13].

Distributed optimization algorithms require the agents to
communicate with each other through communication net-
works. Since the communication channels often have limited
bandwidth or capacity, distributed optimization algorithms
with quantized communications have been developed. For the
convex case, the authors of [14], [15] proposed a quantized
distributed incremental and subgradient algorithm, respec-
tively. These algorithms sublinearly converge to a neighbor-
hood around the optimal point. The authors of [16] developed
a quantized distributed accelerated gradient algorithm and
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established the linear convergence to a neighborhood around
the optimal point.

Recently, focusing on the strongly convex case, few studies
proposed quantized distributed algorithms which converge
to the exact optimal point. For example, the authors of [17]
designed a quantized distributed algorithm by integrating the
distributed subgradient algorithm and the uniform quantiza-
tion, while the authors of [18], [19] developed a quantized
distributed gradient algorithm by using the random quantizer
and the sign of relative state, respectively. However, these
algorithms only have sublinear convergence rates. The au-
thors of [20], [21] proposed quantized distributed algorithms
by equipping the distributed gradient tracking algorithm with
uniform quantizers, and established linear convergence to the
exact global optimal point for undirected and directed graphs,
respectively.

Note that the aforementioned distributed algorithms which
linearly converge to the exact optimal point only focused on
the case where local cost functions are strongly convex. How-
ever, in many applications, such as optimal traffic flow prob-
lems, operating wind farm problems, and resource allocation
problems, the cost functions are usually nonconvex, see,
e.g., [22]–[24]. This motivates us to consider the nonconvex
case. The main contributions of this work are summarized
as follows. First, we introduce a quantization rule and an
encoder/decoder scheme to reduce the transmission bits.
Second, by integrating them with a distributed algorithm,
we propose a quantized distributed algorithm for solving
nonconvex optimization over an undirected connected net-
work. Third, assuming that the global cost function satisfies
the Polyak–Łojasiewicz condition, which does not require
the cost function to be convex and the global minimizer is
not necessarily unique, we show that the proposed algorithm
linearly converges to a global optimal point for the case
where the quantization level is larger than a certain threshold.
Last but not least, if the communication channels allow
only a low data rate, we show that the proposed algorithm
also linearly converges to a global optimal point provided
that the algorithm parameters are properly chosen. TABLE
I summarizes the comparison between this paper and the
related studies.

The remainder of the paper is organized as follows. Sec-
tion II presents the problem formulation and motivation. Sec-
tion III introduces a quantization rule and an encoder/decoder
scheme. Section IV proposes a quantized distributed algo-
rithm with finite data rates. Section V presents numerical
simulation examples. Finally, concluding remarks are offered
in Section VI. Due to the space limitation, all the proofs are
omitted here, but can be found in [25].
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TABLE I
COMPARISON OF DIFFERENT QUANTIZED DISTRIBUTED ALGORITHMS

References Exact solution Linear convergence Nonconvex

[14], [15], [26] % % %
[17]–[19] " % %
[16], [27] % " %

[20], [21], [28] " " %
this paper " " "

Notation: Let 1n (or 0n) be the n×1 vector with all ones
(or zeros), and In be the n-dimensional identity matrix. ‖ · ‖
is the Euclidean vector norm or spectral matrix norm. For a
column vector x = (x1, · · · , xm), ‖x‖∞ := max1≤i≤m |xi|.
For a positive semidefinite matrix C, QC(x) := xTCx,
ρ(C) and ρ(C) are the spectral radius and the minimum
positive eigenvalue of matrix C, respectively. The minimum
integer greater than or equal to c is denoted by dce. Let
diag[a1, · · · , an] denote a diagonal matrix with the i-th
diagonal element being ai. Given any differentiable function
f , ∇f is the gradient of f . A⊗B represents the Kronecker
product of matrices A and B.

II. PROBLEM FORMULATION AND MOTIVATION

Consider a group of n agents distributed over an undi-
rected graph G = (V, E ,A), where V = {1, 2, . . . , n} and
E ⊆ V × V is the set of edges. (i, j) ∈ E indicates that
the agents i and j can communicate with each other, and
A = [aij ] ∈ Rn×n is the adjacency matrix, where aij > 0
if (j, i) ∈ E , otherwise aij = 0. Let Ni = {j ∈ V : aij > 0}
and di =

∑n
j=1 aij denote the neighbor set and weighted

degree of agent i, respectively. The degree matrix is defined
as D = diag[d1, . . . , dn]. The graph Laplacian matrix is
L := [Lij ] = D − A. A path from agent i1 to agent ik
is a sequence of agents {i1, · · · , ik} such that (ij , ij+1) ∈ E
for j = 1, · · · , k − 1. An undirected graph is connected if
there exists a path between any pair of distinct agents.

Assume that each agent has a private local cost function
fi : Rm → R. The objective is to find an optimizer x? to
minimize the following optimization problem

min
x∈Rm

f(x) :=
1

n

n∑
i=1

fi(x). (1)

Throughout this paper, we make the following assumptions.

Assumption 1: The undirected graph G is connected.
Assumption 2: Each local cost function fi(x) is smooth

with constant Lf > 0, i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ Lf‖x− y‖, ∀x, y ∈ Rm. (2)
Assumption 3: The optimal set X? = argminx∈Rmf(x) is

nonempty and f? = minx∈Rmf(x) > −∞.
Assumption 4: The global cost function f(x) satisfies the

Polyak–Łojasiewicz condition with constant ν > 0, i.e.,

1

2
‖∇f(x)‖2 ≥ ν(f(x)− f?), ∀x ∈ Rm. (3)

Remark 1: Assumptions 1–3 are common in the literature,
see, e.g., [3], [4]. Note that the convexity of the local cost
functions is not assumed. Assumption 4 does not imply the
convexity of the global cost function. However, it implies
its invexity [29], i.e., all stationary points are global optimal
points.

The following result is used in this paper.
Lemma 1: (see [30, Lemma 2]) Let L be the Laplacian

matrix of an undirected and connected graph G with n agents
and Kn = In − 1

n1n1
T
n . Then L and Kn are positive semi-

definite, L ≤ ρ(L)In, ρ(Kn) = 1,

KnL = LKn = L, (4a)
0 < ρ(L)Kn ≤ L ≤ ρ(L)Kn. (4b)

Moreover, there exists an orthogonal matrix [ r R ] ∈
Rn×n with r = 1√

n
1n and R ∈ Rn×(n−1) such that

PL = LP = Kn, (5a)
1

ρ(L)
In ≤ P ≤

1

ρ(L)
In, (5b)

where Λ1 = diag([λ2, · · · , λn]) with 0 < λ2 ≤ · · · ≤ λn
beging the nonzero eigenvalues of the Laplacian matrix L,
and

P =
[
r R

] [ λ−1n 0
0 Λ−11

] [
rT

RT

]
.

Distributed optimization algorithms require the agents to
communicate with each other through a communication
network. Since the communication channels usually have a
limited capacity, quantized distributed algorithms have been
proposed to save the bandwidth and reduce the communica-
tion cost, see, e.g., [14]–[21], [26], [27]. These algorithms
require the local cost functions to be convex. However, in
many applications, the cost functions are usually nonconvex.
This motivates us to develop a quantized distributed algo-
rithm for the nonconvex case.

III. QUANTIZATION RULE AND ENCODER/DECODER
SCHEME

In this section, we introduce a quantization rule and an
encode/decode scheme.

To begin with, let us consider a uniform quantizer q[a]
with 2K + 1 quantization levels, i.e.,

q[a] =


j,

2j − 1

2
< a ≤ 2j + 1

2
, j = 0, · · · ,K,

K, 2K + 1

2
> a,

− q[a], a ≤ −1

2
.

(6)

For this 2K+1-level quantizer, the communication channel is
required to be capable of transmitting dlog2(2K)e bits. Next
for a vector h = [h1, h2, . . . , hm] ∈ Rm, we define Q[h] =
(q[h1], · · · , q[hm]). The quantizer Q[h] is not saturated if
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‖h‖∞ ≤ K + 1
2 . In this case, the quantization error is

bounded, i.e.,

‖h−Q[h]‖∞ ≤
1

2
. (7)

Next, we introduce an encoder/decoder pair for each agent
to quantize its state and to estimate its neighbors’ states.

Encoder
Agent j ∈ V recursively generates m-dimensional quan-
tized output zj(k) and internal state bj(k) from the exact
state xj(k) as follows for any k ≥ 1:

zj(k) = Q

[
1

s(k − 1)
(xj(k)− bj(k − 1))

]
, (8a)

bj(k) = s(k − 1)zj(k) + bj(k − 1), (8b)

where the initial value bj(0) = 0, s(k) = s(0)µk > 0,
which is a decreasing sequence used to adaptively adjust
the encoder, and µ ∈ (0, 1) is a positive constant.

The agent j ∈ V at time k sends its quantized output
zj(k) to its neighboring agent i ∈ Nj . The following decoder
scheme is used to recover agent j’s state.

Decoder
When agent i ∈ Nj receives the quantized data zj(k) from
agent j, a decoder recursively generates an estimate x̂ij(k)
for xj(k) by the following rule for any k ≥ 1:

x̂ij(k) = s(k − 1)zj(k) + x̂ij(k − 1), (9)

where the initial value x̂ij(0) = 0.

Remark 2: Note that bj(k) is a predictor, s(k) is used to
adjust the prediction error xj(k)− bj(k− 1), and the initial
value s(0) requires to be large enough to guarantee that the
quantizer is not saturated, which implies the quantization
error is bounded. The positive constant µ ∈ (0, 1) ensures
that the agent gradually improves the accuracy of the esti-
mate for its neighbors’ state. Moreover, since the initial value
bj(0) = x̂ij(0) = 0, we obtain that bj(k) = x̂ij(k).

IV. A QUANTIZED DISTRIBUTED OPTIMIZATION
ALGORITHM

Based on the uniform quantizer and the encode/decode
scheme, we propose Algorithm 1 with quantized communi-
cation for solving distributed nonconvex optimization.

Algorithm 1 Quantized Distributed Proportional Integral
Algorithm
For each agent i ∈ V.
Initialization :
xi(0) ∈ Rm,

∑n
j=1 uj(0) = 0m.

Update Rule :

xi(k + 1) = xi(k)− ξ
n∑
j=1

Lij x̂ij(k)− ϕui(k)

− σ∇fi(xi(k)), (10a)

ui(k + 1) = ui(k) + ϕ

n∑
j=1

Lij x̂ij(k), (10b)

where σ > 0 is the fixed step-size, ξ and ϕ are gain
parameters, and x̂ij(k) is produced by the decoder (9).

The algorithm is motivated by the discrete-time
proportional-integral control strategy [10], [11], [31], [32].
More specifically, in Algorithm 1, the term −∇fi(xi(k))
ensures that each agent follows its local gradient descent,
and the term

∑n
j=1 Lij x̂j(k) ensures that consensus is

achieved. However, if the update rule only contains these
two terms, the agents’ states would not converge since the
local gradients are not the same in general. Thus, to correct
the error, the additional feedback term ui(k) is introduced.

Define ej(k) = xj(k)− bj(k). Then, the update rule (10)
can be rewritten as

xi(k + 1) = xi(k)− ξ
n∑
j=1

Lijxj(k)− ϕui(k)

− σ∇fi(xi(k)) + ξ

n∑
j=1

Lijej(k), (11a)

ui(k + 1) = ui(k) + ϕ

n∑
j=1

Lijxj(k)− ϕ
n∑
j=1

Lijej(k),

∀xi(0) ∈ Rm,
n∑
j=1

uj(0) = 0m, i ∈ V. (11b)

Denote x(k) = [xT1 (k), . . . , xTn (k)]T , u(k) =
[uT1 (k), . . . , uTn (k)]T , F (x) =

∑n
i=1 fi(xi), and L =

L ⊗ Im, e(k) = [eT1 (k), . . . , eTn (k)]T , b(k) =
[bT1 (k), . . . , bTn (k)]T , x̄(k) = 1

n (1Tn ⊗ Im)x(k), x̄(k) =
1n ⊗ x̄(k). Then, the equations (11) can be rewritten in a
compact form:

x(k + 1) = x(k)− ξLx(k)− ϕu(k)

− σ∇F (x(k)) + ξLe(k), (12a)
u(k + 1) = u(k) + ϕLx(k)− ϕLe(k),

∀x(0) ∈ Rnm,
n∑
j=1

uj(0) = 0m. (12b)

Next, we investigate the property of Algorithm 1. Before
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stating the main convergence result, we denote

W (k) = V (k) + n(f(x̄(k))− f?),

V (k) = QK(x(k)) +Qϕ+ξ
ϕ P (u(k) +

σ

ϕ
g(k))

+ 2xT (k)KP (u(k) +
σ

ϕ
g(k)),

where P = P ⊗ Im, K = Kn⊗ Im and g(k) = ∇F (x(k)).
Proposition 1: Suppose that Assumptions 1–4 hold. Let

each agent i ∈ V run Algorithm 1, and the algorithm
parameters are given as follows:

ξ ∈ [
5

ρ(L)
ϕ, κ1ϕ], ϕ ∈ [σκ2, σκ3],

σ ∈ (0,min{ ε
γ1
,
ε

γ2
,

2

ν
,

1

4Lf
}),

where the parameters γ1 > η1, γ2 > η2, ε ∈ (0,min{κ2

2 −
2 − 3L2

fκ
2
1 −

L2
f

2 , κ2 − 1 − 3L2
f+8

ρ(L) }), κ1 > 5
ρ(L) , κ2 >

max{6L2
f (κ1+1)2κ21ρ(L), 4+6L2

fκ
2
1+L2

f , 6L
2
f (κ1+1)2, 1+

3L2
f+8

ρ(L) } and κ3 > κ2 with

η1 := κ23ρ(L) +
2

ρ(L)
+ 2κ23ρ(L)

+ 3κ23L
2
f (
κ1 + 1

κ22
+

3

2
ρ(L)),

η2 := 4κ21κ
2
3ρ

2(L) + 2(κ23(κ1 + 1)ρ(L) + 1 + κ23)

+ 3κ21L
2
f ((κ1 + 1)ρ(L) +

3

2
κ23ρ

2(L)).

Then, for any

K ≥ ε1
√

ε2nm

4µ2(µ2 − ε3)
+

(1 + 2ξd)

2µ
− 1

2
, (13)

with µ ∈ (
√
ε3, 1) and

ε1 := max{ξ2ρ2(L),
ϕ3ρ(L)

ϕ+ ξ
, ξϕρ2(L)},

ε2 := ξρ(L) + 2ϕρ(L) + 4ξ2ρ2(L) + 2(ϕ(ξ + ϕ)ρ(L)

+ σ2 + ϕ2 + 2ϕ),

ε3 := 1− ε4
ε5
, ε4 := min{ε6, ε7,

σ

2
ν},

ε5 := max{
ξρ(L) + ϕ

ξρ(L)
, 1 +

2ξ

ϕ
},

ε6 := ϕ− 8σ

ρ(L)
−

6σ2ϕ2L2
f (ξ + ϕ)2

ϕ5
−

3σL2
f

ρ(L)

− (ϕ2ρ(L) +
2σ2

ρ(L)
+ 2ϕ2ρ(L)

+ 3ϕ2L2
f (
σ2(ξ + ϕ)

ϕ3
+

3

2
ρ(L))),

ε7 := ε8 −
σ

2
L2
f ,

ε8 := ξρ(L)− 9ϕ

2
− σ −

6σ2ξ2L2
f (ξ + ϕ)2

ϕ5
ρ(L)−

3σL2
fξ

2

ϕ2

− (4ξ2ρ2(L) + 2(ϕ(ξ + ϕ)ρ(L) + σ2 + ϕ2)

+ 3ξ2L2
f (
σ2(ξ + ϕ)

ϕ3
ρ(L) +

3

2
ρ2(L)))

+ 3ξ2L2
f (
σ2(ξ + ϕ)

ϕ3
ρ(L) +

2σ2(ξ + ϕ)2

ϕ5
ρ(L) + ρ2(L)

+
σ

ϕ2
+

1

2
ρ2(L)),

the quantizer (8a) is never saturated provided that

s(0) ≥ max

{
Cx + ϕCu + σCg

K + 1
2

,

√
4µ2(µ2 − ε3)W (0)

ε2nm

}
,

(14)
where Cx ≥ ‖x(0)‖∞, Cu ≥ ‖u(0)‖∞, Cg ≥ ‖g(0)‖∞.

Proposition 1 provides a sufficient condition to ensure that
the quantizer causes nonsaturation. We are now ready to
present the first convergence result.

Theorem 1: (high data rate). Suppose that Assumptions
1–4 hold. Let each agent i ∈ V run the Algorithm 1 with the
same ξ, ϕ, σ, µ, K and s(0) given in Proposition 1. Then,

‖x(k)− x̄(k)‖2 +n(f(x̄(k))−f?) ≤ ε9µ2k, ∀k ≥ 0, (15)

where ε9 := nmε2s
2(0)

4ε10µ2(µ2−ε3) , ε10 := min{ ξρ(L)−ϕξρ(L) , 1}.

Theorem 1 establishes linear convergence of the proposed
algorithm provided that the quantization level is larger than
a certain threshold given in (13). However, in distributed
networks, the communication channels normally have a
limited capacity or bandwidth, the smaller quantization level
is more preferred. The following theorem establishes linear
convergence result for arbitrarily low data rate, even one bit
rate.

Theorem 2: (low data rate). Suppose that Assumptions 1–
4 hold. Let each agent i ∈ V run the Algorithm 1 with the
same ξ, ϕ given in Proposition 1 and (µ, σ) ∈ Π̄, where

Π̄ := {(µ, σ) : σ ∈ (0,min{ ε
γ1
,
ε

γ2
,

2

ν
,

1

4Lf
}),

µ ∈ (
√
ε3, 1), Ω̄(µ, σ) ≤ K +

1

2
},

Ω̄(µ, σ) := ε1

√
ε2nm

4µ2(µ2 − ε3)
+

(1 + 2ξd)

2µ
.

Then, for any K ≥ 1 and s(0) satisfying (14) in Proposi-
tion 1,

‖x(k)− x̄(k)‖2 +n(f(x̄(k))−f?) ≤ ε9µ2k, ∀k ≥ 0. (16)

Remark 3: For the strongly convex case, the authors of
[27] proposed a quantized distributed algorithm with linear
convergence. However, it does not converge to the exact
global optimal point. The authors of [20], [21], [28] proposed
quantized distributed algorithms which linearly converge to
the global optimal point under the condition that each local
cost function is strongly convex. Theorem 2 shows that our
proposed algorithm linearly converges to a global optimal
point provided that the global cost function satisfies the
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Polyak–Łojasiewicz condition, which is a weaker condition
since the local cost functions can be nonconvex.

V. NUMERICAL EXAMPLES

In this section, we demonstrate the effectiveness of the
proposed quantized distributed algorithm. Consider an undi-
rected network consisting of 100 agents and the communi-
cation graph is randomly generated as shown in Fig. 1.

Fig. 1. A random connected network of 100 agents.

The local nonconvex cost functions are given by:

fj(x) = 0.2
√
x4 + 3 + 0.7 cos2 x,

f10+j(x) = 2 sinx− 0.1(x2 + 2)
1
3 ,

f20+j(x) =
0.3x2√
x2 + 1

,

f30+j(x) = −0.1
√
x4 + 3− sinx,

f40+j(x) =
−0.2x2√
x2 + 1

+ 2 sin2 x,

f50+j(x) = −0.1
√
x4 + 3− 0.1x2√

x2 + 1
,

f60+j(x) = − sinx− 1,

f70+j(x) = x2 + 0.3 cos2 x,

f80+j(x) = 2 sin2 x+ 0.2(x2 + 2)
1
3 ,

f90+j(x) = −0.1(x2 + 2)
1
3 ,

where j = 1, · · · , 10. It is easy to check that Assumptions 1–
4 are satisfied.

Consider the parameters K = 1, 10, 100, and based on the
condition (13), we set s(0) = 10.198, 1.4569, 0.1522, respec-
tively. Fig. 2 illustrates the convergence of

∑n
i=1 ‖xi(k) −

x̄(k)‖2 + n(f(x̄(k)) − f?) with respect to the number of
iterations k for Algorithm 1. We set α = 0.00235, β =
0.002, σ = 0.001, µ = 0.999. Fig. 2 clearly shows that
the proposed algorithm has a linear convergence rate, even
the exchanged information is one bit. Moreover, the larger
quantization level leads to the faster convergence. This result

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10-10

10-8

10-6

10-4

10-2

100

102

Fig. 2. Convergence of Algorithm 1 under different quantization levels.

is reasonable since a larger quantization level implies a
smaller quantization error.

Next, we consider the strongly convex optimization prob-
lem studied in [20], i.e.

min
x∈Rm

f(x) =
1

100

(
100∑
i=1

∥∥φTi x− ψi∥∥2 + `2‖x‖2
)
.

Select the same parameters φi, `2 and ψi in [20]. We use
the same quantizer (8a), and all the algorithm parameters
used in the experiment are given in TABLE II.

TABLE II
PARAMETER SETTINGS FOR DIFFERENT QUANTIZED DISTRIBUTED

ALGORITHMS.

Algorithm ξ ϕ σ α h K µ s(0)
Algorithm 1 0.235 0.2 0.1 – – 300 0.9999 0.0026

[17] – – – – 0.1 300 0.9999 0.0026
[20] – – – 0.1 0.1 300 0.9999 0.0026

Fig. 3 plots the evolution of
∑n
i=1 ‖xi(k) − x̄(k)‖2 +

n(f(x̄(k))−f?). It shows that our proposed algorithm has a
comparable performance with distributed quantized gradient
tracking algorithm in [20], and is faster than the quantized
subgradient algorithm in [17]. Note that the authors of
[17], [20] require the local cost functions to be strongly
convex, while we only require the local cost functions to
be nonconvex.

VI. CONCLUSIONS

In this paper, we introduced a quantization rule and an
encoder/decoder scheme to reduce the transmitting bits.
Then, by integrating them with a distributed algorithm,
we proposed a quantized distributed algorithm to solve the
nonconvex optimization problem. For the case where local
cost functions are smooth and the global cost function
satisfies the Polyak–Łojasiewicz condition, we showed that
the proposed algorithm linearly converges to a global optimal
point provided that the quantization level is larger than a
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Fig. 3. Convergence under different quantized distributed algorithms.

certain threshold. Finally, we showed that, with appropriate
algorithm parameters, the proposed algorithm with a low data
rate, even one bit, is sufficient to ensure linear convergence.
One future direction is to consider directed graphs.
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