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a b s t r a c t

In this paper, we consider a stochastic distributed nonconvex optimization problem with the cost
function being distributed over n agents having access only to zeroth-order (ZO) information of
the cost. This problem has various machine learning applications. As a solution, we propose two
distributed ZO algorithms, in which at each iteration each agent samples the local stochastic ZO
oracle at two points with a time-varying smoothing parameter. We show that the proposed algorithms
achieve the linear speedup convergence rate O(

√
p/(nT )) for smooth cost functions under the state-

dependent variance assumptions which are more general than the commonly used bounded variance
and Lipschitz assumptions, and O(p/(nT )) convergence rate when the global cost function additionally
satisfies the Polyak–Łojasiewicz (P–Ł) condition, where p and T are the dimension of the decision
variable and the total number of iterations, respectively. To the best of our knowledge, this is the first
linear speedup result for distributed ZO algorithms. It consequently enables systematic processing
performance improvements by adding more agents. We also show that the proposed algorithms
converge linearly under the relatively bounded second moment assumptions and the P–Ł condition. We
demonstrate through numerical experiments the efficiency of our algorithms on generating adversarial
examples from deep neural networks in comparison with baseline and recently proposed centralized
and distributed ZO algorithms.

© 2022 Elsevier Ltd. All rights reserved.
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1. Introduction

We consider stochastic distributed nonconvex optimization
ith zeroth-order (ZO) information feedback. Specifically, con-
ider a network of n agents/machines collaborating to solve the
ollowing optimization problem

min
x∈Rp

f (x) :=
1
n

n∑
i=1

Eξi [Fi(x, ξi)], (1)

where x ∈ Rp is the decision variable, ξi is a random variable,
and Fi(·, ξi) : Rp

↦→ R is a stochastic component function (not
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necessarily convex). Each agent i only has information about its
own stochastic ZO oracle Fi(x, ξi). In other words, for any given x
nd ξi, each agent i can sample Fi(x, ξi) as a stochastic approxi-
ation of the true local cost function value fi(x) = Eξi [Fi(x, ξi)],

but other information such as the first-order oracle cannot be
observed. Agents communicate with their neighbors through an
underlying communication network. The network is modeled by
an undirected graph G = (V, E), where V = {1, . . . , n} is the
agent set, E ⊆ V × V the edge set, and (i, j) ∈ E if agents i and
j communicate with each other. The neighboring set of agent i is
denoted by Ni = {j ∈ V : (i, j) ∈ E}. The ZO information feedback
setting has wide usage in applications, particularly when explicit
expressions of the gradients are unavailable or difficult to obtain
(Audet & Hare, 2017; Conn, Scheinberg, & Vicente, 2009b; Larson,
Menickelly, & Wild, 2019). For example, the cost functions of
many big data problems that deal with complex data generating
processes cannot be explicitly defined (Chen, Zhang, Sharma, Yi, &
Hsieh, 2017). Moreover, the distributed setting is a core aspect of
many important applications in view of flexibility and scalability
to large-scale datasets and systems, data privacy and locality,
communication reduction to the central entity, and robustness to
potential failures of the central entity (Koloskova, Stich, & Jaggi,

2019; Nedić & Liu, 2018; Yang et al., 2019).
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.1. Literature review

The study of gradient-free (derivative-free) optimization has
long history, which can be traced back at least to the 1960s

Hooke & Jeeves, 1961; Matyas, 1965; Nelder & Mead, 1965). It
as recently gained renewed attention by the machine learning
ommunity. Classical gradient-free optimization methods can be
lassified into direct-search and model-based methods. For exam-
le, stochastic direct-search and model-based trust-region algo-
ithms have been proposed in Bergou, Gorbunov, and Richtárik
2020), Bibi, Bergou, Sener, Ghanem, and Richtárik (2020), Conn,
cheinberg, and Vicente (2009a), Golovin et al. (2020), Gorbunov,
ibi, Sener, Bergou, and Richtárik (2020), Marazzi and Nocedal
2002) and Scheinberg and Toint (2010), respectively. In recent
ears, the more popular gradient-free optimization methods are
O methods, which are gradient-free counterparts of first-order
ptimization methods and thus easy to implement. In ZO opti-
ization methods, the full or stochastic gradients are approxi-
ated by directional derivatives, which are calculated through
ampled function values. A commonly used method to calculate
irectional derivatives is simply using the function difference
t two points (Duchi, Jordan, Wainwright, & Wibisono, 2015;
esterov & Spokoiny, 2017; Shamir, 2017).
Various ZO optimization methods have been proposed, e.g., ZO

stochastic) gradient descent algorithms (Bach & Perchet, 2016;
alasubramanian & Ghadimi, 2018; Ghadimi & Lan, 2013; Jin, Liu,
e, & Jordan, 2018; Kozak, Becker, Doostan, & Tenorio, 2021; Liu,
hen, Chen, & Hong, 2019; Liu, Li, Chen, Haupt, & Amini, 2018;
esterov & Spokoiny, 2017; Shamir, 2013; Vlatakis-Gkaragkounis,
lokas, & Piliouras, 2019; Ye, Huang, Fang, Li, & Zhang, 2018;
hang, Zhou, Ji, & Zavlanos, 2022), ZO stochastic coordinate de-
cent algorithms (Lian, Zhang, Hsieh, Huang, & Liu, 2016), ZO
stochastic) variance reduction algorithms (Balasubramanian &
hadimi, 2018; Chen, Orvieto, & Lucchi, 2020; Fang, Li, Lin, &
hang, 2018; Gao & Huang, 2020; Gao, Jiang, & Zhang, 2018;
hadimi, Lan, & Zhang, 2016; Gorbunov, Dvurechensky, & Gas-
ikov, 2018; Gu, Huo, Deng, & Huang, 2018; Huang, Gu, Huo,
hen, & Huang, 2019; Huang, Tao, & Chen, 2020; Ji, Wang, Zhou,
Liang, 2019; Jin et al., 2018; Kazemi & Wang, 2018; Liu et al.,
019; Liu, Cheng, Hsieh, & Tao, 2018; Liu, Kailkhura, et al., 2018;
iu, Li, Chen, Haupt, & Amini, 2018), ZO (stochastic) proximal
lgorithms (Cai, Mckenzie, Yin, & Zhang, 2020; Ghadimi et al.,
016; Huang, Gu, Huo, Chen, & Huang, 2019; Nazari, Tarzanagh,
Michailidis, 2020), ZO Frank–Wolfe algorithms (Balasubrama-
ian & Ghadimi, 2018; Gao & Huang, 2020; Huang et al., 2020;
ahu, Zaheer, & Kar, 2019), ZO mirror descent algorithms (Duchi
t al., 2015; Gorbunov et al., 2018; Wang, Du, Balakrishnan, &
ingh, 2018), ZO adaptive momentummethods (Chen et al., 2019;
azari et al., 2020), ZO methods of multipliers (Gao et al., 2018;
uang, Gao, Chen, & Huang, 2019; Huang, Gao, Pei, & Huang,
019; Kazemi & Wang, 2018), ZO stochastic path-integrated dif-
erential estimator (Fang et al., 2018; Huang, Gao, Pei, & Huang,
019; Ji et al., 2019). Convergence properties of these algorithms
ave been analyzed in detail. For instance, the typical conver-
ence result for deterministic centralized optimization problems
s that first-order stationary points can be found at an O(p/T )
onvergence rate by the two-point sampling based ZO algo-
ithms (Kozak et al., 2021; Nesterov & Spokoiny, 2017), while
nder stochastic settings the convergence rate is reduced to
(
√
p/T ) (Ghadimi & Lan, 2013; Lian et al., 2016), where T is the

otal number of iterations.
Aforementioned ZO optimization algorithms are all centralized

nd thus not suitable to solve distributed optimization prob-
ems. Recently distributed ZO algorithms have been proposed,
.g., distributed ZO gradient descent algorithms (Pang & Hu, 2020;
ahu, Jakovetić, Bajović, & Kar, 2018a, 2018b; Tang, Zhang, & Li,
 i

2

2020; Wang, Zhao, Hong, & Zamani, 2019; Yuan & Ho, 2014),
distributed ZO push-sum algorithm (Yuan, Xu, & Lu, 2015), dis-
tributed ZO mirror descent algorithm (Yu, Ho, & Yuan, 2022),
distributed ZO gradient tracking algorithm (Tang et al., 2020),
distributed ZO primal–dual algorithms (Hajinezhad, Hong, & Gar-
cia, 2019; Hajinezhad & Zavlanos, 2018; Yi, Zhang, Yang, Chai, &
Johansson, 2021), distributed ZO sliding algorithm (Beznosikov,
Gorbunov, & Gasnikov, 2020), privacy-preserving distributed ZO
algorithm (Gratton, Venkategowda, Arablouei, & Werner, 2021),
distributed ZO Frank–Wolfe algorithm (Sahu & Kar, 2020). Among
these algorithms, the algorithms in Sahu et al. (2018a, 2018b),
Tang et al. (2020), Yi, Zhang, Yang, Chai, and Johansson (2021),
Yu et al. (2022), Yuan and Ho (2014) and Yuan et al. (2015)
are suitable to solve the deterministic form of (1), while the
algorithm in Hajinezhad et al. (2019) can be directly applied
to solve the stochastic optimization problem (1). However, the
algorithm in Hajinezhad et al. (2019) requires each agent to have
an O(T ) sampling size per iteration, which is not favorable in
ractice, although it was shown that first-order stationary points
an be found at an O(p2n/T ) convergence rate.
From the discussions above, three core theoretical questions

rise when considering stochastic distributed optimization prob-
ems:

Q1) Can distributed ZO algorithms achieve similar convergence
roperties as centralized ZO algorithms? For instance, can dis-
ributed ZO algorithms based on two-point sampling have an
(
√
p/T ) convergence rate as their centralized counterparts in

Ghadimi and Lan (2013) and Lian et al. (2016)?

(Q2) As shown in Lian et al. (2017), distributed stochastic gradient
descent (SGD) algorithms can achieve linear speedup with respect
to the number of agents compared with centralized SGD algo-
rithms. Can distributed ZO algorithms also achieve linear speedup
compared with centralized ZO algorithms? In particular, can dis-
tributed ZO algorithms based on two-point sampling achieve the
linear speedup convergence rate O(

√
p/nT )?

(Q3) For deterministic optimization problems, centralized and
distributed ZO algorithms can achieve faster convergence rates
under more stringent conditions such as strong convexity or
Polyak–Łojasiewicz (P–Ł) conditions, as shown in Cai et al. (2020),
Chen et al. (2020), Ji et al. (2019), Kozak et al. (2021), Nes-
terov and Spokoiny (2017), Tang et al. (2020), Ye et al. (2018)
and Yi, Zhang, Yang, Chai, and Johansson (2021), respectively.
For stochastic optimization problems, can ZO algorithms also
achieve faster convergence rates under strong convexity or P–Ł
conditions?

1.2. Main contributions

This paper provides positive answers to the above three ques-
tions. We propose two distributed ZO algorithms, one primal–
dual and one primal algorithm, to solve the stochastic optimiza-
tion problem (1). In both algorithms, at each iteration each agent
communicates its local primal variables to its neighbors through
an arbitrarily connected communication network. Moreover, each
agent samples its local stochastic ZO oracle at two points with
a time-varying smoothing parameter. The contributions of this
paper are summarized as follows.

(C1) We show in Theorem 2 that our algorithms find a stationary
point with the linear speedup convergence rate O(

√
p/(nT )) for

onconvex but smooth cost functions under the state-dependent
ariance assumptions, which are more general than the com-
only used bounded variance and Lipschitz assumptions. This

ate is faster than that achieved by the centralized ZO algorithms
n Balasubramanian and Ghadimi (2018), Chen et al. (2019),
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hadimi and Lan (2013), Lian et al. (2016), Liu et al. (2019), Liu,
i, Chen, Haupt, and Amini (2018) and Zhang et al. (2022) and the
istributed ZO algorithm in Tang et al. (2020). To the best of our
nowledge, this is the first linear speedup result for distributed
O algorithms; thus (Q1) and (Q2) are answered.

C2) We show in Theorems 4 and 5 that our proposed algo-
ithms find a global optimum with an O(p/(nT )) convergence
ate when the global cost function satisfies the P–Ł condition in
ddition. This rate is faster than that achieved by the centralized
O algorithms in Bach and Perchet (2016) and Shamir (2013)
nd the distributed ZO algorithms in Sahu et al. (2018b) and
ang et al. (2020), although Bach and Perchet (2016), Sahu et al.
2018b) and Shamir (2013) assumed strongly convex cost func-
ions and only considered additive sampling noise, and Tang et al.
2020) only considered the deterministic problem. This paper
resents the first performance analysis for ZO algorithms to solve
tochastic optimization problems under P–Ł or strong convexity
ssumptions; thus (Q3) is answered.

C3) We show in Theorem 6 that our algorithms with constant
lgorithm parameters linearly converge to a neighborhood of a
lobal optimum under the P–Ł condition. Moreover, an exact
lobal optimum can be linearly found if the relatively bounded
econd moment assumptions also hold, see Corollary 1. It should
e mentioned that the P–Ł constant is not used to design the
lgorithm parameters when showing these results. Compared
ith Cai et al. (2020), Chen et al. (2020), Ji et al. (2019), Kozak
t al. (2021), Nesterov and Spokoiny (2017) and Ye et al. (2018)
hich also achieved linear convergence, we use less restrictive
ssumptions on the cost function and/or less samplings per iter-
tion.
The detailed comparison of this paper to other related studies

n the literature in terms of problem settings, number of sampled
oints per iteration, convergence rate, and sampling complexity
s summarized in a table provided in the online version (Yi, Zhang,
ang, & Johansson, 2021) due to the space limitation.

.3. Outline

The rest of this paper is organized as follows. Section 2 in-
roduces some preliminaries. Sections 3 and 4 provide the dis-
ributed primal–dual and primal ZO algorithms, respectively, and
nalyze their convergence properties. Numerical evaluations for
enerating adversarial examples from black-box deep neural net-
orks are given in Section 5. Finally, concluding remarks are
ffered in Section 6. All the proofs are given in the online ver-
ion (Yi, Zhang, Yang, & Johansson, 2021).

otations. N0 and N+ denote the set of nonnegative and positive
integers, respectively. [n] denotes the set {1, . . . , n} for any n ∈

N+. ∥·∥ represents the Euclidean norm for vectors or the induced
2-norm for matrices. Bp and Sp are the unit ball and sphere cen-
tered around the origin in Rp under Euclidean norm, respectively.
Given a differentiable function f , ∇f denotes its gradient.

. Preliminaries

In this section, we introduce the P–Ł condition, the random
radient estimator, and the assumptions used in this paper.

.1. Polyak–Łojasiewicz condition

efinition 1 (Karimi, Nutini, & Schmidt, 2016). A differentiable
unction f (x) : Rp

↦→ R satisfies the Polyak–Łojasiewicz (P–
) condition with constant ν > 0 if f ∗ > −∞, where f ∗

=

inx∈Rp f (x), and
1
∥∇f (x)∥2

≥ ν(f (x) − f ∗), ∀x ∈ Rp. (2)

2

3

It is straightforward to see that every (essentially, weakly, or
restricted) strongly convex function satisfies the P–Ł condition.
The P–Ł condition implies that every stationary point is a global
minimizer. But unlike (essentially, weakly, or restricted) strong
convexity, the P–Ł condition alone does not imply convexity of
f . Moreover, it does not imply that the set of global minimizers
is a singleton (Karimi et al., 2016; Zhang & Cheng, 2015). In
fact, P–Ł condition generalizes strong convexity to nonconvex
functions. The function f (x) = x2 + 3 sin2(x) given in Karimi et al.
(2016) is an example of a nonconvex function satisfying the P–Ł
condition with ν = 1/32. Moreover, it was shown in Li and Li
(2018) that the loss functions in some applications satisfy the P–
Ł condition in the region near a local minimum. Moreover, Fazel,
Ge, Kakade, and Mesbahi (2018) proved that the cost function of
the policy optimization for the linear quadratic regulator problem
is nonconvex but satisfies the P–Ł condition. More examples of
nonconvex functions satisfying the P–Ł condition can be found
in Karimi et al. (2016) and Zhang and Cheng (2015).

2.2. Gradient estimator

Let f (x) : Rp
↦→ R be a function. Duchi et al. (2015) proposed

the following random gradient estimator:

∇̂2f (x, δ, u) =
p
δ
(f (x + δu) − f (x))u, (3)

where δ > 0 is the smoothing/exploration parameter and u ∈ Sp

is a uniformly distributed random vector. This gradient estimator
can be calculated by sampling the function f at two points (e.g., x
and x+δu). The intuition of this estimator follows from directional
derivatives (Duchi et al., 2015). From a practical point of view, the
larger the smoothing parameter δ the better, since in this case it
is easier to distinguish the two sampled function values.

2.3. Assumptions

The following assumptions are made.

Assumption 1. The undirected graph G is connected.

Assumption 2. The optimal set X∗ is nonempty and f ∗ > −∞,
where X∗ and f ∗ are the optimal set and the minimum function
value of the optimization problem (1), respectively.

Assumption 3. For almost all ξi, the stochastic ZO oracle Fi(·, ξi)
is smooth with constant Lf > 0.

Assumption 4. Each stochastic gradient ∇xFi(x, ξi) has state-
dependent variance, i.e., there exist two constants σ0 and σ1 such
that Eξi [∥∇xFi(x, ξi)−∇fi(x)∥2

] ≤ σ 2
0 ∥∇fi(x)∥2

+σ 2
1 , ∀i ∈ [n], ∀x ∈

Rp.

Assumption 5. Each local gradient ∇fi(x) has state-dependent
variance, i.e., there exist two constants σ̃0 and σ2 such that
∥∇fi(x) − ∇f (x)∥2

≤ σ̃ 2
0 ∥∇f (x)∥2

+ σ 2
2 , ∀i ∈ [n], ∀x ∈ Rp.

Here ∇fi(x) can be viewed as a stochastic gradient of ∇f (x) by
randomly picking an index i ∈ [n].

Assumption 6. The global cost function f (x) satisfies the P–Ł
condition with constant ν > 0.

emark 1. It should be highlighted that no convexity assump-
ions are made. Assumption 1 is common in distributed opti-
ization, e.g., Beznosikov et al. (2020), Hajinezhad et al. (2019),
edić, Olshevsky, Shi, and Uribe (2017), Qu and Li (2018, 2020),
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hi, Ling, Wu, and Yin (2015) and Tang et al. (2020). Assump-
ion 2 is basic. Assumption 3 is standard in stochastic opti-
ization with ZO information feedback, e.g., Balasubramanian
nd Ghadimi (2018), Gao et al. (2018), Ghadimi and Lan (2013),
hadimi et al. (2016), Gorbunov et al. (2018), Hajinezhad et al.
2019), Kazemi and Wang (2018), Lian et al. (2016) and Liu,
heng, Hsieh, and Tao (2018). When σ0 = 0, Assumption 4 recov-

ers the bounded variance assumption, which is commonly used in
the literature studying stochastic ZO optimization, e.g., Balasub-
ramanian and Ghadimi (2018), Gao et al. (2018), Ghadimi and Lan
(2013), Ghadimi et al. (2016), Gorbunov et al. (2018), Hajinezhad
et al. (2019), Kazemi and Wang (2018), Lian et al. (2016) and
Sahu et al. (2019). Therefore, Assumption 4 is more general.
When σ̃0 = 0, Assumption 5 becomes the bounded variance
assumption, i.e., ∥∇fi(x) − ∇f (x)∥2 is globally bounded, and is
weaker than the Lipschitz assumption, i.e., ∥∇fi(x)∥ is globally
bounded. Both the bounded variance and Lipschitz assumptions
are normally used in the literature studying ZO optimization,
e.g., Duchi et al. (2015), Fang et al. (2018), Gao et al. (2018),
Gu et al. (2018), Hajinezhad et al. (2019), Huang, Gao, Chen,
and Huang (2019), Huang, Gao, Pei, and Huang (2019), Huang,
Gu, Huo, Chen, and Huang (2019), Ji et al. (2019), Kazemi and
Wang (2018), Liu et al. (2019), Liu, Kailkhura, et al. (2018), Liu, Li,
Chen, Haupt, and Amini (2018), Tang et al. (2020), Yuan and Ho
(2014) and Yuan et al. (2015), respectively. However, the Lipschitz
assumption is too restrictive since even a simple quadratic func-
tion is typically not Lipschitz. Moreover, the bounded variance
assumption is also restrictive, for instance it is impractical to
assume this assumption for distributed learning problems with
local cost functions being constructed by heterogeneous data
collected locally by agents. In contrast, Assumption 5 is more
general due to the state-dependent term σ̃ 2

0 ∥∇f (x)∥2, and it is not
needed when Assumption 6 holds and the constant ν is known
in advance as shown in Theorem 5. Assumption 6 is weaker
than the assumption that the global or each local cost function is
(restricted) strongly convex. It plays a key role to guarantee that a
global optimum can be found and to show that faster convergence
rate can be achieved.

To end this section, we introduce the stronger alternatives of
Assumptions 4 and 5, which are used to show faster convergence
for the proposed algorithms.

Assumption 4′. The second moment of each stochastic gradient
∇xFi(x, ξi) is relatively bounded, i.e., there exists a constant σ̆0
such that Eξi [∥∇xFi(x, ξi)∥2

] ≤ σ̆ 2
0 ∥∇fi(x)∥2, ∀i ∈ [n], ∀x ∈ Rp.

Assumption 5′. The second moment of each local gradient ∇fi(x)
is relatively bounded, i.e., there exists a constant σ̂0 such that
∥∇fi(x)∥2

≤ σ̂ 2
0 ∥∇f (x)∥2, ∀i ∈ [n], ∀x ∈ Rp.

It is straightforward to check that Assumption 4′ (Assump-
tion 5′) is equivalent to Assumption 4 (Assumption 5) when
σ1 = 0 (σ2 = 0). Assumption 4′ is satisfied trivially when the
deterministic ZO information is available. Assumption 5′ holds
when ∇fi(x) is proportional to ∇f (x), for example when all the
random variables ξi have a common probability distribution and
the local stochastic component functions are the same, which
is a common setup in distributed empirical risk minimization
problems. Moreover, for deterministic centralized optimization
problems, Assumptions 4′ and 5′ hold trivially.

3. Distributed ZO primal–dual algorithm

In this section, we propose a distributed ZO primal–dual algo-
rithm and analyze its convergence properties.
4

When gradient information is available, in Yi, Zhang, Yang,
Chai, and Johansson (2021) the following distributed first-order
primal–dual algorithm was proposed to solve (1):

xi,k+1 = xi,k − η

(
α

∑
j∈Ni

Lijxj,k + βvi,k + ∇fi(xi,k)
)
, (4a)

vi,k+1 = vi,k + ηβ
∑
j∈Ni

Lijxj,k,

∀xi,0 ∈ Rp,

n∑
j=1

vj,0 = 0p, ∀i ∈ [n], (4b)

where α, β , and η are positive algorithm parameters, Ni is the
neighboring set of agent i as defined below (1), and L = [Lij]
is the weighted Laplacian matrix associated with the undirected
communication graph G. As pointed out in Yi, Zhang, Yang, Chai,
and Johansson (2021), the distributed first-order algorithm (4)
is a special form of several existing first-order algorithms in
the literature, e.g., Jakovetić, Bajović, Xavier, and Moura (2020)
and Shi et al. (2015), and it has been shown that this algo-
rithm can find a stationary point with an O(1/k) convergence
rate.

Noting that we consider the scenario where only stochas-
tic ZO oracles rather than the explicit expressions of the gra-
dients are available, we need to estimate the gradients used
in the distributed first-order algorithm (4). Inspired by (3), we
introduce

ge
i,k

=
p(Fi(xi,k + δi,kui,k, ξi,k) − Fi(xi,k, ξi,k))

δi,k
ui,k, (5)

where δi,k > 0 is a time-varying smoothing parameter and
ui,k ∈ Sp is a uniformly distributed random vector chosen by
agent i at iteration k; ξi,k is a random variable sampled by
agent i at iteration k according to the distribution of ξi; and
Fi(xi,k + δi,kui,k, ξi,k) and Fi(xi,k, ξi,k) are the values sampled by
agent i at iteration k. We replace the gradient and fixed algorithm
parameters in (4) with the stochastic gradient estimator (5) and
time-varying parameters, respectively. Then we get the following
ZO algorithm:

xi,k+1 = xi,k − ηk

(
αk

∑
j∈Ni

Lijxj,k + βkvi,k + ge
i,k

)
, (6a)

vi,k+1 = vi,k + ηkβk

∑
j∈Ni

Lijxj,k,

∀xi,0 ∈ Rp,

n∑
j=1

vj,0 = 0p, ∀i ∈ [n]. (6b)

We write the distributed ZO algorithm (6) in pseudo-code as

Algorithm 1. In this algorithm, from the way to generate ui,k
and ξi,k, we know that ui,k, ξj,l, ∀i, j ∈ [n], k, l ∈ N+ are
mutually independent. Let Lk denote the σ -algebra generated
by the independent random variables u1,k, . . . , un,k, ξ1,k, . . . , ξn,k
and let Lk =

⋃k
t=0 Lt . From the independence property of ui,k

and ξi,l, we can see that xi,k and vi,k+1, i ∈ [n] depend on Lk−1
and are independent of Lt for all t ≥ k.

Remark 2. In Algorithm 1, each agent i maintains two local
sequences, i.e., the local primal and dual variable sequences {xi,k}
and {vi,k}, and communicates its local primal variables to its
neighbors through the network. Moreover, at each iteration each
agent samples its local stochastic ZO oracle at two points to
estimate the gradient of its local cost function. It should be
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Algorithm 1 Distributed ZO Primal–Dual Algorithm

1: Input: positive sequences {αk}, {βk}, {ηk}, and {δi,k}.
2: Initialize: xi,0 ∈ Rp and vi,0 = 0p, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive xj,k from j ∈ Ni;
6: Generate ui,k ∈ Sp independently and uniformly at

random;
7: Generate ξi,k independently and randomly according to

the distribution of ξi;
8: Sample Fi(xi,k, ξi,k) and Fi(xi,k + δi,kui,k, ξi,k);
9: Update xi,k+1 by (6a);
0: Update vi,k+1 by (6b).
1: end for
2: end for
3: Output: {xk}.

highlighted that the agent-wise smoothing parameter δi,k is time-
arying. It can in many situations be chosen larger than the fixed
moothing parameter used in existing ZO algorithms. For exam-
le, in the following we use an O(1/k1/4) smoothing parameter,
hich is larger than the O(1/T 1/2) smoothing parameter used

n Ghadimi and Lan (2013).

.1. Find stationary points

Let us consider the case when Algorithm 1 is able to find
tationary points. We first have the following convergence result.

heorem 1. Suppose Assumptions 1–5 hold. Let {xk} be the sequence
enerated by Algorithm 1 with

k = κ1βk, βk = κ0(k + t1)θ , ηk =
κ2

βk
,

i,k ≤
κδ

√
pηk

√
n + p

, ∀k ∈ N0, (7)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), θ ∈ (0.5, 1), t1 ≥ (
√
pc3(κ1, κ2))1/θ ,

0 ≥ c0(κ1, κ2)/tθ1 , and κδ > 0 with the explicit expressions of
0(κ1, κ2), c1, c2(κ1), and c3(κ1, κ2) being given in Yi, Zhang, Yang,
nd Johansson (2021). Then, for any T ∈ N+,

1
T

T−1∑
k=0

E[∥∇f (x̄k)∥2
] = O

( √
p

T 1−θ
+

p
T

)
, (8a)

[f (x̄T )] − f ∗
= O(1), (8b)[1

n

n∑
i=1

∥xi,T − x̄T∥2
]

= O
( 1
T 2θ

)
, (8c)

here x̄k =
1
n

∑n
i=1 xi,k.

Proof. The explicit expressions of the right-hand sides of (8a)–
(8c) and the proof are given in Yi, Zhang, Yang, and Johansson
(2021). □

If the total number of iterations T and the number of agents
are known in advance, then, as shown in the following, Algo-

ithm 1 can find a stationary point of (1) with anO(
√
p/(nT )) con-

ergence rate, and thus achieves linear speedup with respect to
he number of agents compared to the O(

√
p/T ) convergence rate

chieved by the centralized stochastic ZO algorithms in Ghadimi
nd Lan (2013) and Lian et al. (2016). The linear speedup property
nables us to scale up the computing capability by adding more
gents into the algorithm (Yu, Jin, & Yang, 2019).
5

Theorem 2 (Linear Speedup). Suppose Assumptions 1–5 hold. For
ny given T > max{n(c̃0(κ1, κ2)/κ2)2, n3

}/p, let {xk, k = 0, . . . , T }

be the output generated by Algorithm 1 with

αk = κ1βk, βk = β =
κ2

√
pT

√
n

, ηk =
κ2

βk
,

δi,k ≤
p1/4n1/4κδ

√
n + p(k + 1)1/4

, ∀k ≤ T , (9)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), and κδ > 0 with the explicit
expressions of c̃0(κ1, κ2), c1, and c2(κ1) being given in Yi, Zhang,
Yang, and Johansson (2021). Then,

1
T

T−1∑
k=0

E[∥∇f (x̄k)∥2
] = O

( √
p

√
nT

)
+ O

( n
T

)
, (10a)

E[f (x̄T )] − f ∗
= O(1), (10b)

E
[1
n

n∑
i=1

∥xi,T − x̄T∥2
]

= O
( n
T

)
. (10c)

Proof. The explicit expressions of the right-hand sides of (10a)–
(10c) and the proof are given in Yi, Zhang, Yang, and Johansson
(2021). It should be highlighted that the omitted constants in the
first term on the right-hand side of (10a) do not depend on any
parameters related to the communication network. □

Remark 3. To the best of our knowledge, Theorem 2 is the first
result to establish linear speedup for a distributed ZO algorithm
to solve stochastic optimization problems. The achieved rate is
faster than that achieved by the centralized ZO algorithms in Bal-
asubramanian and Ghadimi (2018), Chen et al. (2019), Ghadimi
and Lan (2013), Lian et al. (2016), Liu et al. (2019), Liu, Li, Chen,
Haupt, and Amini (2018) and Zhang et al. (2022) and the dis-
tributed ZO gradient descent algorithm in Tang et al. (2020).
The rate is slower than that achieved by the centralized ZO
algorithms in Fang et al. (2018), Ghadimi et al. (2016), Gu et al.
(2018), Huang, Gu, Huo, Chen, and Huang (2019), Ji et al. (2019),
Kazemi and Wang (2018), Liu, Cheng, Hsieh, and Tao (2018)
and Liu, Kailkhura, et al. (2018), which is reasonable since these
algorithms not only are centralized but also use variance reduc-
tion techniques. The distributed ZO gradient tracking algorithm
in Tang et al. (2020) and the distributed ZO primal–dual algo-
rithms in Hajinezhad et al. (2019) and Yi, Zhang, Yang, Chai,
and Johansson (2021) also achieved faster convergence rates than
ours. However, in Fang et al. (2018), Gu et al. (2018), Huang, Gu,
Huo, Chen, and Huang (2019), Ji et al. (2019), Liu, Kailkhura, et al.
(2018), Tang et al. (2020) and Yi, Zhang, Yang, Chai, and Johansson
(2021), the considered problems are deterministic; in Tang et al.
(2020) and Yi, Zhang, Yang, Chai, and Johansson (2021), the
sampling size of each agent at each iteration isO(p), which results
in a heavy sampling burden when p is large; in Ghadimi et al.
(2016), Hajinezhad et al. (2019) and Kazemi and Wang (2018),
the sampling size of each agent at each iteration is O(T ), which is
difficult to execute in practice. One future research direction is to
establish faster convergence with reduced sampling complexity
by using variance reduction techniques.

3.2. Find global optimum

Let us next consider cases when Algorithm 1 finds global
optimum.

Theorem 3. Suppose Assumptions 1–6 hold. Let {xk} be the sequence
generated by Algorithm 1 with

αk = κ1βk, βk = κ0(k + t1)θ , ηk =
κ2

,

βk
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i,k ≤
κδ

√
pηk

√
n + p

, ∀k ∈ N0, (11)

here κ1 > c1, κ2 ∈ (0, c2(κ1)), θ ∈ (0, 1), t1 ∈ [(pc3(κ1, κ2))1/θ ,
(pc4c3(κ1, κ2))1/θ ], κ0 ≥ c0(κ1, κ2)/tθ1 , κδ > 0, and c4 ≥ 1 with
the explicit expressions of c0(κ1, κ2), c1, c2(κ1), and c3(κ1, κ2) being
given in Yi, Zhang, Yang, and Johansson (2021). Then, for any T ∈

N+,

E
[1
n

n∑
i=1

∥xi,T − x̄T∥2
]

= O
( p
T 2θ

)
, (12a)

[f (x̄T ) − f ∗
] = O

( p
nT θ

)
+ O

( p
T 2θ

)
. (12b)

Proof. The explicit expressions of the right-hand sides of (12a)
and (12b), and the proof are given in Yi, Zhang, Yang, and Johans-
son (2021). It should be highlighted that the omitted constants in
the first term in the right-hand side of (12b) do not depend on any
parameters related to the communication network. □

From Theorem 3, we see that the convergence rate is strictly
slower than O(p/(nT )). In the following we show that the
O(p/(nT )) convergence rate can be achieved if the P–Ł constant
ν is known in advance. However, information about the total
number of iterations T is not needed.

Theorem 4 (Linear Speedup). Suppose Assumptions 1–6 hold and
the P–Ł constant ν is known in advance. Let {xk} be the sequence
generated by Algorithm 1 with

αk = κ1βk, βk = κ0(k + t1), ηk =
κ2

βk
,

i,k ≤
κδ

√
pηk

√
n + p

, ∀k ∈ N0, (13)

here κ1 > c1, κ2 ∈ (0, c2(κ1)), κ0 ∈ [3ĉ0νκ2/16, 3νκ2/16),
1 > ĉ3(κ0, κ1, κ2), κδ > 0, and ĉ0 ∈ (0, 1) with the explicit
xpressions of c1, c2(κ1), and ĉ3(κ0, κ1, κ2) being given in Yi, Zhang,
ang, and Johansson (2021). Then, for any T ∈ N+,[1
n

n∑
i=1

∥xi,T − x̄T∥2
]

= O
( p
T 2

)
, (14a)

[f (x̄T ) − f ∗
] = O

( p
nT

)
+ O

( p
T 2

)
. (14b)

Proof. The explicit expressions of the right-hand sides of (14a)
and (14b), and the proof are given in Yi, Zhang, Yang, and Johans-
son (2021). It should be highlighted that the omitted constants in
the first term in the right-hand side of (14b) do not depend on any
parameters related to the communication network. □

Although Assumption 5 is weaker than the bounded gradient
assumption, it can be further relaxed by a mild assumption.
Specifically, if each f ∗

i > −∞, where f ∗

i = minx∈Rp fi(x), then
without Assumption 5, the convergence results stated in (14a)
and (14b) still hold, as shown in the following.

Theorem 5 (Linear Speedup). Suppose Assumptions 1–4 and 6 hold,
nd the P–Ł constant ν is known in advance, and each f ∗

i > −∞.
et {xk} be the sequence generated by Algorithm 1 with

k = κ1βk, βk = κ0(k + t1), ηk =
κ2

βk
,

i,k ≤
κδ

√
pηk

√
n + p

, ∀k ∈ N0, (15)

here κ1 > c1, κ2 ∈ (0, c2(κ1)), κ0 ∈ [3ĉ0νκ2/16, 3νκ2/16),
> č (κ , κ , κ ), κ > 0, and ĉ ∈ (0, 1) with the explicit
1 3 0 1 2 δ 0

6

xpressions of c1, c2(κ1), and č3(κ0, κ1, κ2) being given in Yi, Zhang,
ang, and Johansson (2021). Then, for any T ∈ N+,[1
n

n∑
i=1

∥xi,T − x̄T∥2
]

= O
( p
T 2

)
, (16a)

E[f (x̄T ) − f ∗
] = O

( p
nT

)
+ O

( p
T 2

)
. (16b)

Proof. The explicit expressions of the right-hand sides of (16a)
and (16b), and the proof are given in Yi, Zhang, Yang, and Johans-
son (2021). It should be highlighted that the omitted constants in
the first term in the right-hand side of (16b) do not depend on any
parameters related to the communication network. □

Remark 4. To the best of our knowledge, Theorems 3–5 are
the first performance analysis results for ZO algorithms to solve
stochastic optimization problems under the P–Ł condition or
strong convexity assumption. In Shamir (2013), a centralized
ZO algorithm based on one-point sampling with additive sam-
pling noise was proposed and an O(p2/T ) convergence rate was
achieved for deterministic optimization problems with strongly
convex quadratic cost functions. In Bach and Perchet (2016),
a centralized ZO algorithm based on two-point sampling with
additive noise was proposed and an O(p/

√
T ) convergence rate

was achieved for deterministic strongly convex and smooth op-
timization problems. In Sahu et al. (2018b), a distributed ZO
gradient descent algorithm based on 2p-point sampling with
additive noise was proposed and an O(pn2/

√
T ) convergence rate

was achieved for deterministic strongly convex and smooth opti-
mization problems. In Tang et al. (2020), a distributed ZO gradient
descent algorithm based on two-point sampling was proposed
and an O(p/T ) convergence rate was achieved for deterministic
smooth optimization problems under the P–Ł condition. It is
straightforward to see that aforementioned convergence rates
achieved in Bach and Perchet (2016), Sahu et al. (2018b), Shamir
(2013) and Tang et al. (2020) are slower than that achieved by
our distributed stochastic ZO primal–dual algorithm as stated in
Theorem 5. Moreover, we consider stochastic optimization prob-
lems and use the P–Ł condition, which is slightly weaker than the
strong convexity condition. The distributed ZO gradient tracking
algorithm in Tang et al. (2020) and the distributed ZO primal–
dual algorithms in Yi, Zhang, Yang, Chai, and Johansson (2021)
achieved linear convergence under the P–Ł condition. However,
both algorithms require each agent at each iteration to sample
O(p) points, which results in a heavy sampling burden when p is
arge.

As shown in Theorems 3–5, in expectation, the convergence
ate of Algorithm 1 with diminishing stepsizes is sublinear. The
ollowing theorem establishes that, in expectation, the output of
lgorithm 1 with constant algorithm parameters linearly con-
erges to a neighborhood of a global optimum.

heorem 6. Suppose Assumptions 1–5 hold. Let {xk} be the sequence
enerated by Algorithm 1 with

k = α = κ1β, βk = β, ηk = η =
κ2

β
,

δi,k ≤ κδ ε̃
k, ∀k ∈ N0, (17)

where κ1 > c1, κ2 ∈ (0, c2(κ1)), β ≥ c̃0(κ1, κ2), ε̃ ∈ (0, 1), and
κδ > 0 with the explicit expressions of c̃0(κ1, κ2), c1, and c2(κ1)
being given in Yi, Zhang, Yang, and Johansson (2021). Then, for any
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∈ N+,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]

= O
( 1
T

+ (σ 2
1 + 2(1 + σ 2

0 )σ
2
2 )pη

2
)
, (18a)

E
[1
n

n∑
i=1

∥xi,T − x̄T∥2
]

= O
(
pη2

+ (σ 2
1 + 2(1 + σ 2

0 )σ
2
2 )p

2η4
(1
n

+ η

)
T
)
, (18b)

1
T

T−1∑
k=0

E[∥∇f (x̄k)∥2
]

= O
( 1

ηT
+ (σ 2

1 + 2(1 + σ 2
0 )σ

2
2 )

(pη
n

+ pη2
))

. (18c)

oreover, if Assumption 6 also holds, then[1
n

n∑
i=1

∥xi,k − x̄k∥2
+ f (x̄k) − f ∗

]
= O(εk

+ (σ 2
1 + 2(1 + σ 2

0 )σ
2
2 )pη), ∀k ∈ N+, (19)

here ε ∈ (0, 1) is a constant given in Yi, Zhang, Yang, and
ohansson (2021).

roof. The proof is given in Yi, Zhang, Yang, and Johansson
2021). □

If Assumptions 4′–5′ hold, then σ1 = σ2 = 0. In this case, from
heorem 6, we have the following results.

orollary 1 (Linear Convergence). Under the same setup as Theo-
rem 6 and suppose Assumptions 4′–5′ hold, then, for any T ∈ N+,

1
T

T−1∑
k=0

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
]

= O
( 1
T

)
, (20a)

[1
n

n∑
i=1

∥xi,k − x̄k∥2
]

= O(pη2), (20b)

1
T

T−1∑
k=0

E[∥∇f (x̄k)∥2
] = O

( 1
ηT

)
. (20c)

Moreover, if Assumption 6 also holds, then

E
[1
n

n∑
i=1

∥xi,k − x̄k∥2
+ f (x̄k) − f ∗

]
= O(εk), ∀k ∈ N+. (21)

emark 5. The result stated in (20c) shows that a stationary point
an be found with a rate O(p/T ). This rate is the same as that
chieved by the ZO algorithms in Gu et al. (2018), Huang, Gu,
uo, Chen, and Huang (2019), Kozak et al. (2021), Liu, Kailkhura,
t al. (2018) and Nesterov and Spokoiny (2017). Although the ZO
ariance reduced algorithms in Fang et al. (2018) and Ji et al.
2019) and the stochastic direct-search algorithms in Bergou et al.
2020), Bibi et al. (2020) and Gorbunov et al. (2020) achieved a
aster rate O(1/T ), these algorithms require three or more sam-
lings at each iteration, while our proposed algorithm requires
nly two samplings. Moreover, the result stated in (21) shows
hat a global optimum can be found linearly. The ZO algorithms
n Cai et al. (2020), Chen et al. (2020), Ji et al. (2019), Kozak et al.
2021), Nesterov and Spokoiny (2017), Ye et al. (2018) and the
tochastic direct-search algorithms in Bergou et al. (2020), Bibi
7

t al. (2020), Golovin et al. (2020), Gorbunov et al. (2020) also
chieved linear convergence. However, the algorithms in Bergou
t al. (2020), Bibi et al. (2020), Chen et al. (2020), Golovin et al.
2020), Gorbunov et al. (2020), Ji et al. (2019) and Ye et al.
2018) require three or more samplings at each iteration; the P–Ł
onstant needs to be known in advance in Kozak et al. (2021)
nd Ji et al. (2019), which is not needed in Theorem 6; and
he cost functions in Bergou et al. (2020), Bibi et al. (2020), Cai
t al. (2020), Chen et al. (2020), Golovin et al. (2020), Gorbunov
t al. (2020), Nesterov and Spokoiny (2017) and Ye et al. (2018)
re (restricted) strongly convex, which is stronger than the P–Ł
ondition used in Theorem 6.

To end this section, we would like to briefly explain the
hallenges when analyzing the performance of Algorithm 1. Al-
orithm 1 is simple in the sense that it is a combination of the
irst-order algorithm proposed in Yi, Zhang, Yang, Chai, and Jo-
ansson (2021) with zeroth-order gradient estimators. For such a
ind of combination, the standard technique to handle the bias in
he ZO gradients is using smoothing function, which is also used
n our proofs. However, there still is a gap between the smoothing
unction and the original function. This gap complicates the proof
etails, especially under the distributed and stochastic setting. As
result, one needs to make an assumption on the local gradients
r the relation between the local and global gradients, such as
he Lipschitz assumption, i.e., ∥∇fi(x)∥ is globally bounded, the
bounded variance assumption, i.e., ∥∇fi(x) − ∇f (x)∥2 is globally
ounded, or the weaker Assumption 5 used in this paper. More-
ver, to the best of our knowledge, how to show linear speedup
or distributed ZO algorithms is an open problem in the literature.
key point to show linear speedup is to guarantee that the

mitted constants in the dominating term in the convergence rate
o not depend on any parameters related to the communication
etwork. In addition, the proofs are much more complicated due
o weaker assumptions.

. Distributed ZO primal algorithm

In this section, we propose a distributed ZO primal algorithm
nd analyze its convergence rate. Inspired by the distributed first-
rder (sub)gradient descent algorithm proposed in Nedić and
zdaglar (2009), we propose the following distributed ZO primal
lgorithm:

i,k+1 = xi,k − γ
∑
j∈Ni

Lijxj,k − ηkge
i,k, (22)

where γ is a positive constant, {ηk} is a positive sequence, and
ge
i,k is the stochastic gradient estimator defined in (5).
We write the distributed random ZO algorithm (22) in pseudo-

code as Algorithm 2. Compared with Algorithm 1, in Algorithm 2
each agent only computes the primal variable. Similar results as
stated in Theorems 1–6 and Corollary 1 also hold for Algorithm 2.
They are given in the online version (Yi, Zhang, Yang, & Johansson,
2021) due to the space limitation.

5. Simulations

In this section, we verify the theoretical results through nu-
merical simulations. Specifically, we evaluate the performance
of Algorithms 1 and 2 in generating adversarial examples from
black-box deep neural networks (DNNs).

In image classification tasks, DNNs are vulnerable to adversar-
ial examples (Goodfellow, Shlens, & Szegedy, 2015) even under
small perturbations, which leads misclassifications. Considering

the setting of ZO attacks in Carlini and Wagner (2017) and Liu,
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Algorithm 2 Distributed ZO Primal Algorithm

1: Input: positive constant γ and positive sequences {ηk} and
{δi,k}.

2: Initialize: xi,0 ∈ Rp, ∀i ∈ [n].
3: for k = 0, 1, . . . do
4: for i = 1, . . . , n in parallel do
5: Broadcast xi,k to Ni and receive xj,k from j ∈ Ni;
6: Generate ui,k ∈ Sp independently and uniformly at

random;
7: Generate ξi,k independently and randomly according to

the distribution of ξi;
8: Sample Fi(xi,k, ξi,k) and Fi(xi,k + δi,kui,k, ξi,k);
9: Update xi,k+1 by (22).

10: end for
11: end for
12: Output: {xk}.

Kailkhura, et al. (2018), the model is hidden and no gradient in-
formation is available. We treat this task of generating adversarial
examples as a ZO optimization problem. The black-box attack loss
function (Carlini & Wagner, 2017; Liu, Kailkhura, et al., 2018) is
given as

fi(x) = max
{
Fyi

(1
2
tanh(tanh−1 2ai + x)

)
− max

j̸=yi

{
Fj
(1
2
tanh(tanh−1 2ai + x)

)}
, 0

}
+ c

1
2
tanh(tanh−1 2ai + x) − ai

2

2
,

where c is a constant, (ai, yi) denotes the pair of the ith natural
image ai and its original class label yi. The output of function
F (z) = col(F1(z), . . . , Fm(z)) is the well-trained model prediction
of the input z in all m image classes.

The well-trained DNN model1 on the MNIST handwritten
dataset has 99.4% test accuracy on natural examples
(Liu, Kailkhura, et al., 2018). We compare the proposed dis-
tributed primal–dual ZO algorithm (Algorithm 1) and distributed
primal ZO algorithm (Algorithm 2) with state-of-the-art cen-
tralized and distributed ZO algorithms: RSGF (Ghadimi & Lan,
2013), SZO-SPIDER (Fang et al., 2018), ZO-SVRG (Liu, Kailkhura,
et al., 2018), SZVR-G (Liu, Cheng, Hsieh, & Tao, 2018), and ZO-
SPIDER-Coord (Ji et al., 2019), ZO-GDA (Tang et al., 2020), and
ZONE-M (Hajinezhad et al., 2019).

We consider n = 10 agents and assume the communication
network is generated randomly following the Erdős–Rényi model
with probability of 0.4. All the hyper-parameters used in the
experiment are given in Yi, Zhang, Yang, and Johansson (2021).

Figs. 1 and 2 show the evolutions of the black-box attack loss
achieved by each ZO algorithm with respect to the number of it-
erations and function value queries, respectively. From these two
figures, we can see that our proposed distributed ZO algorithms
are as efficient as ZO-GDA (Tang et al., 2020) in terms of both con-
vergence rate and sampling complexity, and more efficient than
the other algorithms. The least ℓ2 distortions of the successful
adversarial perturbations are listed in Table 1. We can see that the
adversarial examples generated by the distributed algorithms in
general have slightly larger ℓ2 distortions than those generated by
the centralized algorithms. A comparison of generated adversarial
examples from the DNN on the MNIST dataset is summarized in
a table provided in Yi, Zhang, Yang, and Johansson (2021).

1 https://github.com/carlini/nn_robust_attacks
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Fig. 1. Evolutions of the black-box attack loss with respect to the number of
iterations.

Fig. 2. Evolutions of the black-box attack loss with respect to the number of
function value queries.

Table 1
Distortion.
Algorithm Distributed ℓ2 distortion

Algorithm 1 ✔ 6.44
Algorithm 2 ✔ 5.77
ZO-GDA ✔ 7.23
ZONE-M ✔ 9.96
RSGF ✗ 5.69
SZO-SPIDER ✗ 6.19
ZO-SVRG ✗ 4.76
SZVR-G ✗ 5.16
ZO-SPIDER-Coord ✗ 5.76

In order to verify the result that linear speedup convergence is
achieved with respect to the number of agents, we also consider
n = 100 agents. To illustrate the linear speedup results in
a more clear manner, we plot the loss in log scale and draw
the extensive lines along the convergence lines in Fig. 3. The
slopes of the 10-node lines (blue and red lines) are approximately
−0.025 and the slopes of the 100-node lines (blue and red dash
lines) are approximately −0.079, which suggests linear speedup

https://github.com/carlini/nn_robust_attacks


X. Yi, S. Zhang, T. Yang et al. Automatica 142 (2022) 110353

i
r
o

s

t
c
c
t
n
f
s
a
p

R

A
B

B

G

G

G

G

G

G

G

Fig. 3. Evolutions of the black-box attack loss with respect to the number of
terations when using different numbers of agents. (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version
f this article.)

ince −0.079/
√
10 ≈ −0.025. This simulation shows that linear

speedup is achieved by our proposed algorithms even though the
optimization problem is nonsmooth.

6. Conclusions

In this paper, we studied stochastic distributed nonconvex op-
timization with ZO information feedback. We proposed two dis-
tributed ZO algorithms and analyzed their convergence proper-
ties. More specifically, linear speedup convergence rate
O(

√
p/(nT )) was established for smooth nonconvex cost func-

ions under arbitrarily connected communication networks. The
onvergence rate was improved to O(p/(nT )) when the global
ost function satisfies the P–Ł condition. It was also shown that
he output of the proposed algorithms linearly converges to a
eighborhood of a global optimum. Interesting directions for
uture work include establishing faster convergence with reduced
ampling complexity by using variance reduction techniques,
nd considering communication reduction with asynchronous,
eriodic, or compressed communication.
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