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Abstract: We study joint learning of network topology and a mixed opinion dynamics, in which
agents may have different update rules. Such a model captures the diversity of real individual
interactions. We propose a learning algorithm based on multi-armed bandit algorithms to
address the problem. The goal of the algorithm is to find each agent’s update rule from several
candidate rules and to learn the underlying network. At each iteration, the algorithm assumes
that each agent has one of the updated rules and then modifies network estimates to reduce
validation error. Numerical experiments show that the proposed algorithm improves initial
estimates of the network and update rules, decreases prediction error, and performs better
than other methods such as sparse linear regression and Gaussian process regression.
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1. INTRODUCTION

Opinion dynamics characterize how individuals interact
with each other and change their opinions, which has
attracted researchers in various disciplines from control
to physics for decades (Proskurnikov and Tempo (2017)).
There is a growing interest in learning such dynamics
(Ravazzi et al. (2021a)). Most researches formulate the
learning problem based on a single model. In real networks
agents may have different update rules, so there is a need
to study how to learn such networked dynamics.

1.1 Related Work

This paper considers opinion dynamics with continuous
states (Proskurnikov and Tempo (2017)). A classic ex-
ample is the DeGroot model (DeGroot (1974)), in which
agents update to the opinion average of their neighbors.
Friedkin and Johnsen (1999) generalize this model by
assuming the agents are influenced by their initial po-
sitions. Bounded confidence models, such as the Hegsel-
mann–Krause (HK) model (Hegselmann et al. (2002)),
characterize the case when agents only interact with
those who hold opinions similar to themselves. Opinion
dynamics over signed networks are another important
class of models (Shi et al. (2019)). Signed networks have
not only positive but also negative edges. There has
been research on testing opinion dynamics models against
data. Clemm von Hohenberg et al. (2017) find the exis-
tence of linear averaging. The FJ model has been vali-
dated in small-group experiments (Friedkin and Johnsen
(1999)). Recent empirical studies based on large-scale
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dation, the Swedish Research Council, and the Swedish Foundation
for Strategic Research.

datasets (Kozitsin (2021, 2022)) also suggest the presence
of bounded confidence and negative influence rules.
With the increasing availability of large-scale online
datasets, the interest in learning influence networks has
been growing (Ravazzi et al. (2021a)). De et al. (2014)
and Wai et al. (2016) study sparse network learning of the
DeGroot model. Ravazzi et al. (2017) investigate the learn-
ing of the FJ model, and Ravazzi et al. (2021b) consider
the case where only partial observations are available. Wai
et al. (2019) study joint learning of network topology and
system parameters for bounded confidence models. Learn-
ing based on quantized observations are studied in Xing
et al. (2022); Xie et al. (2023). Most of these papers assume
that the type of the dynamics model to be learned is
known and every agent follows the same update rule. This
is often not the case in real networks, so it is necessary
to study learning of networked dynamics mixing multiple
update rules. Automated machine learning (AutoML) is
an emerging domain studing how to design algorithms
that automatically build machine learning (ML) models
with optimized hyperparameter settings (He et al. (2021)).
Thornton et al. (2012) introduce the sequential model-
based algorithm configuration to select algorithms and
optimize hyperparameters. Li et al. (2017); Sun et al.
(2019) propose methods based on multi-armed bandit and
reinforcement learning algorithms.

1.2 Contribution

We study joint learning of network topology and a mixed
opinion dynamics, where agents may have different up-
date rules. In the learning problem, the network and the
types of agent update rules are unknown. We propose
a learning algorithm based on multi-armed bandits to
address the problem. The algorithm starts with initial



estimates of the network and the agent update rules. At
each iteration, it either refines the network estimates by
exploiting a given update rule by modifying the adjacency
matrix, or examines the validation error of other update
rules with small probability. Numerical experiments show
that the proposed algorithm can improve the initial esti-
mates, with better network recovery and smaller predic-
tion error. The algorithm provides a search strategy for
learning opinion dynamics models with multiple update
rules, and performs better than linear sparse regression
and Gaussian process regression. Compared with existing
network learning methods, the proposed algorithm can get
rid of the assumption of a single model, and can include
multiple sets of constraints. Thus the proposed algorithm
can provide better possibility for learning real dynamics.
The algorithm is inspired by AutoML, but the problem
cannot be solved directly by AutoML methods. A multi-
agent system is considered here, and the best model needs
be selected for each agent. In addition, the network and
dynamics are coupled.

1.3 Outline

The rest of the paper is organized as follows. Section 2 in-
troduces several opinion dynamics models and defines the
mixed model. Section 3 formulates the learning problem.
We propose a learning algorithm for the mixed model in
Section 4. Section 5 presents numerical experiments.
Notation. Let 1n be the n-dimensional all-one vector,
and 0n,m be the n × m-dimensional all-zero matrix. The
Euclidean norm and the l1 norm are ∥ · ∥ and ∥ · ∥1. For
a vector x ∈ Rn, denote its subvector from i-th to j-the
component by xi:j , i ≤ j. For a matrix A = [aij ] ∈ Rn×n,
denote its (i, j)-th entry by aij or [A]ij and denote its i-
th column (row) by [A]:,i ([A]i,:). The function I[property]
is the indicator function. If the property is stated for
a vector, then the function is entry-wise (e.g., I[y>0] =
[I[y1>0] · · · I[yn>0]]T for y ∈ Rn). Denote the entry-wise
sign of a vector y by sgn(y). The structure of a network
is defined by an undirected graph G = (V, E , A), where
V = {1, . . . , n} is the agent set, E is the edge set, and A
is the adjacency matrix. Each edge {i, j} ∈ E has a sign,
either positive or negative. The disjoint sets E+ and E−

collect all positive and negative edges, respectively. The
positive (negative) neighbors of an agent i is denoted by
N +

i = {j : {i, j} ∈ E+} (N −
i = {j : {i, j} ∈ E−}), and

Ni := N +
i ∪ N −

i . An agent i has positive and negative
degrees d+

i = |N +
i | and d−

i = |N −
i |, respectively, and

degree di := d+
i + d−

i . The adjacency matrix A satisfies
that aij = 1 if {i, j} ∈ E+, aij = −1 if {i, j} ∈ E−, and
aij = 0 if {i, j} ̸∈ E .

2. PRELIMINARIES

This section introduces considered models. We assume
that each agent i has a self loop {i, i} ∈ E+ and has a state
xi(t) at time t ∈ N. Denote the state vector by x(t) ∈ Rn.
The DeGroot Model (DeGroot (1974)) is one of the most
classic opinion dynamics. The underlying graph does not
have negative edges (i.e., E− = ∅). Each agent i updates its
opinion to the weighed average of its neighbors’ opinions:

xi(t + 1) =
n∑

j=1
wijxj(t) =: fMDG(x(t), θ(MDG,i)), (1)

where t ∈ N and wij is the influence weight of the agent j
on the agent i and we denote

θ(MDG,i) = [wi1 · · · win]T, i ∈ V. (2)
The weight wij satisfies that wij > 0 if aij = 1, and
wij = 0 if aij = 0. In addition,

∑n
i=1 wij = 1.

The FJ model generalizes the DeGroot model. Here E− =
∅, and every agent i has susceptibility λi ∈ [0, 1] to others.
An agent i updates according to the following rule

xi(t + 1) = λi

( n∑
i=1

wijxj(t)
)

+ (1 − λi)xi(0)

=: fMFJ(x(t), θ(MFJ,i)), (3)
where wij are nonnegative weights such that

∑
j wij = 1,

wij > 0 if aij = 1, and wij = 0 if aij = 0. Here we denote
θ(MFJ,i) := [wi1 · · · win λi]T, i ∈ V. (4)

Note that fMFJ also depends on xi(0), which is omitted
for notation simplicity. When λi ̸= 1, the opinion of the
agent i is constantly influenced by its initial position xi(0).
An agent i with λi = 0 is called stubborn and never
changes its opinion. When λi = 1 for all i ∈ V, the FJ
model (3) degenerates to the DeGroot model (1).
The repelling negative dynamics (Shi et al. (2019)) can
capture the opinion evolution where the network contains
negative edges (i.e., E− ̸= ∅):
xi(t + 1)
= xi(t) + αi

∑
j∈N +

i

(xj(t) − xi(t)) − βi

∑
j∈N −

i

(xj(t) − xi(t))

= (1 − αid
+
i + βid

−
i )xi(t) + αi

∑
j∈N +

i

xj(t) − βi

∑
j∈N −

i

xj(t)

=: fMRP(x(t), θ(MRP,i)) (5)
where 0 < αi ≤ 1/d+

i and βi > 0 are the influence
strength of positive and negative neighbors on the agent i,
respectively. Here we denote the parameters

θ(MRP,i) := [wi1 · · · win]T, i ∈ V, (6)
where wii = 1 − αid

+
i + βid

−
i , wij = αi if j ∈ N +

i \ {i},
wij = −βi if j ∈ N −

i , and wij = 0 if j ̸∈ Ni. When N −
i = ∅

or βi = 0 for all i ∈ V, the model (5) becomes the DeGroot
model (1).
Now we assume E− = ∅ again, and introduce the social
HK model (Parasnis et al. (2018)). In the original HK
model, the network is assumed to be complete, which is
not realistic because individuals in a large network cannot
know everyone. The social HK model addresses this issue
by introducing an underlying network: At each time t,
an agent i selects a set of trusted individuals from its
neighbors (i.e., agents that have opinions similar to i),

Ii(t) = {j ∈ Ni : |xj(t) − xi(t)| ≤ ci},

where ci is the confidence bound of i. Then the agent
updates its opinions as the average of xj(t):

xi(t + 1) = 1
|Ii(t)|

∑
j∈Ii(t)

xj(t) =: fMHK(x(t), θ(MHK,i)),

(7)



where
θ(MHK,i) := ci, i ∈ V. (8)

Note that fMHK depends on i, which is omitted for
notation simplicity. When all ci are larger than the range
of x(0), the model (7) reduces to the DeGroot model (1).

3. PROBLEM FORMULATION

Agents in real networks may have completely different up-
date rules, as suggested by empirical evidence (Clemm von
Hohenberg et al. (2017); Friedkin and Johnsen (1999);
Kozitsin (2021, 2022)). Thus, to learn the real network
and the dynamics, it is natural to consider a mixture of
opinion update rules Dong et al. (2017); Wu et al. (2022).
A mixed opinion dynamics is defined as follows.
Definition 1. A mixed opinion dynamics over an undi-
rected graph G = (V, E , A) with |V| = n is a discrete-time
system with states x(t) ∈ Rn, t ∈ N, satisfying that

xi(t + 1) = fMi(x(t), θ(Mi,i)),
where Mi ∈ {MDG, MFJ, MRP, MHK} is the type of
update rule of the agent i, fMi are given in (1), (3), (5),
and (7), and θ(Mi,i) in (2), (4), (6), and (8).

To make the definition well-posed, we introduce the fol-
lowing assumptions.
Assumption 2.
(i) The graph G is undirected and connected.
(ii) There exists a positive constant ελ ∈ (0, 1) such that,
if Mi = MFJ for some i ∈ V, then ελ ≤ θ

(MFJ,i)
n+1 ≤ 1 − ελ.

(iii) For i ∈ V, N −
i ̸= ∅ holds if and only if Mi = MRP.

(iv) If Mi = MHK for i ∈ V, then θ(MHK,i) <
maxj∈V{|xj(0)|}.
Remark 3. The second assumption ensures that the sus-
ceptibility of an agent i should be neither too small nor too
large. The third assumption guarantees that agents who
have other update rules do not have negative edges. The
last assumption ensures that the agent with a HK update
rule cannot be considered as a DeGroot-type agent.

We consider the joint learning of the network topology and
the dynamics for the mixed model:
Problem. Given a trajectory {x(0), x(1), . . . , x(T )} of the
mixed model, propose an algorithm jointly learning the
network G, the types of agent update rules {Mi}, and the
parameters of each agent {θ(Mi,i)}, where T ≥ 1 is the
final time step of the trajectory.

4. LEARNING ALGORITHMS

This section presents separate learning algorithms for
models {MDG, MFJ, MRP, MHK}, and proposes a learn-
ing algorithm for the mixed model. Denote the data ma-
trices by X := [x(0) x(1) . . . x(T − 1)]T and b(i) :=
[xi(1) . . . xi(T )]T, i ∈ V, and the estimates of the ad-
jacency matrix A, agent update rules {Mi}, and the pa-
rameter {θ(Mi,i)} by Â, {M̂i}, and {θ̂(Mi,i)}, respectively.

4.1 Learning of Single Models

Note that θ(MDG,i) satisfies Xθ(MDG,i) = b(i), for i ∈ V
such that Mi = MDG. To learn θ(MDG,i) we look for

Algorithm 1 LearnMDG(X,b(i),N (neigh)
i ,N (non)

i )
1: For y ∈ Rn, solve

min ∥y∥1

s.t. Xy = b(i),

1T y = 1,

yj ≥ εw, j ∈ N (neigh)
i ,

yj = 0, j ∈ N (non)
i ,

yj ≥ 0, j ∈ V \ (N (neigh)
i ∪ N (non)

i ).

2: Return [Â]i,: = I[yT>0], θ̂(MDG,i) = y.

Algorithm 2 LearnMFJ(X,b(i),N (neigh)
i ,N (non)

i )
1: For y ∈ Rn+1, solve

min ∥y∥1

s.t. [X [X]1,i1T ]y = b(i),

1T y = 1,

yj ≥ εwελ, j ∈ N (neigh)
i ,

yj = 0, j ∈ N (non)
i ,

yj ≥ 0, j ∈ V \ (N (neigh)
i ∪ N (non)

i ),
ελ ≤ yn+1 ≤ 1 − ελ.

2: Return [Â]i,: = I[yT
1:n>0], θ̂

(MFJ,i)
1:n = y1:n/(1 − yn+1),

θ̂
(MFJ,i)
n+1 = 1 − yn+1.

Algorithm 3 LearnMRP(X,b(i),N (neigh)
i ,N (non)

i )
1: For y ∈ Rn, solve

min ∥y∥1

s.t. Xy = b(i),

yj ≥ εw, j ∈ N (neigh)
i ,

yj = 0, j ∈ N (non)
i .

2: Return [Â]i,: = sgn(yT), θ̂(MRP,i) = y.

a sparse solution to the least l1-norm problem given in
Algorithm 1. The motivation is that in practice only a
few samples of the process are available (T < n) but
real networks are often sparse (Ravazzi et al. (2017)). The
parameter constraints 1T y = 1 and yj ≥ 0, 1 ≤ j ≤ n, are
added. The algorithm has two additional inputs N (neigh)

i

and N (non)
i , which are subsets of V. We introduce these two

sets to search for other solutions. If an agent j is considered
as a neighbor of the agent i (j ∈ N (neigh)

i ), we add the
constraint yj ≥ εw, where εw is a small positive constant.
If j is assumed to not be a neighbor (j ∈ N (non)

i ), the
constraint yj = 0 is imposed.
We can similarly solve a system of linear equations to
learn the parameters in the FJ model (3). We search for
a sparse solution in Algorithm 2. The algorithm has two
hyperparameters: the lower bound of influence weights
εw > 0, and the bound for the susceptibility ελ ∈ (0, 1)
given in Assumption 2 (ii).
The expression of the repelling negative dynamics (5) is
the same as (1), but (5) has less constraints. Hence so
does Algorithm 3. Testing whether a negative edge should



Algorithm 4 LearnMHK(X,b(i),N (neigh)
i ,N (non)

i )
1: Set [Â]i,: such that [Â]i,j = 1 if j ∈ N (neigh)

i and [Â]i,j = 0
otherwise.

2: for t from 0 to T − 1 do
3: Sort the neighbors j ∈ N (neigh)

i by the distance of xj(t) from
xi(t) to be xi1 , . . . , xini

, where ni := [Â]i,:1.
4: Compute

x̂
(m)
i (t + 1) =

1
m

m∑
j=1

xij (t), 1 ≤ m ≤ ni,

m(t) = max
{

arg min
1≤m≤ni

|x̂(m)
i (t + 1) − xi(t + 1)|

}
,

c(t) = |xim(t)+1 (t) − xi(t)| − εc.

5: end for
6: Compute

t∗ = arg min
0≤t≤T −1

c(t),

c∗ = c(t∗).

7: Return [Â]i,:, θ̂(MHK,i) = c∗.

be kept complicates the learning algorithm. We leave this
complement to future work.
For the Social HK model, it is only possible to obtain
a bound for the confidence bounds based on finite sam-
ples. We provide a heuristic to estimate the confidence
bound. Numerical experiments in Section 5 show that the
proposed algorithm can have relatively small prediction
error. Assume first that the network topology is known.
For an agent i with Mi = MHK, sort i’s neighbors by
their states’ distance from xi(t) and denote the sorted
neighbors by i1, i2, . . . , i|Ni|, where i1 = i. Then compute
the averages (

∑m
j=1 xij

(t))/m, 1 ≤ m ≤ |Ni|, and find the
index such that the average has the smallest distance from
xi(t+1), i.e., arg min1≤m≤|Ni||(

∑m
j=1 xij (t))/m−xi(t+1)|.

If no noise exists, there exist m1 < · · · < mq such that
|(

∑mr

j=1 xij (t))/mr − xi(t + 1)| = 0, where 1 ≤ r ≤ q and
q ≥ 1. We then can conclude that |ximq+1

(t) − xi(t)| is a
strict upper bound for the confidence bound θ(MHK,i) = ci.
If the topology is unknown, to obtain a bound we need
test all 2n−1 combinations. We narrow down the search
by introducing testing sets N (neigh)

i and N (non)
i , as in the

preceding algorithms. In Algorithm 4, for each sample
(x(t), xi(t + 1)), we obtain an estimate of the confidence
bound c(t) by conducting the process discussed previously.
In the algorithm, εc is a small positive number to make
sure that the upper bound is strict. For all 0 ≤ t ≤ T −
1, if the neighbor set is correct, the confidence bound
should be smaller than all c(t). The algorithm returns an
approximation of i’s dynamics.

4.2 Learning of Mixed Model

After presenting the learning algorithms for each update
rule, now we are ready to introduce the learning algorithm
for the mixed model. We propose a multi-armed bandit
algorithm (Algorithm 5) to address the problem, and
consider the four types of update rules as four arms. We
introduce a Q-table Q(l) ∈ Rn×4 for each iteration l.
The entry [Q(l)]i,m indicates the payoff of refining model
parameters of the arm M [m] for the agent i at the iteration
l, where 1 ≤ m ≤ 4 and we define the look-up table

M with respect to {MDG, MFJ, MRP, MHK} such that
M [1] = MDG, M [2] = MFJ, M [3] = MRP, M [4] = MHK.
We run Algorithms 1–4 for each i with N (neigh)

i = {i} and
N (non)

i = ∅, to initialize the estimates of update rule types
k̂(0) ∈ {1, 2, 3, 4}n, the estimates of the adjacency matrix
for each model Â(M [m])(0), and the parameter estimates
θ̂(M [m],i)(0). [Q(0)]i,m is set to be the negative logarithm
of validation error of the model M [m] for i (Line 2).
At each iteration and for each agent, the algorithm tries
to fit the data into the model with the best payoff with
probability 1 − εM. With exploration probability εM, the
algorithm attempts to refine estimates of other models
(Line 4–7). At each iteration, the algorithm modifies the
adjacency matrix corresponding to the selected models
with probability 1 − εG, and modifies a randomly gener-
ated adjacency matrix with probability εG (Line 8). The
algorithm then examines whether removing or adding an
edge can improve validation error (Line 11). Next, the
algorithm updates the payoff Q with a step-size α and
the parameter estimates (Line 13). Finally the algorithm
returns parameter estimates, according to the update rule
with the best payoff (Line 17).

5. NUMERICAL EXPERIMENTS

This section presents a numerical experiment for illustra-
tion of algorithm performance. We use the CVX toolbox 1

to find sparse solutions.
To generate the mixed model, we set the network size
to be n = 20, with four types of agents and each type
with 5 agents sharing the same model as ground truth.
We generate 10 graphs and run the model over each graph
to get a trajectory with a final time step t = 20. The
positive graphs are generated from an Erdös-Rényi graph
with link probability (1.1 log n)/n and are checked to be
connected. Generate negative edges between the 5 agents
with the repelling rule, with the same link probability,
and ensure that each agent has at least one negative edge.
The influence weights αi and βi are set to be 0.2/di. The
susceptibility λi of the agents with the FJ rule is set to be
0.5, and the confidence bound ci of the social HK model
is set to be 0.25. The initial opinions of the agents are
generated independently and uniformly from (−1, 1).
We compare the proposed algorithm (Algorithm 5, εG)
with an initial estimate (IE) of the mixed model, random
search (RS, Algorithm 5 with model and topology explo-
ration probabilities εM = 1 and εG = 1), the ordinary
least-squares algorithm (OLS), sparse solutions (SS) to
Xy = b, and Gaussian process regression (GPR). For IE,
we run Algorithm 1–4 (with εw = 0.001, ελ = 0.1, and
εc = 10−6) for each agent, and obtain initial estimates of
update rules, model parameters, and the adjacency matrix.
εG starts with the estimates of IE, the number of iterations
is set to be 20, both εM and εG are set to be 0.2, respec-
tively, and the step size is 0.1. For OLS, SS, and GPR, the

data matrix for an agent i is
[

x(0) · · · x(T − 1)
xi(0) · · · xi(0)

]T
, thus

including the effect of initial states in the FJ model. Here
T is the number of samples. For OLS and SS, we search
1 http://cvxr.com/cvx
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Figure 1. Performance of algorithms IE, εG, RS, OLS, and SS for network topology learning.

Algorithm 5 ε-Greedy({x(0), . . . , x(T )})
1: Choose T̃ and divide the trajectory into a training dataset

Xtr = [x(0) · · · x(T̃ )]T and a validation dataset Xval = [x(T̃ +
1) · · · x(T )]T.

2: Initialize the Q-table Q(0), the estimates of update rule types
k̂(0), the estimates of the adjacency matrix for each model
Â(M [m])(0), and the parameter estimates θ̂(M [m],i)(0), 1 ≤ m ≤
4, where the look-up table M is s.t. M [1] = MDG, M [2] = MFJ,
M [3] = MRP, M [4] = MHK.

3: for l from 1 to niter do
4: for i from 1 to n do
5: With probability (w.p.) 1 − εM, set

ki(l) = arg max
1≤m≤4

[Q(l)]i,m.

6: W.p. εM, generate ki(l) ∈ {1, 2, 3, 4} uniformly.
7: end for
8: W.p. 1 − εG, let [Ã]i,: := [Â(ki(l))(l − 1)]i,:, for i ∈ V. W.p.

εG, randomly generate an adjacency matrix Ã.
9: for i from 1 to n do

10: for j from 1 to n and j ̸= i do
11: If Ãij = 0 set N (neigh)

i := {q ∈ V : Ãiq = 1} ∪ {j} and
N (non)

i := ∅. If Ãij = 1 set N (neigh)
i := {q ∈ V : Ãiq =

1} \ {j} N (non)
i := {j}.

[Âtempj
]i,:, θ̂

(M [ki(l)],i)
tempj

=LearnM [ki(l)]([Xtr]1:T̃ −1,:, [Xtr]2:T̃ ,i, N (neigh)
i , N (non)

i )
12: end for
13: Compute the validation error of fM [ki(l)] based on

([Âtempj
]i,:, θ̂

(M [ki(l)],i)
tempj

), j ∈ V \ {i}. Choose the small-
est error pi(l) with respect to j, update [Â(M [ki(l)])(l)]i,:,
θ̂(M [ki(l)],i)(l) accordingly, and

[Q(l)]i,ki(l) = (1 − α)[Q(l − 1)]i,ki(l) − α log(pi(l)).
14: end for
15: end for
16: Let mi := arg max

1≤m≤4
[Q(niter)]i,m, M̂i := M [mi], [Â]i,: =

[Â(M̂i)(niter)]i,:, and θ̂(M̂i,i) = θ̂(M̂i,i)(niter), i ∈ V.
17: Return Â, {M̂i}, and {θ̂(M̂i,i)}.

solutions in [−2, 2]n+1 to avoid large weight estimates.
To investigate the effect of sample number, for each T =
10, 15, 20, we apply the algorithms to the 10 trajectories
{x(0), . . . , x(T )} (for εG, set T̃ = [4T/5]), and study the
averaged performance.
First, we examine the recovery of adjacency matrices by
EI, εG, RS, OLS, and SS. The performance of the recovery
is characterized by the the true positive rate (TPR) and
the false positive rate (FPR) (see Bishop (2006)). Fig. 1
shows the pair (FPR, TPR) for the algorithms. As the
number of samples increase, all algorithms perform better.
εG is slightly better then IE when T is small, indicating
refinement of the initial estimates. SS has similar FPR

and TPR to IE, which may be because SS also searches
for sparse networks. But SS does not learn the model well
and has large prediction error, as discussed later.
Next, we compute the prediction error for all algorithms.
For each graph, we generate 50 time-adjecent state pairs
{x(g)(0)), (x(g)(1))}, 1 ≤ g ≤ 50. The prediction er-
ror is defined by the root mean square error (RMSE)
[(

∑50
g=1 ∥x̂(g)(1) − x(g)(1)∥2)/50] 1

2 , where x̂(g)(1) is the
prediction of the states x(g)(1). The results are shown in
Fig. 2 with boxplots. IE, εG, and RS have smaller predic-
tion error than the rest, because they are equipped with
more model information. When the number of samples is
small (T = 10), εG and RS have better performance for
some trajectories but they do not improve IE too much.
Improvement can be observed in the case T = 15, where
εG has smaller error than IE and RS. When T = 20, the
performance of εG is similar to IE and RS, since there
is sufficient information for all algorithms. OLS cannot
capture the nonlinear dynamics so it performs the worst.
SS and GPR has less prediction error than OLS, because
SS finds sparse solutions, resulting in less error, and GPR
can capture nonlinear dynamics.
We illustrate how the estimates of update rule types and
parameters are influenced by the number of samples. Fig. 3
plots the accuracy (the proportion of correct estimates) of
IE, εG, and RS for each update rule type. The accuracy
increases with the number of samples. εG has similar
accuracy to RS, so the smaller prediction error may result
from the exploitation for correctly learned update rules.
In summary, the proposed algorithm can improve the
initial estimates of the network and the update rules, and
reduce prediction error. Future work will study improve-
ment and generalization of the proposed algorithm.
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