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Wireless control system

How to share common network resources while
maintaining guaranteed closed-loop performance?
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Idea: Utilize event- and self-triggered control to limit the use of network resources
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Today’s industrial communication architecture

Centralized control system with low- =
. Remote Client:
level loops closed over wired network .
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Towards wireless sensor and actuator network architecture

* Local control loops closed over wireless multi-hop network
* Potential for a dramatic change:
— From fixed hierarchical centralized system to flexible distributed

— Move intelligence from dedicated computers to sensors/actuators
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Event-based control of froth flotation process
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Wireless control of floatation process

The Boliden plant Existing wired communication system
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Radio Channel Measurements in
Industrial Environment

* Rolling mill at Sandvik in Sweden

¢ Study of 2.45 GHz radio channel properties

* Slow but substantial RSSI variations due to
mobile machines
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Event-based estimation in vehicle platooning

* Vehicles need accurate estimates of neighboring vehicles’ states and actions

* Control performance is tightly coupled to how well data (position, velocity,
breaking estimates) are communicated across the platoon

* Today’s communication protocols are event-based (e.g., IEEE 801.11p)
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Where to take medium access decisions?

. Sensor node makes local decisions on when to communicate
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Is there a separation between
event-based scheduling-estimation-control?




Stochastic control formulation

Plant:
X1 = Axg + Buy +wy
Scheduler:

8 = filly) € {0,1)
= [0, 03 8N
Controller:

g = (1)
Iy = [O36. (835 1t

Cost criterion:

N-1
J(f.8) =ElyQoxn+ Y. (xt Quxs+uj Qous)]
s=0

Certainty equivalence revisited
Definition Certainty equivalence holds if the closed- y
loop optimal controller has the same form as the de-
terministic optimal controller with x; replaced by the
estimate f; = E[x/IC].

u
i C —— |

Theorem|[Bas-Shalom-Tse] Certainty equivalence holds
if and only if E[(zy — E[zk|I])?|I£] is not a function of
past controls {u}f™* (no dual effect).

Feldbaum, 1965; Astrém, 1970; Bar-Shalom and Tse, 1974
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Event-based scheduler

Plant:
u X
Xk+1 =Axk+Buk+wk k k
Scheduler:

8 = fully) € {0.1)
= [ O3 (83 (b
Controller:

C
u = gr(Iy)
Iy = [O36. (835 1t

Corollary The control uy for the optimal closed-loop system has a dual effect.

The separation principle does not hold for the optimal closed-loop system, so
the design of the (event-based) scheduler, estimator, and controller is coupled

Ramesh et al., 2011

Conditions for Certainty Equivalence

Corollary: The optimal controller for the system {?P,S(f),C(g)}, with
respect to the cost ] is certainty equivalent if and only if the
scheduling decisions are not a function of the applied controls.

Certainty equivalence achieved at the cost of optimality

16
Ramesh et al., 2011
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Event-based control architecture

= Plant P: = CRM: P(ak:lhkzl) = P((\f:lhzk:l) =p
Xgr1 = aXg + buy, + wy,

a

O = ag(1 —ai,v)
= State-based Scheduler S:
. ot P ) B /) B0
{1. e — % P> ea " Observer O: y? = 5 x
Ve =

0. otherwise. \f‘ = 0‘[\-((?.\";._1 i—1 T bllkfl) + (Sk-\'k

. .
Mim_y = @iy + Dl = Controller C: u; = —Lx¢,

Ramesh et al., CDC, 2012, ThC01.3

Integrating advanced
contention resolution mechanisms

* Hard problem because of correlation between transmissions (and the plant states)
* Closed-loop analysis can still be done for classes of event-based schedulers and MAC'’s

Ramesh et al., CDC 2011
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CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance

Contention resolution through CSMA/CA

source

Varaiya, 2011

max n trials

collision (P,)

success (1 — Fr)

transmit

Every transmitting device executes this protocol
For analysis, assume carrier sense events are independent [Bianchi, 2000]

Detailed model of CSMA/CA in IEEE 802.15.4

* Markov state (s,c,r)
— s: backoff stage
— c: state of backoff counter
— r: state of retransmission counter

* Model parameters
— q,: traffic condition (g,=0 saturated)
— my, m, my, n: MAC parameters

* Computed characteristics

Park, Di Marco, Soldati, Fischione, J, 2009

— a: busy channel probability during CCA1
| — B: busy channel probability during CCA2
— P_: collision probability

Validated in simulation and experiment

Reduced-order models for control design
Detailed model for numerial evaluations

Cf., Bianchi, 2000; Pollin et al., 2006
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Slotted medium access

Many medium access protocols have slotted

contention-free and contention access periods
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’ Periodic superframe of N slots ‘
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Hybrid MAC protocols

Exploit the mix of CFP’s and CAP’s for
event- and self-triggered control

E.g., Araujo et al., 2010, Tiberi et al., 2010

Contention-free period for TDMA scheduled communication
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’ Periodic superframe of N slots ‘

Contention access period for random CSMA communication
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TDMA = Time division multiple access, CSMA/CA = Carrier Sense Multiple Access with Collision Avoidance

IEEE 802.15.4 MAC

Device
Contention-Access Collision-Free .
Period (CAP) Period (CFP) . .
Beacon|[— Beacon || ‘
Inactive . '

*— Superframe Duration (S.D.)
Network Manager

— Beacon Interval (B.I.) —_—

24
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KTH Elec:

Beacon|[—

Contention-Access
Period (CAP)

Collision-Free
| Period (CFP) |

IEEE 802.15.4 MAC

Beacon ||

—

«— Superframe Duration (S.D.)

Inactive

Beacon Interval (B.I.)

e 16 slots for CAP and CFP

e Maximum 7 slots for CFP

Device

Network Manager

25
IEEE 802.15.4 MAC
e | o ©
Beacon |[& Beacon|| .
Inactive . .

«— Superframe Duration (S.D.)

D — Beacon Interval (B.1.) —_—
26
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IEEE 802.15.4 MAC

KTH Electr

CSMA/CA
Contention-Access Collision-Free .
Period (CAP) | Period (CFP) | -
Beacon|[— Beacon|| .
Inactive
«— Superframe Duration (S.D.)
h— Beacon Interval (B.I.) —_— Data IMEEEEE
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IEEE 802.15.4 MAC
CSMA/CA
Contention-Access Collision-Free .
Beacon Period (CAP) | Period (CFP) | Beacon]
g I o
Inactive
«— Superframe Duration (S.D.)
D — Beacon Interval (B.1.) —_—
28
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IEEE 802.15.4 MAC

KTH Electr

Backoff!

CSMA/CA
Contention-Access Collision-Free
Period (CAP) | Period (CFP) | -
Beacon|[— Beacon||
Inactive
«— Superframe Duration (S.D.)
 — Beacon Interval (B.I.) —_—

29
CSMA/CA
Backoff!
Contention-Access Collision-Free
Period (CAP) | Period (CFP) | .
Beacon|[— Beacon ||
Inactive H
«— Superframe Duration (S.D.)
— Beacon Interval (B.1.) _—
30
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IEEE 802.15.4 MAC

Contention-Access Collision-Free
Period (CAP) | Period (CFP) | -
Beacon|[— Beacon||
Inactive
*«— Superframe Duration (S.D.)
P

e Beacon Interval (B.I.)

31
TDMA
Contention-A Collision-Fi
piraf; tggAP)Ccess | Pgri::ior(]CFr;; | . . .
Beacon|[— Beacon||
Inactive . ./.
«— Superframe Duration (S.D.) Data message
D — Beacon Interval (B.1.) —_—
e CFP slot allocation as First-Come First-Served
32
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IEEE 802.15.4 MAC

KTH Electrical Enginoering

Device

Contention-Access
Period (CAP)

Collision-Free . .

Period (CFP) .
Beacon || .

Inactive . ‘

*— Superframe Duration (S.D.)

Beacon|[—

— Beacon Interval (B.I.) _— Network Manager

e 16 slots for CAP and CFP

e Maximum 7 slots for CFP

e CFP slot allocation as First-Come First-Served

33

1. Fixed scheduling of
sensing/actuation slots

2. Check triggering
condition at every
allocated slot

- One-step ahead triggering
condition

3. If triggering condition is
true, transmit
measurement and
perform actuation

Transmission!

a

Beacon

/o
I’ b

Event-based sensor communication

h— h— b

Slots allocated

r(t
Sensor ()

I et F)I Plant |&

Bent |

A

Generator
x(t)

Wireless
Network

Network
Manager

u(t)

Controller

* Robust to disturbances

7'(01

» Unnecessary bandwidth utilization
- Energy spent on checking triggering condition

Wireless.
Network

Araujo, 2011
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Predictive sensor communication

eciont
Beacon Transmission!

1. Scheduling of sensing/ J/ o /
actuation slots when J/
required, at beacon times I—\ I—\ I-ﬂ—\ I—\ I—\ lﬂ—\

Prediction of next triggering time

2. If triggering condition is
r(te)

predicted to be true, Sensor
transmit measurement and | Ju(t) () o) o]
perform control action 1| | Plant I—'f 204 Generator

4 4 4 r‘i x(tk)

)

Wireless
Network

3. At every transmission,
predict and schedule the
next triggering time

- Set node to sleep until next
transmission ulty)

Wireless
Network

Network
Manager

Controller

- Efficient bandwidth utilization r(f]I
- Low energy consumption

* Less robust to disturbances

Araujo, 2011 35

Hybrid sensor communication

KTH Elsctrical

Disturbance!

1. Scheduling Of slots as Beacon Predictive transmission \ Event transmission
predictive scheme /

e b b bt W ba

2. Sensor node also checks A
triggering condition CAP CFP Prediction of next triggering time
E?Anpt)lnuously (or during sensor r(t)

x(ty)

ulty) (t) (t,
IA([uaiorI “I Plant |—i¢ o [ conetor I
— 5

1 1

3. If triggering condition is
true, transmit

measurement and (
. Wireless Network e
perform control action Network Manager Network
u(ty)
Controller
- Efficient bandwidth utilization ,mf

* Robust to disturbances

* Energy spent on checking triggering condition

Araujo, 2011 36
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Multi-hop networks

* Routing decisions
* Time delays
* Hidden terminal problem

= Communication link
@ Event-triggered node
@® Time-triggered node

Outline
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* Exploiting wireless network protocols

* Event-based control over lossy networks
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* Conclusions
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Event-based impulse control
Plant dl‘f = dVVt + U,tdt, 117(0) = X0,

Samplingevents 7 = {79, 71,72,...},

o0
Impulse control u = >z 6(7.)
n=0

M oo
/ Z Lr.<and (s = 7) ds:|
J0

n=0

. , 1
Average sampling rate R; = h‘r}l sup - E

1 M
Average cost J = limsup —E [/ x2ds
Jo

M—oo {1

Level-triggered control

Ordered set of levels £ =1{...,l-2.l1,lo,l1,l2,.. .} lo=0
Multiple levels needed because we allow packet loss

Sampling instances 7 = inf {T‘T >T,ar € Loay & a:ﬁ}
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Level-triggered control

For Brownian motion, equidistant sampling is optimal .
A rW\%

£ ={kAlk e Z ’
tkalk <z} L
First exit time [
T, =inf {7|7 > 0,2, ¢ (£ — A, £+ A) ,z0 = £}

: 1 1
Average sampling rate Ra = Ep] ~ AT

E [fJA x2ds] A?
Average cost Ja = —Er] 6

Comparison between time- and control

015 1
01 1
005,
B— 1

2 3

N A A
T = A” gives equal average sampling rate for periodic control and
event-based control

Event-based impulse control is three times better than periodic

Astrom & Bernhardsson, IFAC, 1999

What about the influence of communication losses?

Is event-based sampling still better?

12/23/12
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Influence of i.i.d. packet loss

1

Times when packets are successfully received i € {70 =0.71,72,...}.

{po=0.,p1,p2,...}. Pi Z Ti

Average rate of packet reception

1 M 0 N
R, =lim suvaE [/ Z lip.<anyd(s—pn)ds| =p- R,
M—oc {4 0

n=0

Define the times between successful packet receptions P;.a)

B E [ﬁ,l)(p‘A' 1‘:;:(15]
 Elpa)]

2

T
Average cost Jp=linlsup%]E [ / ,l-;ds}
T—o 0

Event-based control with losses

P
Theorem
If packet losses are i.i.d. with probability p, b
. o A ™
then level-triggered sampling gives b M b
l‘m\/l\k .

A2 (5p+1)

Jp =
! 6(1—p)

Event-based control better than periodic control if loss probability

p<0.25

Rabi & J, 2009 Extensions to other medium models in Henningsson & Cervin, 2010; Blind & Alilgower, 2011
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Communication :E:
acknowledgements ..

p
If controller perfectly acknowledges packets to sensor,
event detector can adjust its sampling strategy

Let A(l)=VI+1Ag

where ! > 0 number of samples lost since last successfully
transmitted packet

Gives that E [r,.'H - r,.'} becomes independent of .

Better performance than fixed A (1) for same sampling rate:

[ A?(1+p) - A% (1 + 5p)
P 6(l—p) T 6(L—p) ¥

Rabi and J, 2009

Outline
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— Event-based anti-windup
— Event-based multi-agent systems

* Conclusions
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Windup in event-based control

I-Windup

¢w(t ¢d(t)
» Saturations cause windup Pl ()t — a2 z(t)[" Event
» Important for event-based control ’ controller S > Plant : generator|:
* How to design anti-windup scheme?

(1) a(t);

: Digital communication network
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Anti-windup for event-based control
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{ = : y(1) (CTAW)
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Lehmann et al., CDC, 2012, ThB01.1
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Sey

Event-based Control of Multi-Agent System

dynamics

Event-based broadcasting
(1) = 2i(t}), t € [th by
wi(t) == > (&:(t) — #5(t)) 0<th<ti<th<-.-

thyr = inf{t - t >t} fi(t) > 0}
filt,eq(t)) = les(t)] — (co +cre™™)
ei(t) = &;(t) — ai(¢)

Practical consensus is achieved if 0<a<A,(L)
both et al. (2011)
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samples

events

Event-based vs Periodic Communication

1 ! , , Graph:
time-scheduled

event-scheduled o

05_ ~~~~~~~~~~~~ SRR .9 @©—06

@

0 Sampling periods:

é m Time-scheduling:
z Te = 0.350

2 Tmaz = 0.480

3 .
%— m Event-scheduling:

Tmean = 1.389

Tmaz . largest stabilizing sampling period, see G. Xie et al., ACC2009

Seyboth et al. (2011)
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Event-based vs Periodic Communication

1 T T
time-scheduled
event-scheduled
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Graph:

Sampling periods:

m Time-scheduling:
Ts = 0.250
Tmaz = 0.400

m Event-scheduling:
Tmean = 1.053

Tmaz : largest stabilizing sampling period, see G. Xie et al., ACC2009

Seybot

hetal. (2011)
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Conclusions

* Event-based control is an enabler for applications of
wireless networked control systems

 Efficient use of network resources under control objectives

 Stochastic control approach is natural because of
probabilistic guarantees for wireless networks

* Many open problems related to multi-loop systems and
multi-hop networks
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