
1. Introduction

My research program centers on two main topics in the field of analytic number theory.
The first is the subject of low-lying zeros of families of L-functions and their relationship to
random matrix theory. The second is the subject of distribution properties of elliptic curves
defined over Q when reduced modulo primes.

2. Low-lying zeros and 1-level densities

The main outstanding problem in the field of analytic number theory is the Generalized
Riemann Hypothesis (GRH), which deals with the location of the nontrivial zeros of an
L-function. In 1973, Montgomery [Mo] noticed that certain statistics of the zeros of the
Riemann zeta function bear a striking similarity to statistics coming from random matri-
ces in the group of N × N unitary matrices in the large N limit. In recent years, such
similarities were also seen to be present for certain families of L-functions. However, it
was predicted by Katz and Sarnak [KS2, KS3] that by looking at low-lying zeros of fami-
lies of L-functions, one should expect different statistics, which correspond to statistics of
eigenvalues coming from scaling limits of certain compact Lie groups, specifically one of
U(N), O(N), SO(2N + 1), SO(2N) and Sp(2N).

The 1-level density is a central statistic, which analyzes the low-lying zeros of members of
a family. This statistic of L-function zeros has been studied extensively for various families
of L-functions (see [ILS], [Mi2], [Y]) and remains a central object of research in the ana-
lytic theory of L-functions. It has the advantage of allowing one to isolate the symmetry
type, while being quite versatile and tractable under certain restrictions on the involved test
function. It should be noted that low-lying zeros of L-functions are of central importance
in many number-theoretical problems, and their thorough understanding could lead to the
solution of several long standing problems.

In [FPS2], Fiorilli, Södergren and I study the 1-level density of low-lying zeros of Dirichlet
L-functions attached to real primitive characters of conductor at most X, previously con-
sidered by Özlük and Snyder [OS1], [OS2] and Katz and Sarnak [KS1], where they obtained
an asymptotic expression for a test function with support in (−1, 1). These low-lying zeros
of Dirichlet L-functions are of particular interest since they have strong connections with
important problems such as the size of class numbers of imaginary quadratic number fields
and Chebyshev’s bias for primes in arithmetic progressions.

For the family of quadratic Dirichlet L-functions, we extend this result under GRH to an
asymptotic expansion of the 1-level density in descending powers of logX, which is valid
when the support of the Fourier transform of the corresponding even test function φ is con-
tained in (−2, 2). The new feature of our work is that we obtain a precise expression for both
the main term and the lower order terms appearing when the supremum σ of the support

of φ̂ reaches 1. This investigation was motivated by the work of Rudnick [R] who studied
the family of hyperelliptic curves of growing genus, which is an analogue of the family of
quadratic Dirichlet L-functions in the function field setting. He obtained lower order terms
which were unavailable in the number field setting and which did not come from a universal
random matrix theory term. The new lower order term appearing when σ = 1 involves the
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quantity φ̂(1), which is analogous to a lower order term previously obtained in the function
field case.

The Ratios Conjecture of Conrey, Farmer and Zirnbauer [CFZ] has been shown by Conrey
and Snaith [CS] to predict a precise expression for the 1-level density; this prediction was
confirmed up to a power saving error term by Miller [Mi1] for a restricted class of test func-
tions for the family of quadratic Dirichlet characters. However, it remains an open problem
to show that the lower order terms predicted by the Ratios Conjecture agree with the num-
ber theoretic result for any family of L-functions for extended support. In a future work
[FPS3] Fiorilli, Södergren and I plan to investigate how the Ratios Conjecture’s prediction
for the lower order terms for the family of quadratic Dirichlet characters compares with the
new lower order term appearing when σ = 1 obtained in [FPS2].

In [FPS1], Fiorilli, Södergren and I have studied the low-lying zeros of L-functions at-
tached to quadratic twists of a given elliptic curve E defined over Q, previously considered
in [HKS], [HMM]. We investigated the family of all quadratic twists coprime to the con-
ductor of E. Building upon the techniques of Katz and Sarnak [KS1], we computed a very
precise expression for the corresponding 1-level density. For test functions whose Fourier
transforms have sufficiently restricted support, we obtained an unconditional result for the
1-level density up to an error term that is significantly sharper than the square-root error
term predicted by the L-functions Ratios Conjecture. The key to obtaining an error term
sharper than the Ratios Conjecture’s prediction was to allow repetitions in our family by
considering quadratic twists for all integers d coprime to the conductor rather than restrict-
ing to only square-free values.

In [DHP], David, Huynh and I have used the Ratios Conjecture approach of Conrey,
Farmer and Zirnbauer [CFZ] to obtain closed formulas for the 1-level density for two families
of L-functions attached to elliptic curves. The first family is the family of all elliptic curves
with nonzero discriminant. This family was studied previously by Young [Y] for test func-
tions with Fourier transforms of small support. However, assuming the Ratios Conjecture,
in addition to a closed formula for the 1-level density, we also obtained an explicit expression
for the lower order terms.

The second family is a one-parameter family of curves with rank 1 which was previously
studied by Washington [W] and Miller [Mi2]. For this family assuming the Ratios Conjecture
we have shown that the 1-level density is the sum of the Dirac distribution and the even
orthogonal distribution. This is a new phenomenon for a family of odd rank. This occurs
since there is always a trivial zero at the central point, <(s) = 1/2. This accounts for the
Dirac distribution. This affects the remaining part of the 1-level density which contributes
the even orthogonal distribution. We remark that this family was studied in the past for test
functions with Fourier transforms of small support [Mi2], but since the Fourier transforms
of the even orthogonal and odd orthogonal distributions are indistinguishable for small sup-
port, it was not possible to identify the distribution with those techniques.
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3. Reductions of elliptic curves over finite fields

My second field of study is reductions of elliptic curves defined over Q modulo primes.
There are many interesting open conjectures in this field, but my main focus has been on
amicable pairs and aliquot cycles, first considered by Silverman and Stange [SS]. For an
elliptic curve E/Q we define the set (p1, . . . , pL) of distinct primes to be an aliquot cycle of
length L of E if each pi is a prime of good reduction for E and

#Ep1(Fp1) = p2, . . . ,#EpL−1
(FpL−1

) = pL,#EpL(FpL) = p1,

where #Epi(Fpi) is the number of points on the reduced elliptic curve Epi over the finite field
Fpi . In the case L = 2 the set is called an amicable pair.

Fix an elliptic curve E/Q and let πE,L(X) denote the function that counts the number
aliquot cycles with p1 ≤ X. Silverman and Stange [SS] first gave heuristic arguments to
support a conjecture about the behaviour of this function. This was later refined by Jones
[J] following a heuristic argument similar to that of Lang and Trotter [LT] for elliptic curves
without complex multiplication. We state the refined conjecture below.

Conjecture 3.1 (Jones). Let E/Q be an elliptic curve without complex multiplication and
let L ≥ 2 be a positive integer. Then there is a non-negative real constant CE,L ≥ 0 such
that, as X →∞, we have that

πE,L(X) ∼ CE,L

∫ X

2

1

2
√
t(log t)L

dt.

Moreover, Jones gave an explicit expression for the constant CE,L in terms of invariants
of the elliptic curve.

We consider the function πE,L(X) on average over a family of elliptic curves. There is a
rich history in the literature of considering distribution questions about elliptic curves on
average over a family of curves in the work of Fouvry and Murty [FM], David and Pappalardi
[DP], Banks and Shparlinski [BS] and Balog, Cojocaru and David [BCD]. Let a and b be
integers and let Ea,b be the elliptic curve given by the Weierstrass equation

Ea,b : y2 = x3 + ax+ b,

with discriminant ∆(Ea,b) 6= 0. For A,B > 0 we consider the two parameter family of elliptic
curves as

C := C(A,B) = {Ea,b : |a| ≤ A, |b| ≤ B,∆(Ea,b) 6= 0}. (3.1)

Building on the techniques of [BCD] and [CDKS], I have shown in [P1] the following
unconditional upper bound for the average number of aliquot cycles.

Theorem 3.2. Let ε > 0, let E/Q be an elliptic curve and let C be the family of elliptic
curves in (3.1) with

A,B > Xε and X
3L
2 (logX)6 < AB < eX

1
6−ε
.

Then as X →∞ we have that

1

|C|
∑
E∈C

πE,L(X)�L

√
X

(logX)L
,

where the implied constant depends on L only.
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Remark 3.3. (i) Note that the condition AB < eX
1
6−ε

is not a limiting constraint since we
are mainly interested in averages for small values of A and B.

In [P2], Theorem 3.2 was significantly improved, in the case of amicable pairs when L = 2,
from an unconditional upper bound on average to an unconditional asymptotic result on
average. More precisely, by building on the work of [Kou], [DS1] and [CDKS] I have obtained
the following result.

Theorem 3.4. Let ε > 0, let E/Q be an elliptic curve and let C be the family of elliptic
curves in (3.1) with

A,B > Xε and X3(logX)6 < AB < eX
1
6−ε
.

Then we have that

1

|C|
∑
E∈C

πE,2(X) = C2

√
X

(logX)2
+O

( √
X

(logX)2+ε

)
,

where

C2 :=
8

3π2

∏
`

(
1− (2`4 + 3`3)(`− 2)− (`− 1)(`4 − 2`3 − 4`2 + 1)

(`− 1)(`2 − 1)3

)
.

The average number of aliquot cycles, and in particular amicable pairs, has been indepen-
dently considered by David, Koukoulopolous and Smith [DKS, Theorem 1.6] using different
techniques building upon a theorem of Gekeler [G, Theorem 5.5]. They also obtain an as-
ymptotic result on average, but they express their average constant as a product over primes
` of the limit as k → ∞ of matrix counts in GL2(Z/`kZ)L with certain conditions on the
traces and determinants. However, the constant C2 is not an obvious consequence of this
limit in the case L = 2 and in a future work I plan to show agreement between these two
constants.

Finally, for an elliptic curve E/Q, David and Smith [DS1], [DS2] considered the function
ME(N) that counts the number of primes p such that #Ep(Fp) = N , for a fixed integer
N . They obtained an asymptotic average result for the function ME(N) over the family of

elliptic curves C in (3.1) with A,B > N
1
2
+ε and AB > N

3
2
+ε for some ε > 0 conditional

on the Barban-Davenport-Halberstam Conjecture (cf. [DS1, Conjecture 2]). This result was
improved in [P3], following the techniques of [Kow] and [P1] to hold for much smaller bounds
on the size of A and B, namely, for

eN
ε � A,B > N ε and AB > N

3
2 (logN)6+2γ log logN,

for some ε > 0.

4. Short term goals

One of the most important problems in the area of reductions of elliptic curves over
Q modulo primes p is the Lang-Trotter Conjecture [LT]. Let E/Q be an elliptic curve
without complex multiplication and fix an integer t. The Lang-Trotter Conjecture predicts an
asymptotic expression for the number of primes less than x with fixed trace of the Frobenius
automorphism ap(E) = t, with an explicit conjectural constant. By applying the celebrated
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open image theorem of Serre [Se] the explicit constant can be expressed as a product of a non-
negative rational number depending on E and t and a nonzero universal constant depending
only on t. In [AP], Akbary and I consider the analogous Lang-Trotter Conjecture for two
non-isogenous elliptic curves E1 and E2. That is, we fix integers t1 and t2 and consider the
function

πE1,E2,t1,t2(x) := #{p ≤ x : ap(E1) = t1 and ap(E2) = t2}.
This leads to the following analogous Lang-Trotter conjecture for two elliptic curves.

Conjecture 4.1. (Lang-Trotter) Let E1 and E2 be two elliptic curves defined over Q
without complex multiplication and that are not Q-isogenous. Fix integers t1 and t2. Then
we have as x→∞ that

πE1,E2,t1,t2(x) ∼ cE1,E2,t1,t2 log log x.

As in the single variable case we may apply the open image theorem for two elliptic curves
of Serre [Se, Théorème 6, p.324] to write the conjectural constant cE1,E2,t1,t2 as a product
of a non-negative rational number depending on E1, E2, t1 and t2 and a nonzero universal
constant ct1,t2 depending only on t1 and t2. We obtain an explicit expression for ct1,t2 when
t1 = ±t2 and we give a conjecture for the explicit universal constant in the case where t1 6= t2.
Finally by applying a general theorem of David, Koukoulopoulos and Smith [DKS, Theorem
4.2] we also prove Conjecture 4.1 on average.
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