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Introduction

In this assignment you should implement the game of life, a very simple
simulation with surprising results. You will implement it in a quite unusual
way, instead of iterate over a data structure you will implement the state as
a set of communicating processes.

1 The game of life

The game of life, defined by John Horton Conway in 1970, shows that one
can generate very complex pattern, even self replicating, from a set of very
simple rules. You will find tons of information on what the game looks like
if you surf the web so this is a very short description.

The state of the game is a two dimensional grid, in our example we will
connect the upper side to the lower side and the right edge to the left edge,
resulting in a toroid. Each cell in the grid has eight neighbors; we will denote
these south, south-east, east, north-east etc. Each cell in the grid can be
either alive or dead.

Life evolves in a sequence of generations. The state of a cell in one gen-
eration is determined by the state of the cells in the previous generation. So
given a pattern of living and dead cells in one generation, we can determine
the state of each cell in the next generation. We have three simple rules
that determines the state of a cell in the next generation.

• A cell with less than two living neighbors will be dead.

• A cell with exactly two living neighbors will be keep its state, dead or
alive.

• A cell with exactly three living neighbors will be alive.

• A cell with more than three living neighbors will be dead.

Living cells thus require two or three neighbours to stay alive, if they
have more they will die. A cell that is dead will come to life if it has exectly
three living cells as neighbours.

The first generation is determined by you, or by random, and the rules
then determine all future generations.
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2 The obvious solution

The obvious way of representing the state is of course as a two dimensional
array. In an imperative language this would be straight forward but in
functional language it’s quite tricky. We will call our first solution life1

and it will be a solution only for the special case when the the size of the
grid is four times four.

Assume that we represent the state of the game as a tuple of tuples. A
four by four grid could then look like this:

{{dead, dead, dead, alive},

{alive, alive, dead, dead},

{dead, alive, alive, dead},

{dead, alive, dead, dead}}

2.1 accessing the state

We have a built-in function element/2 that can select a particular element
in a tuple and using it we can implement an access function for our two
dimensional grid. For reasons that will soon be clear we will use a zero
indexed array so will add one to the arguments before applying the elements
function.

element(Row, Col, Grid} ->

element(Col+1, element(Row+1, ...)).

Since we need to know the state of a cells neighbors we define a set
of functions to access these. We name these functions after the directions:
south, south-west, south-east, west etc. The south neighbor of a cell R, C is
thus the element R+1, C. However, we have to consider the case where the
grid wraps around so the south neighbor is R+ 1mod4. The north neighbor
is in the same manner R + 3mod4 or R− 1mod4 but we see why this is not
so good.

There is no builtin mod operator in Erlang but a related rem opera-
tor that implements the reminder function. For positive integers the rem
function is the same as the modular function but that is not the case for
negative numbers; −1mod4 = 3 but −1rem4 = −1. This is why we define
the northen neigbour as R + 3rem4.

Define access functions for all the neighbors of a cell.

s(R,C, Grid) ->

element((R+1) rem 4, C, Grid).

sw(R,C,Grid) ->

element((R+1) rem 4, (C+3) rem 4, Grid).

se(R,C,Grid) ->
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element((R+1) rem 4, (C+1) rem 4, Grid).

:

:

ne(R,C,Grid) ->

element((R+3) rem 4, (C+1) rem 4, Grid).

Also define a function this/3 that returns the state of the cell it self.

this(R, C, Grid) ->

element(R, C, Grid).

2.2 creating the next state

A function can then be defined that takes a grid and generates a new gen-
eration.

next_gen(Grid) ->

R1 = next_row(0, Grid),

R2 = next_row(1, Grid),

R3 = next_row(2, Grid),

R4 = next_row(3, Grid),

{R1, R2, R3, R4}.

As you see this becomes a very special solution for the four times four
grid but it serves our purpose for now.

next_row(R, Grid) ->

C1 = next_cell(R, 0, Grid),

C2 = next_cell(R, 1, Grid),

C3 = next_cell(R, 2, Grid),

C4 = next_cell(R, 3, Grid),

{C1, C2, C3, C4}.

Almost done, now for you to implement the last step.

next_cell(R, C, Grid) ->

S = s(R, C, Grid),

SW = sw(R, C, Grid),

:

:

NE = ne(R, C, Grid),

This = this(R,C, Grid)

rule([S, SW, SE ...], This).
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The function rule/2 is the function that implements the rules of the
game of life. In order to know the new state of a cell you need to count the
number of alive neighbors and then

rule(Neighbours, State) ->

Alive = alive(Neighbours),

if

Alive < 2 ->

....;

Alive == 2 ->

....;

Alive == 3 ->

....;

Alive > 3 ->

....

end.

The function alive/1 should return the number of alive states. Try to
implement it first as a regular recursive function, then using an accumulator
then using the library function lists:foldl/3.

Implement alive/1 and you’re done. Test your implementation and
make sure that you understand how the different functions work.

3 A more general solution

The above solution hopefully works but it would be more fun to have a
general solution for arbitrary big grid. It is fairly simple to do this but we
have to solve a problem; we need to construct a tuple with a size that is
unknown at compile time.

3.1 list to tuple

We can not construct a tuple incrementally as we do with a list but there
is one useful built-in function that will save us; list to tuple/1 will take
a list and construct a tuple with the elements of the list as the elements of
the constructed tuple.

Creating a new row of size M can now be done by first creating a list of
M cells and then turn this list into tuple. Create a new module life2 and
implement the more general solution.

next_row(M, R, Grid) ->

Cells = next_cells(M, R, 0, Grid),

list_to_tuple(Cells).
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next_cells(M, _, M, _) ->

[];

next_cells(M, R, C, Grid) ->

[next_cell(M, R, C, Grid)|next_cells(M, R, C+1, Grid)].

A new grid is constructed in a similar way. Fill in the blanks and com-
plete the implementation.

next_gen(M, Grid) ->

Rows = ...,

list_to_tuple(Rows).

next_rows(M, M, _) ->

....;

next_rows(M, R, Grid) ->

[... | ...].

Run some experiments to see that you can generate new grids of various
size.

3.2 why use a tuple?

Now let’s stop and think for a while; why do we represent the grid as a tuple
of tuples? Why not represent the grid as a list of lists?

If we represent the grid as a list of lists it will of course be more expensive
to lookup a particular cell. In the case of tuples it’s a constant time operation
(two calls to element/2) while in the case of lists it depends on the size of the
grid (the length of the lists). So represent the grid as a list of list certainly
has its disadvantages. The advantage would of course be that we do not
have to turn a list into a tuple every time we construct a new row.

What is the access pattern when constructing a new grid? Does it look
like random access? No, to construct a new row, one will access the cells of
three rows only and the cells of these rows a access in order.

In order to construct the cells of row R, one need the rows R− 1, R and
R + 1 . . . unless it’s the first or last row. If we construct the first row we
need to look at the last row etc. This leads to an idea:

• let’s represent a grid of R rows, as a list of R + 2 lists.

We will duplicate the first and the last row, so a grid of rows R1 . . .Rn
is represented as the list:

[Rm, R1, R2, ..., Rm, R1]

The third module will be called life3 and is at first sight much more
complicated but once you see the pattern it all becomes clear. Now what
will the next gen function look like? How about this:
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next_gen([Rm, R1, R2 | Rest]) ->

First = next_row(Rm, R1, R2),

{Rows, Last} = next_rows([R1, R2 | Rest], First),

[Last, First | Rows].

The function next rows/2 will consume the the rows and when it has
produced the Last row it will add the First row to the list and return the
tuple {Rows, Last}. We then add the Last row to the front of the list and
we’re done. Note that we assume that the grid is larger than a single cell.
We could add a clause to handle this special case but we will simply ignore
the problem.

Now define the function next rows/2. You will find that the pattern is
repeating:

next_rows([Rl, Rm, R1], First) ->

Last = ... ,

{[..., ...], ...};

next_rows([R1, R2, R3 | Rest], First) ->

Next = ... ,

{Rows, Last} = ....,

{[...|...], ...},

How are the rows represented? Why not repeat the structure and let
each row be represented by a list where the first and last cell has been
repeated: [Cm, C1, C2, ... Cm, C1].

Implementing next row/3 now becomes a quite easy, we have all infor-
mation we need and we can repeat the pattern above. We name the cells of
the rows by the points of the compass.

next_row([NE, N, NW | Nr], [.., .., ..|Tr], [.., .., ..|Sr]) ->

First = rule(..., This),

{Row, Last} = next_row([.., ..|Nr], [.., ..|Tr], [.., ..|Sr], First),

[.., ..| ..].

As before we assume that the grid is lager than a single cell but you can
easily add a clause to take care of the special case where there is only one
cell.

next_row(..., ..., ..., First) ->

Last = rule(..., This),

{[..., ...], ...};

next_row(..., ..., ..., First) ->

Next = rule(..., This),

{Row, Last} = next_row(..., ..., ..., First),

{[Next|Row], Last}.

You’re done, now let’s do some benchmarking.
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4 Benchmarks

You should now have three modules: life1, life2 and life3, time to do some
benchmarking. The first thing we need is for each of the modules a function
that returns an initial grid. We also need to run multiple transformations
and to measure the execution time.

4.1 the simple case

For the first module this is trivial since we only can handle grids of size 4x4.

state() ->

{{dead, dead, dead, alive},

{alive, alive, dead, dead},

{dead, alive, alive, dead},

{dead, alive, dead, dead}}.

We then need a function that can run several generations since measuring
only one transformation will not be enough to get a precise estimate on
the execution time. The function erlang:system time(micro secons) will
give the time in micro seconds.

bench(N) ->

State = state(),

Start = erlang:system_time(micro_seconds),

Final = generations(N, State),

Stop = erlang:system_time(micro_seconds),

Time = Stop - Start,

io:format("~w generations computed in ~w us~n", [N, Time]),

io:format("final state: ~w~n", [Final]),

Time.

The function generations/2 will take a state a generate a number of
generations returning the last. Include these function in the life1 module
and run some test.

4.2 the general case

In life2 and life3 things are either almost identical, if we only want to
measure the execution time for 4x4 grids. We only need to change the func-
tion state/0 and pass the size of the grid as a parameter to generations/3.

If we also want to do measurements on larger grids we will have to
implement a function state/1 that generates a grid of arbitrary size. This
requires some thinking but if you give it a try you will see that the state
function looks very similar to the next gen/2 function.
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The state/1 function for life2 should not be a a problem but for life3
it’s a bit tricky. The skeleton for this function could be something like this.
Assume that we have a function row/1 that returns a correct row (with the
first element replicated last and the last element replicated in the beginning),
we can then write something like this:

state(M) ->

First = row(M),

{Rows, Last} = state(M, 2, First),

[Last, First | Rows].

The function state(M, 2, First) should generate rows 2 . . .M and
place them all in a list called Rows with First added to the end. It should
also tell us which one was the last row generated i.e. the row M . If we have
this function the final result is the list [Last, First | Rows].

The first clause of state/3 is simple, generate the last row and return
the result [Last, First], Last. The recursive case is also quite simple
(once you see it), generate a new row and use state/3 to generate the rest
of rows. Then add the generated row to the front of the list.

state(M, M, First) ->

Last = row(M),

{[Last, First], Last};

state(M, R, First) ->

Row = row(M),

{Rows, Last} = state(M, R+1, First),

{[Row|Rows], Last}.

The only thing that is now missing is the function row/1 but this will
have the same structure as state/1. Give it a try, you can do it.

If you choose to generate larger grids it could be fun to give them a
random initial state. The following function uses a built-in function to
generate a random dead or alive state.

flip() ->

Flip = random:uniform(4),

if

Flip == 1 ->

alive;

true ->

dead

end.
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5 A concurrent implementation

The next solution is not something that one would come up with as a sensible
solution in any language but we give it a try.

The idea is to implement each cell as an independent process. The cell
would be connected to its neighbors and in each iteration:

• send its current state to all its neighbors,

• collect the states from all neighbors and,

• update its state.

We begin by defining the cell process and then work on how to connect
the cells in the grid.

5.1 a living cell

A cell will have a state that consist of:

• N: the number of generations to compute.

• Ctrl: a process identifier of a process that wants to know when we’re
done.

• State: the current state, alive or dead.

• Neighbors: a list with the process identifiers of all eight neighbors.

The state of the process will be the arguments of a recursive function.
In our case we will have two clauses that defines the function: one for the
case where N is zero and a second for the general case.

Create a new module called cell in a file called cell.erl. The recursive
function that defines the behavior of the process is also called cell. This is
not necessary but good programing practice.

cell(0, Ctrl, _State, _Neighbors) ->

Ctrl ! {done, self()};

cell(N, Ctrl, State, Neigbors) ->

multicast(State, Neigbors),

All = collect(Neigbors),

Next = rule(All, State),

cell(N-1, Ctrl, Next, Neigbors).

The multicast function will take a State (alive or dead) and send a mes-
sage to each Neighbor. We need to tell the neighbor who we are and we can
do so by sending a tuple {state, Self, State} where Self is our process
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identifier. Here we use the library function foreach/2 that applies the func-
tion to all of the elements in a list much in the same way as map/2 would
do.

multicast(State, Neighbors) ->

Self = self(),

lists:foreach(fun(Pid) -> Pid ! {state, Self, State} end, Neighbors).

Collecting the messages sent to us by our neighbors is a simple task. We
know exactly form which cells the messages should arrive so we simply pick
them up one by one. This

collect(Neighbors) ->

lists:map(fun(Pid) ->

receive

{state, Pid, State} ->

State

end

end,

Neighbors).

As an exercise its worth the trouble to rewrite the two functions above
without using the library functions.

The rule/2 function is the same as used in the previous modules. If you
want to make it more efficient you can change the collect/1 function so
that it returns the number of alive states; why first construct a list of states
and then count the number of alive states.

5.2 starting the cell

When a cell is started it does not know any of its neighbors (since we have
probably not created then yet). The cell is thus started knowing only its
state.

start(State) ->

spawn_link(fun() -> init(State) end).

We us the spawn link/1 function to start the process instead of the
spawn/1 function. This will ensure that if the creator of the process dies
the cell will also die.

The first thing a cell does is to wait for a message that will give it access
to all its neighbors. We will send this message to the cell as soon as we
have created all the cells. It then waits for a message that tells it to start
executing N generations and to whom it should report when it is done.
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init(State) ->

receive

{init, Neighbors} ->

receive

{go, N, Ctrl} ->

cell(N, Ctrl, State, Neighbors)

end

end.

This completes the cell module and we can now work on how to create
a grid of cells.

5.3 creating the grid

This is the most complicated part of the implementation. We want to create
MxM cells and have them connected so that they can communicate with
its neighbors. We also want to produce a list of all the cells that we have
created so that we can tell them to start working.

Let us write a function state/1 that returns two things:

• A grid represented as a list if lists in the same way as we represented
the grid in the previous solution.

• A list of all cells created.

Let us adapt the state function used in life3 so that it also returns the
list of all cells. This is what it would look like.

state(M) ->

{First, S0} = row(M, []),

{Rows, Last, S1} = state(M, 2, First, S0),

{[Last, First | Rows], S1}.

The function row/2 now takes a second argument, all the cells created
so far, and generates not only a row but a list, S1, of all newly created cells
added to the list of cells created so far.

In the same way we add an extra argument and have state/4 that takes
a list of all cells created so far, producing not only th rows and the last row
but also the list S1.

Adapt the other functions in the same way and you soon have your
function. The inly question is how to create a cell but this is simply done
by calling the exported start/1 function from the cell module.
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5.4 connecting the cells

Having the state function we could write a function all/1 that generates
the grid, connect all cells and returns the list of all cells.

all(M) ->

{Grid, All} = state(M),

connect(Grid),

All.

Connecting cells becomes trivial since we have the representation of the
grid in a very handy format.

connect([Rl, Rm, R1]) ->

connect(Rl, Rm, R1);

connect([R1, R2, R3 | Rest]) ->

connect(R1, R2, R3),

connect([R2, R3 | Rest]).

Connecting the cells of a row is simply done by running through the lists
in the same way as you traversed the rows in the next row/4 function in
life3. What message should you send to each cell?

connect([NE, N, NW], [E, This, W], [SE, S, SW]) ->

This ! ...;

connect([NE, N, NW | Nr], [E, This, W | Tr], [SE, S, SW | Sr]) ->

This ! ...,

connect([N, NW | Nr], [This, W | Tr], [S, SW | Sr]).

That was not that problematic was it? Now for some benchmarking.

5.5 benchmarking

The only thing left is to adapt our benchmarking function so that it sends out
a {go, N, Ctrl} message to all cells and collect the {done, Pid} replies.

bench(N, M) ->

All = all(M),

Start = erlang:system_time(micro_seconds),

init(N, self(), All),

collect(All),

Stop = erlang:system_time(micro_seconds),

Time = Stop - Start,

io:format("~w generations of size ~w computed in ~w us~n", [N, M, Time]).
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Sending out the messages and collecting the replies is implemented very
similarly to the multicast/2 and collect/1 functions in the cell module.

Run some benchmarks and see how well the concurrent version compares
to life3.

If you have access to a multicore machine you could try to run some
experiments using one or more cores. If you start the Erlang shell with the
+S flag you can control how many operating threads that should be used.
The command erl +S1 will start Erlang with only one thread. If nothing is
specified the system is started with as many threads as you have cores. Can
the Erlang virtual machine make use of the additional computations power
of a multicore?

13


