
Transaction

Johan Montelius

KTH

HT15

1 / 42

Atomic operations

Even if we have a distributed system that provides atomic operations we
sometimes want to group a sequence of operations in a transaction where:

either all are executed or
none is executed
even if a node crash

2 / 42

Surviving a crash

Recoverable objects: a server can store information in persistent memory (the file
system) and can recover objects when restarted.

The service will not be highly available, but this is good enough for now.

3 / 42

A sequence of operations

4 / 42



ACID

Atomic - either all or nothing
Consistent - the server should be left in a consistent state
Isolation - total order of transactions
Durability - persistent, once acknowledged

5 / 42

The solution - not

All requirements can be achieved by only allowing sequential access to the
transaction server.

Our goal is to provide as much concurrency as possible while preserving the
behavior of sequential access.

What is the problem?

6 / 42

the transaction API

openTransaction() : returns a transaction identifier (tid)
operation(tid, arg) : the operations of the transaction
closeTransaction(tid) : returns success or failure of transaction
abortTransaction(tid) : client explicitly aborts transaction

We will write operations with implicit tid.

7 / 42

bank example

Operations:
getBalance()
setBalance()
withdraw(amount)
deposit(amount)

8 / 42



the lost update

client a client c

bal = b.getBalance()

bal = b.getBalance()

b.setBalance(bal*1.1)

b.setBalance(bal*1.1)

c.withdraw(bal*0.1)

a.withdraw(bal*0.1)

9 / 42

inconsistent retrieval

client p client q

a.withdraw(100)

ta = a.getBalance()

tb = b.getBalance(

b.deposit(100)

Total = t1 + tb

10 / 42

Serial equivalence

The isolation requirement states that the outcome of a set of transactions should
be the same as the outcome when the transactions are executed in sequence.

We call this serial equivalence.

Should we abandon all hope of executing transactions concurrently?

11 / 42

conflicting operations

Which operations are order sensitive?

read - read
read - write
write - write

Two transactions are serially equivalent if, and only if, all pair of conflicting
operations of the transactions are executed in the same order.

12 / 42



Lost update - revisited

client a client c

bal = b.getBalance()

bal = b.getBalance()

b.setBalance(bal*1.1)

b.setBalance(bal*1.1)

c.withdraw(bal*0.1)

a.withdraw(bal*0.1)

13 / 42

inconsistent retrieval - revisited

client p client q

a.withdraw(100)

ta = a.getBalance()

tb = b.getBalance()

b.deposit(100)

Total = t1 + tb

14 / 42

more problems

client p client q

bal = a.getBalance()

a.setBalance(bal+10)

bal = a.getBalance()

a.setBalance(bal+10

commitTransaction()

abortTransaction()

15 / 42

Recoverability

In order to recover from an aborting transaction: a transaction must not commit
if it has done a dirty read.

16 / 42



cascading abort

Assume we do a dirty read, write values and then wait to commit.
A second process, reads our dirty values, writes values and waits to commit.

A third process, reads the dirty values, writes values and waits to commit.

...

We abort

In order to avoid cascading aborts we should suspend when we read a dirty value.

17 / 42

dirty read

To be recoverable a transaction must suspend its commit operation if it has
performed a dirty read.
If a transaction aborts, any suspended transaction must be aborted.
To prevent cascading aborts, a transaction could be prevented from
performing a read operation of a non-committed value.

Once the value is commited or the previous transaction aborts the execution
can continue.
We will restrict concurrency.

18 / 42

premature writes
client p client q

a.setBalance(105)

a.setBalance(110)

commitTransaction()

abortTransaction()

Also write operations must be delayed in order to be able to recover from an
aborting transaction.

19 / 42

strict execution

In general, both read and write operations must be delayed until all previous
transactions containing write operations have been aborted or commited.
Strict execution enforces isolation, no visible effects until commit.
How do we implement strict execution efficiently?

20 / 42



How do we..

. . . increase concurrency while preserving serial equivalence?

locking: simple but dangerous
optimistic: large overhead if many conflicts
timestamp: ok, if time would be simple

21 / 42

Locks

Idea - lock all objects to prevent other transaction to read from or write to the
same objects.

To guarantee serial equivalence a we require two phase locking:
lock objects in any order,
release locks in any order,
commit

We are not allowed to take a lock if a lock has been released.

Does not handle the problem with dirty read and premature write.

22 / 42

Strict two-phase locking

To handle dirty read and premature write:
lock in any order
commit or abort
unlock

Can we increase concurrency?

23 / 42

Read and write locks

two-version locking: read and write
allow multiple readers but only one writer
promote read locks to write locks
strict two-phase locking prevents demotion

24 / 42



Two-version locking

Similar idea but now with: read, write and commit locks.
A read lock is allowed unless a commit lock is taken.
One write lock is allowed if no commit lock is taken (i.e. even if read locks
are taken)
Written values are held local to the transaction and are not visible before
commit.
A write lock can be promoted to a commit lock if there are no read locks.
When a transaction commits it tries to promote write locks to commit locks.

25 / 42

Hierarchical locks

Idea: locks of mixed granularity.

Small locks increase concurrency
Large locks decrease overhead

26 / 42

Why locking s*cks

Locking is an overhead not present in a non-concurrent system. You’re
paying even if there is no conflict.
There is always the risk of deadlock or the locking scheme is so restricted
that it prevents concurrency.
To avoid cascading aborts, locks must be held to the end of the transaction.

27 / 42

Optimistic concurrency control

Perform transaction in a copy of an object, hoping that no other transaction
will interfere.
When performing a commit operation the validity is controlled.
If transaction is valid, the values written to permanent storage.

28 / 42



Let’s be optimistic

If we are lucky, transactions do not have any conflicting operations.
The validity check is quick and successful.
The update phase is simple.

29 / 42

Validation
Like driving a car in Damascus.

30 / 42

Backwards validation

Validate a transaction by
comparing all:

read operations with
commited write operations
if a conflict is found, abort

31 / 42

Forward validation

Validate a transaction by
comparing all:

write operations with
conflicting read operations
if a conflict is found, abort
..
... or, kill the other
transaction

32 / 42



Optimistic - pros and cons

Works well if there are no conflicts.

Backward validation: simpler to implement, need to save all write operations
Forward validation: moving target, flexible if not successful

How do we guarantee liveness?

33 / 42

Timestamp ordering

Each transaction is given a time stamp when started.

Operations are validated when performed:

writing only if no later transaction has read or written
reading only if no later transaction has written

Hmm, requires some bookkeeping.

34 / 42

Timestamp ordering implementation

Each objects keep a list of tentative, not committed, versions of the value.
Write operations can be inserted in the right order, no fear for deadlocks.
Read operations wait for tentative values to be commited.
If an operation arrives too late the transaction is aborted.

35 / 42

tentative values - write

value at 14
value at 12 write at 13

value at 14
value at 13

value at 12

A sequence of tentative values, not yet commited.

value at 14
value at 13

value at 12 commit 14 value at 14

36 / 42



tentative values - read

value at 12 read at 15 value at 12 (r15)

value at 14
value at 12 read at 15 suspend

37 / 42

tentative values - what to do?

value at 12 (r15) write at 13 ?

value at 16 write at 13 ?

38 / 42

tentative values - how about this

value at 16
value at 14

value at 12 commit at 16
value at 16

value at 14
value at 12

value at 16
value at 14

value at 12 read at 15 suspend

39 / 42

multiversion timestamp

value at 16
value at 14

value at 12 write at 13

value at 16
value at 14

value at 13
value at 12

value at 16
value at 15

value at 12 (r14) write at 13 ?

40 / 42



timestamp ordering

consistency is checked when the operation is performed
commit is always successful
an operation can suspend or arrive too late
read operations will succeed, suspend or arrive too late
write operations will succeed or arrive too late
multiversion timestamp can improve performance

41 / 42

Summary

Transactions group sequences of operations into a ACID operation.
Atomic: all or nothing
Consistent: leave the server in a
consistent state
Isolation: same result as having
executed in sequence
Durability: safe even if server
crashes

problem is how to increase
concurrency
need to preserve serial equivalence
aborting transactions is a problem
how do we maximize concurrency

Implementations: locking, optimistic concurrency control, timestamps

42 / 42


