
Replication

Johan Montelius

KTH

HT15

1 / 35

Replication - why

Performance
latency
throughput

Availability
service respond despite crashes

Fault tolerance
service consistent despite failures

2 / 35

Challenge

A replicated service should, to the users, look like a non-replicated service.

What do we mean by “look like”?
linearizable
sequential consistency
causal consistency
eventual consistency

3 / 35

linearizable

A replicated service is said to be linearizable if for any execution there is some
interleaving of operations that:

meets the specification of a non-replicated service
matches the real time order of operations in the real execution

All operations seam to have happened: atomically, at the correct time, one after
the other.

4 / 35



linearizable

p

q

r

server

w(x,5)

w(x,7)

r(x)
ok

ok

?750

We guarantee that there is a sequence that makes sense.

5 / 35

why would it not make sense?

p

q

r

cache p

cache q

cache r

server

w(x,5) ok

w(x,7) ok

r(x) ?

6 / 35

why would it not make sense?

p

q

r

replica 1
replica 2
replica 3

w(x,5)

w(x,7) ok

ok

r(x) ?

7 / 35

sequential consistency

A replicated service is said to be sequential consistent if for any execution there is
some interleaving of operations that:

meets the specification of a non-replicated service
matches the program order of operations in the real execution

Don’t worry about real time as long as it make sense.

8 / 35



still have to make sense

Assume x and y is initially set to 0

p

q

w(x,5) ok

w(y,5) ok

r(y) ?

r(x) ?

0

0

There should exist one total order of the operations that is consistent with the
results.

9 / 35

even more relaxed

p

q

r

s

w(x,5) ok
w(x,7) ok

r(x) 5
r(x) 7

r(x) 7
r(x) 5

As long as it make sense for each process.

Causal consistency, unordered operations could be seen in different order.

10 / 35

Eventual consistency

There exist a total order that will eventually be visible to all.

Take DNS servers as an example.

11 / 35

replication system model

client

client

front end

front end
replicated service

RM
RM

RM
RM

front end knows about replication scheme, could be implemented on the
client side
replica managers (RM) coordinate operations to guarantee consistency

12 / 35



replication system model

front end

front end

replicated service

Request: from front end to one or
more replicas
Coordination: decide on order etc
Execution: the actual execution of
the request
Agreement: agree on possible state
change
Response: reply received by
front-end and delivered to client

13 / 35

group membership service

front end

front end

group membership
service

adding and deletion of nodes
ordered multicast
leader election
view delivery

14 / 35

view-synchronous group communication

p

q

r

crash

view: p,q,r view: q,r

not allowed

reliable multicast
delivered in same view
never deliver from excluded node
never deliver not yet included node

15 / 35

passive and active replication

Passive replication: one primary server and several backup servers
Active replication: servers on equal term

16 / 35



Passive replication

front end

front end

rm

rm

rm

rm

Request: front end sends request to
primary
Coordination: primary checks if it is
a new request
Execution: executes and stores
response
Agreement: sends updated state
and reply to backup servers
Response: sends reply to front-end

17 / 35

what about crashes

Primary crashes:
backups will receive new view with primary missing
new primary is elected

if front end re-sends request
either the reply is known and is resent
or the execution proceeds as normal

18 / 35

Passive replication - consistency

The primary replica manager will serialize all operations. We can provide

linearizability.

19 / 35

pros and cons

Pros
All operations passes through a primary that linearize operations.
Works even if execution is in-deterministic

Cons
delivering state change can be costly
View-synchrony could be expensive

20 / 35



Active replication

front end

front end

rm

rm

rm

Request: front end multicast to all
Coordination: reliable total order
delivery
Execution: all replicas execute
request
Agreement: no need
Response: all replicas reply to front
end

21 / 35

Active replication - consistency

Sequential consistency:
all replicas execute the same sequence of operations
all replicas produce the same answer

Linearizability:
total order multicast does not guarantee real-time order
linearizability not guaranteed if front-end acknowledge operation before it
has been processed by replicas

22 / 35

Active replication

Pros
no need to send state changes
no need to change existing servers
read request could possibly be sent directly to replicas
could survive Byzantine failures

Cons:
requires total order multicast
requires deterministic execution

23 / 35

Availability

Both replication schemes require that servers are available.
If a server crashes it will take some time to detect and remove the faulty node.
Can we build a system that responds even if all nodes are not available?
Relax the guarantees for consistency.

24 / 35



Gossip architecture

RM

RM

RM

RM

RM

RM

replica managers interchange
update messages
updates propagate through the
network
sequential consistency not
guaranteed
we want to provide causal
consistency

25 / 35

Vector clocks

A vector clock with one index per replica manager.
Each update operation will be tagged with a vector clock timestamp.
Some updates are concurrent!

26 / 35

The front end

RM

RM

RM

Front end

Front end

one index per replica manager
front ends keep vector clocks
replica mangers apply updates in
order
causal consistency guaranteed

27 / 35

The front end

RM-1

RM-3

RM-2

Front end

<2,4,6>
read <2,4,6>

<2,5,5>

update <2,5,6>

send a query with timestamp
check current time, wait for
updates
update will arrive
update state and clock
reply
update clock

28 / 35



The replica manager

The replica manager as a hold-back queue, operations that are too early to
execute.
As updates arrive it will execute updates, and pending read operations.
Updates are partially ordered.

29 / 35

update operation

RM-1

RM-3

RM-2

Front end

<2,5,6> <2,4,5>
write <2,5,6>

operation with timestamp
increment clock
reply with unique timestamp
update clock
wait for updates
update when safe
update clock

30 / 35

Implementation

Read operations: on hold until safe to
answer.

Update operations from front end.
front end adds unique id
replica checks that it is not a
duplicate
replica replies with unique
timestamp
placed in update log

Gossip operations
interchange part of update log with
partners
place in update log
provide information on which
message a replica has seen
remove applied operations that has
been seen by all replicas

Execute operations
apply stable operations
in happen before order

31 / 35

stable operations and order of execution

An operation in the log is stable if its time stamp, as provided by the front
end, is less than or equal to the value timestamp.
Operations must be executed in the order as described by the replica
managers in their replies to the front ends.

32 / 35



Causal, forced and immediate

Sometimes we would like to av stronger consistency guarantees:

Forced: causal and total order in relation to forced updates.
Immediate: causal and total order in relation to all updates.

Will of course require that we do some more book keeping.

33 / 35

Gossip architectures

How many replicas can we have?
Have hundreds of read-only replicas and a handful of update replicas.
Will an application cope with causal consistency only?
How eager should the gossiping be?
False ordering - we order things that are not necessarily in causal relation to
each other.

34 / 35

Summary

Replication: performance, availability, fault tolerance
Consistency: linearizable, sequential consistency, ...
Passive or active replication
Gossip architectures

35 / 35


