Replication - why
Replication @ Performance

o latency
e throughput

Johan Montelius

@ Availability
KTH e service respond despite crashes

@ Fault tolerance
HT15

e service consistent despite failures

1/35 2/35

Challenge linearizable

A replicated service should, to the users, look like a non-replicated service.
A replicated service is said to be linearizable if for any execution there is some

What d by “look like"? interleaving of operations that:
at do we mean by “look like"?
@ meets the specification of a non-replicated service

linearizable]]))
@ matches the real time order of operations in the real execution

All operations seam to have happened: atomically, at the correct time, one after

the other.

°
@ sequential consistency
@ causal consistency

(*]

eventual consistency

linearizable why would it not make sense?

1 1
w(x,5 : —ok w(x.5) ok
p 1 1 p . A
P w(x,7) : ok o \ 3
q 1 e L cache p------- ¥
! I ! PN ! \
b)) \ w(x,7) ok
r | | 1 I ! q \ -
! ! 0 ! ! / N \ ! /
1 ! 0 1 ! ! \ \w //
R B /] / cache q ---------- e e R R
- v v : / / I Y ‘\ r(X) ?
b r
Lo \ . 7
T Yoo
SerVer - --------------boopo oo cache r | |
| 1 \\ \\
Y v
We guarantee that there is a sequence that makes sense. SEIVET - .

sequential consistency

w(x,5) ok
p - A replicated service is said to be sequential consistent if for any execution there is
q ! w(x,7) ok ! some interleaving of operations that:
. h / r(x) ? @ meets the specification of a non-replicated service
r S — . . : .
L : / ~| » @ matches the program order of operations in the real execution
replica 1 ------- Rt R R Don't worry about real time as long as it make sense.
replica 2 ----------- Tooooo-- R il e i
replica3 - ---------- R

still have to make sense even more relaxed

Assume x and y is initially set to 0 w(x,5) ok
p
w(x,7) ok

w(x,5) ok r(y) ——0 a

p r(x) 5 r(x) 7
r

r(x) 7 r(x) 5
q w(y.5) ok r(x) 0 s

As long as it make sense for each process.
There should exist one total order of the operations that is consistent with the

results. : : -
Causal consistency, unordered operations could be seen in different order.

9/35 10 /35

Eventual consistency replication system model

24 replicated service

lhere exist a total order that will eventually be visible to all. . ¢
client| ---->|front end
- f--l,

Take DNS servers as an example.

@ front end knows about replication scheme, could be implemented on the
client side

@ replica managers (RM) coordinate operations to guarantee consistency

11/35 12 /35

replication system model

1 1
1 1
1 1
Lo |
3l 1
1 1
1 1
1 1
f '
o~ . . 1
1 _% replicated service
Dt |
1 1
1 1
€ |
1 1
1 1
1 1
1 1

@ Request: from front end to one or
more replicas

@ Coordination: decide on order etc

@ Execution: the actual execution of
the request

@ Agreement: agree on possible state
change

@ Response: reply received by
front-end and delivered to client

13 /35

view-synchronous group communication

view: p,q,r view: q,r

~=Crash
. >

N
AN

\ =~

\
\
Y
v

not allowed

q—

1

1

1

1

1

[]

n
- _

vy [~~

Il

n

L]
n
L}
1
1

1

1

@ reliable multicast
@ delivered in same view
@ never deliver from excluded node

@ never deliver not yet included node

15/35

group membership service

L. |
k’: :
| ! @ adding and deletion of nodes
<! .1
Ty 8roup membership @ ordered multicast
k’:‘ service ! @ leader election
o ! @ view delivery
[1

passive and active replication

@ Passive replication: one primary server and several backup servers

@ Active replication: servers on equal term

14 /35

16 /35

Passive replication what about crashes

@ Request: front end sends request to

. Primary crashes:
primary

o Coordination: primary checks if it is @ backups will receive new view with primary missing

front end el . .
“e k a new request @ new primary is elected
¢--3 I ;

L @ @ @ Execution: executes and stores if front end re-sends request

front end N response

o either the reply is known and is resent
@ Agreement: sends updated state

@ or the execution proceeds as normal
and reply to backup servers

@ Response: sends reply to front-end

17 /35 18 /35

Passive replication - consistency pros and cons

Pros

) . . L . . @ All operations passes through a primary that linearize operations.
The primary replica manager will serialize all operations. We can provide P P ghap y P

@ Works even if execution is in-deterministic

linearizability. Cons
@ delivering state change can be costly

@ View-synchrony could be expensive

19/35 20 /35

Active replication Active replication - consistency

Sequential consistency:

@ total order multicast does not guarantee real-time order

Agreement: no need I _ _ _
o linearizability not guaranteed if front-end acknowledge operation before it

has been processed by replicas

@ @ Request: front end multicast to all
Lo . .
_________ A @ Coordination: reliable total order @ all replicas execute the same sequence of operations
_____ 7 delivery @ all replicas produce the same answer
Ty etT T > ion: i e
el T ; @ @ Execution: all replicas execute Linearizability:
S --- "~ request

Response: all replicas reply to front
end

21/35 22 /35

Active replication Availability

Pros

@ no need to send state changes

@ no need to change existing servers Both replication schemes require that servers are available.

° If a server crashes it will take some time to detect and remove the faulty node.
o Can we build a system that responds even if all nodes are not available?

Relax the guarantees for consistency.

read request could possibly be sent directly to replicas

could survive Byzantine failures
Cons:

@ requires total order multicast

@ requires deterministic execution

23 /35 24 /35

Gossip architecture Vector clocks
T b N @ replica managers interchange
e AN update messages

= e A vector clock with one index per replica manager.
)) - @ updates propagate through the
B J network Each update operation will be tagged with a vector clock timestamp.
7)) Some updates are concurrent!
- - @ sequential consistency not
. . guaranteed
. _ @ we want to provide causal

\ consistency
25/35 26 /35
The front end The front end

@ send a query with timestamp
. @ one index per replica manager <2,4,6> <2,5,6> @ check current time, wait for

) @ front ends keep vector clocks updates

read <2,4,6>
o replica mangers apply updates in ~ [Front eéndj=============~ ’ update will arrive
order § update state and clock

0 . ,update <2,5,6>
‘ @ causal consistency guaranteed e reply
update clock

+

|

|

|

|
v

[\
B

27 /35 28 /35

The replica manager update operation

The replica manager as a hold-back queue, operations that are too early to <2,5,6> <2,4,5>

execute. S _ _ write <2,5,6>
As updates arrive it will execute updates, and pending read operations. =~ |Frontend|-------------- ’

Updates are partially ordered.

operation with timestamp
increment clock

reply with unique timestamp
update clock

wait for updates

update when safe

update clock

29/35 30/35

Implementation stable operations and order of execution
Read operations: on hold until safe to Gossip operations
answer. @ interchange part of update log with
partners
Update operations from front end. @ place in update log @ An operation in the log is stable if its time stamp, as provided by the front
e front end adds unique id @ provide information on which end, is less than or equal to the value timestamp.
o replica checks that it is not a message a replica has seen @ Operations must be executed in the order as described by the replica
duplicate @ remove applied operations that has managers in their replies to the front ends.
@ replica replies with unique been seen by all replicas
timestamp Execute operations
@ placed in update log @ apply stable operations

@ in happen before order

31/35 32/35

Causal, forced and immediate Gossip architectures

Sometimes we would like to av stronger consistency guarantees: .
How many replicas can we have?

Have hundreds of read-only replicas and a handful of update replicas.

@ Forced: causal and total order in relation to forced updates. Will an application cope with causal consistency only?

@ Immediate: causal and total order in relation to all updates. How eager should the gossiping be?

False ordering - we order things that are not necessarily in causal relation to

Will of course require that we do some more book keeping. each other.

33/35 34/35

Replication: performance, availability, fault tolerance
Consistency: linearizable, sequential consistency, ...

Passive or active replication

Gossip architectures

35/35

