
Remote invocation

Johan Montelius

KTH

HT15

1 / 43

middleware

network layer

socket layer

application layer
remote invocation / indirect communication

2 / 43

Request reply

client server

find server
encode

send message
receive message

decode

send reply
receive reply

identify and locate the
server
encode/decode the
message
send reply to the right
client
attach reply to request

3 / 43

lost request

client server

What do we do if request is
lost?

4 / 43

resend request

client server
need to detect that
message is potentially lost
wait for a timeout (how
long) or error from
underlying layer
resend the request
simple, problem solved

5 / 43

lost reply

client server

client will wait for timeout
and re-send request
not a problem

6 / 43

problem

client server

a problem
server might need a history
of all previous request
might need

7 / 43

idempotent operations

add 100 euros to my account
what is the status of my account
Sweden scored yet another goal!
The standing is now 2-1!

8 / 43

history

If operations are not idempotent, the server must make sure that the same
request is not executed twice.

Keep a history of all request and the replies. If a request is resent the same reply
can be sent without re-execution.

For how long do you keep the history?

9 / 43

request-reply-acknowledge

client server

Request-Reply (RR)

client server

Request-Reply-Acknowledge (RRA)

10 / 43

at most or at least once

How about this:

If an operation succeeds, then..

at-most-once: the request has been executed once.
Implemented using a history or simply not resending requests.

at-least-once: the request has been executed at least once.
No need for a history, simply resend requests until a reply is received.

11 / 43

at most or at least

What about errors:
Even if we do resend messages we will have to giv up at some time.

If an operation fails/is lost, then..

at-most-once:

at-least-once:

12 / 43

at most or at least

Pros and cons:

at-most-once without resending requests: simple to implement, not
fault-tolerant
at-most-once with history: expensive to implement, fault-tolerant
at-least-once: simple to implement, fault-tolerant

Can you live with at-least-once semantics?

13 / 43

Erlang

What does Erlang message passing give you?

14 / 43

UDP or TCP

Should we implement a request-reply protocol over UDP or TCP?

15 / 43

synchronous/asynchronous

client server

asynchronous

client server

synchronous

16 / 43

RR over asynchronous

client server

send request
continue to execute
suspend if not arrived
read reply

17 / 43

hide the latency

clientserver 1 server 2

18 / 43

HTTP

A request reply protocol, described in RFC 2616.

Request = Request-Line *(header CRLF) CRLF [message-body]

Request-Line = Method SP Request-URI SP HTTP-Version CRLF

GET /index.html HTTP/1.1\r\n foo 42 \r\n\r\nHello

19 / 43

HTTP methods

GET: request a resource, should be idempotent
HEAD: request only header information
POST: upload information to a resource, included in body, status of server
could change
PUT: add or replace a resource, idempotent
DELETE: add or replace content, idempotent

20 / 43

Wireshark

21 / 43

HTTP GET

GET / HTTP/1.1
Host: www.kth.se
User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:40.0) Gecko/20100101 Firefox/40.0
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
Accept-Language: en-US,en;q=0.5
Accept.Encoding: gzip, deflate
Cookie:
Connection: keep-alive

22 / 43

HTTP Response
HTTP/1.1 200 OK
Date: Tue, 08 Sep 2015 10:37:49 GMT
Server: Apache/2.2.15 (Red Hat)
X-UA-Compatible: IE=edge
Set-Cookie: JSESSIONID=CDC76A3;Path=/; Secure; HttpOnly
Content-Language: sv-SE
Content-Length: 59507
Connection: close
Content-Type: text/html;charset=UTF-8

<!DOCTYPE html>

<html lang="sv">
<title>KTH | Valkommen till KTH</title>

23 / 43

the web

On the web the resource i often a HTML document that is presented in a
browser.

HTTP could be used as a general purpose request-reply protocol.

24 / 43

REST and SOAP

Request-reply protocols for Web-services:

REST (Representational State Transfer)
content described in XML, JSON, . . .
light weight,

SOAP (Simple Object Access Protocol)
over HTTP, SMTP . . .
content described in SOAP/XML
standardized, heavy weight

25 / 43

HTTP over TCP

HTTP over TCP - a good idea?

26 / 43

masking a request-reply

Could we use a regular program construct to hide the fact that we do a
request-reply?

RPC: remote procedure call
RMI: remote method invocation

27 / 43

procedure calls

What is a procedure call:

find the procedure
give the procedure access to arguments
pass control to the procedure
collect the reply if any
continue execution

How do we turn this into a tool for distributed programming?

28 / 43

operational semantics

int x, n;
n = 5;
proc(n);
x = n;

int x, arr[3];
arr[0] = 5;
proc(arr);
x = arr[0];

29 / 43

call by value/reference

call by value
procedures are given a copy of the datum

call by reference
procedures are given a reference to the datum

what if the datum is a reference and we pass a copy of the datum

why is this important?

30 / 43

remote procedure call

Client Server
:
inc();
:

void inc() {
g = g+1;

}

g: 13

31 / 43

remote procedure call

Client Server
:
inc(x);
:

x: 3

void inc(int i) {
g = g+i;

}

g: 13

3

32 / 43

remote procedure call

Client Server
:
inc(a);
:

a: {1,2,3,4}

void inc(int[] h) {
g = g+h[2];
h[2] = g;

}

g: 13

?

33 / 43

ONC RPC (SunRPC)

targeting intranet, file servers etc
used UDP as transport protocol (TCP also available)
at-least-once call semantics
XDR (eXternal Data Representation) specifies message structure

34 / 43

ONC RPC (SunRPC)

targeting intranet, file servers etc
used UDP as transport protocol (TCP also available)
at-least-once call semantics
XDR (eXternal Data Representation) specifies message structure

35 / 43

Java RMI

similar to RPC but:
we now invoke methods of remote objects
at-most-once semantics

Objects can be passed as arguments, how should this be done?
by value
by reference

36 / 43

Java RMI

We can do either:

Remote objects are passed as references i.e. they remain as one object.

Serializable objects are passed as copies i.e. the object is duplicated.

37 / 43

finding the procedure

How do we locate a remote procedure/object/process?

Network address that specifies the location or..

a known “binder” process that keeps track of registered resources.

38 / 43

remote invocation design decisions

failure handling: maybe / at-most-once / at-least-once
call-by-value / call-by-reference
message specification and encoding
specification of resource
procedure binder

39 / 43

examples

SunRPC: call-by-value, at-lest-once, XDR, binder
JavaRMI: call-by-value/reference, at-most-once, interface, JRMP, registry
Erlang: message passing, maybe, no, ETF, local registry only

40 / 43

more

CORBA: (interface description language) IDL, (object request broker) ORB
Web Services: WSDL, UDDI

41 / 43

summary

Implementations of remote invocations: procedures, methods, messages to
processes, have fundamental problems that needs to be solved.

Try to see similarities between different implementations.

When they differ, is it fundamentally different or just implementation details.

42 / 43

