middleware
Remote invocation —
application layer

’ remote invocation / indirect communication

Johan Montelius

socket layer

KTH
network layer
HT15
1/43 2/43
Request reply lost request
client server client server
find server @ identify and locate the
gncode L server L
send message ¥--._____ : T ;
....... receive message © encode/decode the : : What do we do if request is
decode message lost?
@ send reply to the right ; :
_ R, send reply client
receive reply f """ @ attach reply to request

resend request lost reply

client server client server
: @ need to detect that
L message is potentially lost L
Foeeeel o wait for a timeout (how L T : o client will wait for timeout
long) or error from and re-send request
underlying layer @ not a problem
@ resend the request S
e >l @ simple, problem solved
5/43 6/43
problem idempotent operations
client server
L @ add 100 euros to my account
‘oo : @ a problem .
------------- @ what is the status of my account

@ server might need a history

. @ Sweden scored yet another goal!
of all previous request

o 11
o might need @ The standing is now 2-1!

history request-reply-acknowledge

If operations are not idempotent, the server must make sure that the same client server client server

request is not executed twice. L. L. :

Keep a history of all request and the replies. If a request is resent the same reply 1 1

can be sent without re-execution. f--" f-::.'__)i

For how long do you keep the history? Request-Reply (RR) Request-Reply-Acknowledge (RRA)

9/43 10 /43

at most or at least once at most or at least

How about this: What about errors:

If an operation succeeds, then.. Even if we do resend messages we will have to giv up at some time.

at-most-once: the request has been executed once. If an operation fails/is lost, then..

Implemented using a history or simply not resending requests. 2t-most-once-

at-least-once: the request has been executed at least once.

No need for a history, simply resend requests until a reply is received. at-least-once:

11/43 12 /43

at most or at least Erlang

Pros and cons:

@ at-most-once without resending requests: simple to implement, not

fault-tolerant
@ at-most-once with history: expensive to implement, fault-tolerant

What does Erlang message passing give you?
@ at-least-once: simple to implement, fault-tolerant

Can you live with at-least-once semantics?

14 /43

synchronous/asynchronous

UDP or TCP

client server client server

Should we implement a request-reply protocol over UDP or TCP? T

asynchronous synchronous

16 /43

15 /43

RR over asynchronous hide the latency

client server server 1 client server 2

@ send request L

@ continue to execute ST L L
@ suspend if not arrived

@ read reply

17 /43 18 /43

HTTP HTTP methods

A request reply protocol, described in RFC 2616.

GET: request a resource, should be idempotent

Request = Request-Line *(header CRLF) CRLF [message-body] e HEAD: request only header information
@ POST: upload information to a resource, included in body, status of server
Request-Line = Method SP Request-URI SP HTTP-Version CRLF could change

PUT: add or replace a resource, idempotent

DELETE: add or replace content, idempotent
GET /index.html HTTP/1.1\r\n foo 42 \r\n\r\nHello

19/43 20 /43

Wireshark HTTP GET

4 *eth0 [Wireshark 1.12.1 (Git Rev Unknow

File Edit View Go Capture Analyze Statistics Telephony Tools Internals Help

©®4dm n@x|el <] > >=lx BE 2leloF WeEEsg &

Fiter —r——

No. Time Source. Destination Protocol Length Info
70 9.473588000 130.237.72.201 130.237.215.140 DNS. 331 Standard query response OxadcS AAAA 2001:6b0
71 9.473789000 130.237.215.140 130.237.28.40 Tcp 74 5396080 [SYN] Seq=0 Win=29200 Len=0 MSS=1460
72 9.474175000 130.237.28.40 130.237.215.140 TP 60 8053960 [SYN, ACK] Seq=0 Ack=1 Win=8190 Len=(
73 9.474197000 130.237.215.140 130.237.28.40 Tcp 54 5396080 [ACK] Seq=1 Ack=1 Win=3737600 Len=0

4742840 237 237.28.. HTT 699 GET_ -

75 9.478642000 130.237.28.40 130.237.215. 140 TcP 358 [TCP segment of a reassembled PDU]
76 9.478672000 130.237.215. 140 130.237.28.40 TCP 54 5396080 [ACK] Seq=646 Ack=305 Win=3842048 Ler

» Frame 74: 699 bytes on wire (5592 bits), 699 bytes captured (5592 bits) on interface O

» Ethernet 11, Src: AsustekC_93:c6:da (00:Le:Be:83:c6:da), Dst: ALL-HSRP-routers_d4 (00:00:0c:07:ac:d4)
» Internet Protocol Version 4, Src: 130.237.215.140 (130.237.215.140), Dst: 130.237.28.40 (130.237.28.40)
» Transmission Control Protocol, Src Port: 53960 (53960), Dst Port: 80 (80), Seq: 1, Ack: 1, Len: 645
~Hypertext Transfer Protocol

¥ GET / HTTP/1.1\r\n

Host: www.kth.se\r\n
User-A o buntu; Linux v refox
Accept: text/html, application/xhtml+xnl, application/xnl;q=0.9, */+;q=0.8\r\n
Accept-Language: en-US,en;g=0.5\r\n
Accept-Encoding: gzip, deflate\rin
» [truncated]Cookie: _uty 183788, 1409574123, 1430204703, 1441199888, 6; modalVisi torPoll=participate#1|; csrftoken=ry
Connection: keep-alive\r\n
\Fin
[Full request URT: http: kth
[HTTP request 1/1]
0050 S5 73 65 72 2d 41 67 6
[Mlce 74 3a 20 4d 6f 7a 69
ICR>e 56 31 31 3b 20 55 62 75 Ge 74 75 3b 20 4c 6
S5 Mce 75 78 20 78 38 36 5f 36 34 3b 20 72 76 3a 3
S =0 22 30 29 20 47 65 63
SM=1 =0 31 20 46 69 72 65 66 6f 78 2f 34 30 2¢ 20fMI0L Fire fox/40.
el
@ ¥ | HTTP User-Agent header (http.user. Packets: 1017 - Displayed: 1017 (100,0%) - Dropped: 0 (0,0%) Profile: Default

21/43

GET / HTTP/1.1

Host: www.kth.se

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:40.0) Gecko/20
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,%*/*;q=0
Accept-Language: en-US,en;q=0.5

Accept.Encoding: gzip, deflate

Cookie:

Connection: keep-alive

22/43

HTTP Response the web

HTTP/1.1 200 OK

Date: Tue, 08 Sep 2015 10:37:49 GMT

Server: Apache/2.2.15 (Red Hat)

X-UA-Compatible: IE=edge

Set-Cookie: JSESSIONID=CDC76A3;Path=/; Secure; HttpOnly
Content-Language: sv-SE

Content-Length: 59507

Connection: close

Content-Type: text/html;charset=UTF-8

<I!DOCTYPE html>

<html lang="sv'">
<title>KTH | Valkommen till KTH</title>

23 /43

On the web the resource i often a HTML document that is presented in a
browser.

HTTP could be used as a general purpose request-reply protocol.

24 /43

REST and SOAP HTTP over TCP

Request-reply protocols for Web-services:

@ REST (Representational State Transfer)
o content described in XML, JSON, ... HTTP over TCP - a good idea?
o light weight,

@ SOAP (Simple Object Access Protocol)

e over HTTP, SMTP ...
o content described in SOAP /XML
e standardized, heavy weight

25 /43 26 /43

masking a request-reply procedure calls

What is a procedure call:

Could we use a regular program construct to hide the fact that we do a @ find the procedure

request-reply? @ give the procedure access to arguments
@ RPC: remote procedure call @ pass control to the procedure
@ RMI: remote method invocation @ collect the reply if any

@ continue execution

How do we turn this into a tool for distributed programming?

27 /43 28 /43

operational semantics call by value/reference

@ call by value

int x, arr[3]; e procedures are given a copy of the datum

int x, n;
n =5; arr[0] = 5; @ call by reference
proc(n); proc(arr); e procedures are given a reference to the datum
*e x = arr[0]; what if the datum is a reference and we pass a copy of the datum
why is this important?
20 /43 30/43
remote procedure call remote procedure call
Client Server Client Server

S » void inc() { : 3 - » void inc(int i) {

inc(); ----""""7] g = g+1; inc(x); ----"""""7] g = g+i;

: } : }

g 13 x: 3 g 13

31/43

remote procedure call ONC RPC (SunRPC)

Client Server
, , void inc(int[] h) {
inc(a); ------""1 7 ﬁ[;] §+h'[2];
} - & @ targeting intranet, file servers etc

@ used UDP as transport protocol (TCP also available)

@ at-least-once call semantics

o XDR (eXternal Data Representation) specifies message structure

a: {1,2,3,4} g: 13

33/43 34 /43

ONC RPC (SunRPC) Java RMI

@ similar to RPC but:

@ targeting intranet, file servers etc . ,
geting ' e we now invoke methods of remote objects

@ used UDP as transport protocol (TCP also available) e at-most-once semantics
@ at-least-once call semantics @ Objects can be passed as arguments, how should this be done?
@ XDR (eXternal Data Representation) specifies message structure o by value

o by reference

35/43 36 /43

Java RMI finding the procedure

We can do either: How do we locate a remote procedure/object/process?

Remote objects are passed as references i.e. they remain as one object. Network address that specifies the location or..

Serializable objects are passed as copies i.e. the object is duplicated. a known “binder" process that keeps track of registered resources.

37/43 38 /43

remote invocation design decisions examples

o failure handling: maybe / at-most-once / at-least-once

o call-by-value / call-by-reference @ SunRPC: call-by-value, at-lest-once, XDR, binder

@ message specification and encoding e JavaRMI: call-by-value/reference, at-most-once, interface, JRMP, registry
e specification of resource @ Erlang: message passing, maybe, no, ETF, local registry only

@ procedure binder

39/43 40 /43

more summary

Implementations of remote invocations: procedures, methods, messages to
processes, have fundamental problems that needs to be solved.

o CORBA: (interface description language) IDL, (object request broker) ORB
@ Web Services: WSDL, UDDI Try to see similarities between different implementations.

When they differ, is it fundamentally different or just implementation details.

41/43

