Indirect communication

In direct communication sender and receivers exist in the same time and know of

Johan Montelius each other.
KTH In indirect communication we relax these requirements.
HT15
1/30 2/30
Time and space uncoupling indirect communication

Time uncoupling: a sender can send a message even if the receiver is still not
available. The message is stored and picked up at a later moment.

@ group communication

Space uncoupling: a sender can send a message but does not know to whom it is @ publish-subscribe

sending nor if more than one, if anyone, will receive the message. @ message queues

@ shared memory

time coupled time uncoupled
space coupled direct communication | message storing systems
space uncoupled broadcast group communication




Group communication Broadcast vs Multicast

In a broadcast service, no one keeps track of who is listening, cf. radio broadcast,

More than simpl [ticast:
ore than simple mufticas IP broadcast 192.168.1.255 etc.
@ the group is well defined and managed
In a multicast service, the sender is sending a message to a specific group, the

@ ordered delivery of messages
system keeps track of who should receive the message cf. IP-multicast 239.1.1.1

o fault tolerant, delivery guarantees

@ handles multiple senders IP-multicast is unreliable, does not keep track of members nor order of messages
when we have several senders.

5/30 6/30

ordering of messages Implementations

@ FIFO order: All messages are received in the order sent.

@ Causal order: If a message m2 is sent as a consequence of a message ml A number of middleware systems provide support for group communication.

(i.e. a process has seen m1 and then sends m2), then all members should
see m1 before m2.

@ Total order: All members will see messages in exactly the same order.

JGroup: Java based

Akka: Scala based

Spread: C++ based

pg : a not so advanced library in Erlang

Causal ordering does not strictly imply FIFO, a process can send m1 and then m2
but has not yet seen its own message ml.

We can observe events, what do we know about causality?



indirect communication Publish-subscribe

group communication Processes publish events, not knowing if anyone is interested.

o

@ publish-subscribe A process can subscribe on events of a given class.
@ message queues

o

Limited guarantees on ordering or reliability - scales well. Used when the flow of

shared memory events is very high: trading platforms, news feeds etc.

9/30 10 /30

Subscriptions Implementation

@ Channel: events are published to channel that processes can subscribe to.

@ Topic (Subject): a event is published given one or more topics (#foo), if How do implement a pub/sub system?

topics are structured in a hierarchy processes can be choose to subscribe on

> i It's simple - one central server that keeps track of all subscribers.
a topic or a sub-topic.

@ Content: subscribers specify properties of the content, more general - harder Availability? use two servers

to implement . L
P Scalability? use a distributed network of event brokers

@ Type: used by object oriented languages, subscribe on event of a particular
class

11/30 12 /30



Broker networks Event routing

The event routing depends on which subscription model we have and
requirements on performance, fault tolerance, availability and consistency.

A network of brokers that distribute events: clients connect to the brokers.

The network of brokers form an overlay network that can route events. o flooding
o filtering
Given a broker network, how do we distribute events from publishers to

subscribers?

@ advertisement

@ rendezvous

The more advanced subscription mechanism, the more complex routing
mechanism.

13 /30 14 /30

flooding filtering

Let the brokers take a more active part in the publishing of events.
@ send all published event to all nodes in the network

@ matching is done by each node @ a subscription is sent to the closest broker
@ can be implemented using underlying network multicast @ brokers share information about subscriptions

. @ a broker knows which neighboring brokers that should have published events
Simple but inefficient - events are distributed even if no one is subscribing.

Alternative - let the subscriptions flood the network and publishers keep track of requires a more stable broker network

subscribers. how do we implement content based subscriptions

15 /30 16 /30



advertisement rendezvous

Let the publishers advertise that they will publish events of a particular class.

An advertisement approach can overload a frequent publisher, all subscribers
@ publishers advertise event classes needs to talk to the publisher.
o advertisements are propagated in the network Distribute the load by delegating the subscription handling to another node.
@ subscribers contact publishers if they are interested

How do we select the node that should be responsible for a particular class?
can be combined with filtering

17 /30 18 /30

Pub/Sub Systems indirect communication

Often part of a messaging platform:

@ Java Messaging Service
@ ZeroMQ

@ Redis @ group communication

@ publish-subscribe
or a separate service: @ message queues

e Google Cloud Pub/Sub ® shared memory
several standards:

e OMG Data Distribution Service (DDS)
@ Atom - web feeds (RSS), clients poll for updates

19/30 20 /30



message queues implementations

Queues could be running on either node in the system but we need a mechanism

to find the queue when sending or receiving.
A queue (normally FIFO) is an object that is independent of processes.
A central server is a simple solution but does not scale.
Processes can:
A binder, similar to in RPC can be the responsible for keeping track of queues.
@ send messages to a queue

@ receive messages from a queue

@ WebSphereMQ by IBM
@ poll a queue @ Java Messaging Service
@ be notified by a queue o RabbitMQ
e ZeroMQ
More structured and reliable, compared to pub/sub systems. o Apache Qpid

Standard: AMQP - Advanced Message Queing Protocol, supported by several

messaging platforms.
21/30 22 /30

Erlang message queues indirect communication

In Erlang, message queues are similar but different:
@ group communication

@ a queue is attached to a process: one queue - one receiver o publish-subscribe
@ the queue is not persistent: if the process dies the queue dies @ message queues
e there is only a blocking receive (but you can use a timeout) o shared memory

@ only intended for Erlang process communication

23 /30 24 /30



shared memory parallel computing

Shared memory is mostly used in computing clusters where all nodes are equal

o _ _ _ and run the same operating system.
Why not make it simple - if concurrent threads in a program can communicate

using a shared memory why would it not be possible for distributed process to do

@ UMA: uniform memory architecture
the same?

@ NUMA: non-uniform memory access
A distributed shared memory - DSM. e COMA: cache-only memory access

High-performance computing systems also to use message passing rather than
shared memory to scale better.

25/30 26 /30

tuple spaces implementing tuple spaces

A centralized solution is simple ... and does not scale.

A shared memory on a higher level - a shared tuple space. Distributed implementation is much harder:

© write: add a tuple to the store @ write: replicate the tuple, make sure that all replicas see the tuple

@ read: find a matching tuple in the store o read: read from any replica

o take: remove a matching tuple from the store @ take: more problematic, how does it conflict with a concurrent write

Made popular by the Linda coordination language from 1986. operation

Distributed implementation uses several spaces to reduce conflicts.

27 /30 28 /30



object spaces summary

Communication, uncoupled in space and time.

A more general form replaces tuples with objects - JavaSpaces included in Jini. @ group communication
@ publish-subscribe

@ message queues

@ shared memory

29 /30 30/30



