
Distributed file systems

Johan Montelius

KTH

HT15

1 / 31

what’s a file system

Functionality:

persistent storage of files, create and delete
manipulating a file, read and write operations
authorization, who is allowed to do what
a naming service

The maping of names to files is quite separate from the rest of the system.

2 / 31

implementation

directory map from name to identifier

file module locate file, harder in distributed systems

access control interacts with authentication system

file operations read and write operations

block operations

device operations

3 / 31

what’s a file

a sequence of bytes
attributes, associated meta-data

size and type
owner and permissions
author
created, last written
icons, fonts, presentation....

4 / 31

Unix file operations

create(name, mode) returns a file-descriptor
open(name, mode) returns a file-descriptor
close(fd)

unlink(name)
link(name, name)

Can we separate the name service from the file operations?

5 / 31

Unix file operations

read(fd, buffer, n) returns the number of bytes actually read
write(fd, buffer, n) returns the number of bytes actually written
lseek(fd, offset, set/cur/end) sets the current position in the file

stat(name, buffer) reads the file attributes

6 / 31

programming language API

Operating system operations are not always directly available from a high level
language.

Buffering of write operations to reduce the number of system calls.

7 / 31

descriptors, table entries and i-nodes

A process holds a set of open file descriptors, each descriptor holds a pointer to a
table of open files.

The file table entries holds a position and a pointer to an inode (index node).

The inode holds information about where file blocks are allocated.

8 / 31

descriptors, table entries and i-nodes
processes file table i-nodes

proc 14

fd:0
fd:1
fd:2

offset:45

i-node

access

location

size

All read, write and lseek operations will change the current position in the table
entry.

9 / 31

two processes open the same file
processes file table i-nodes

proc 14
fd:2

proc 21
fd:2

offset:45

i-node

offset:10

i-node

access

location

size

Two processes that open the same file will have independent file table entries.
10 / 31

Nota bene

All threads in a process (or even if process is forked) share the same file
descriptors and thus share the file table entry.

11 / 31

one-copy semantics

Most file systems give us a one-copy semantics
we expect operations to be visible by everyone and that everyone see the
same file
if I tell you that the file has been modified the modification should be visible

12 / 31

an architecture of a distributed file system

Let’s define the requirements we have on a distributed file system.
transparency - no difference
between local and remote files

access: same set operations
location: same name space
mobility: allowed to move files
without changing client side
performance: close to a
non-distributed system

concurrency - simultaneous
operations by several clients

heterogeneity - not locked in to a
particular operating system
fault tolerance - independent of
clients, restartable etc
consistency - one-copy semantics....
or?
security - access control, who is
allowed to do what

13 / 31

distributed architecture

Separate the directory service from the file service.

client side server side

local fs
client
module

application layer

flat file service

directory servicename resolution

file operations

14 / 31

the directory service

The directory service - what operations do we need?

lookup a file identifier given a name and directory
link a name to a file identifier in a directory
remove a link
list all names in a directory

The directory service does not create nor manipulate files.

15 / 31

the file service

What operations should be provided?

create a file and allocate a file identifier
delete a file
read from a file identified by a file identifier
write a number of bytes to a file identified by a file identifier

Do we need a open operation?
What does open do in Unix?
What do we need if we don’t have an open operation?
What would the benefit be?

16 / 31

a stateless server

What are the benefits of a stateless server?
What are the benefits of a stateless server?
How can we maintain a session state while keeping the server stateless?

17 / 31

How do we handle security?

In Unix, permissions are checked when a file is opened and access to the file
can then be done without security control.

If we do not have an open operation, how can we perform authentication and
authorization control?

18 / 31

Client interface - open

open(name,r)

fd

lookup(name)

file-id

create a virtual i-node
that keeps file-id for
future operations

create a file table entry
and return a local file
descriptor

19 / 31

Client interface - write

write(fd,buffer,i)

true

write(user-id, file-id, pos, seq)

ok

lookup file-id, provider
user-id and position

20 / 31

Client interface - read

read(fd,buffer,i)

true

read(user-id, file-id, pos, count)

seq

lookup file-id, provider
user-id and position

21 / 31

Client interface - close

close(name)

fd

remove file table entry

22 / 31

Performance

Everything would be fine, if it was not for performance.

Keep a local copy of the file at the client side.

23 / 31

Cashing - options

Reading from a file: how do we know it
is the most current?

check validity when reading
... if you haven’t done so in a while
server should invalidate copy

Writing to a file:
write-through: write to cache and
server
write-back : write to cache only
write-around: write only to server

caching could break the one-copy semantics

24 / 31

NFS - Network File System

developed by Sun, 1984
targeting department networks
implemented using RPC (Open Network Computing)
public API: RFC 1094, 1813, 3530
originally used UDP, later versions have support for TCP to improve
performance over WAN
mostly used with UNIX systems but client on all platforms available

25 / 31

NFS - client side caching

Reading from a file:
first read will copy a segment (8K
bytes) to the client
the copy valid of a time t (3-30
seconds)
if more time has elapsed, the
validity is checked again

Writing to a file:
write-back : write to the cache only
schedule written segment to be
copied to server
segment copied on timeout or when
file is closed (sync)

the server is stateless

26 / 31

AFS - Andrew File System

developed by Carnegie Mellon University
clients for most platforms, OpenAFS (from IBM), Arla (a KTH
implementation)
used mainly in WAN (Internet) where the overhead of NFS would be
prohibitive
caching of whole files and infrequent sharing of writable files

27 / 31

AFS - client side caching

Reading from a file:
copy the whole file from server (or
64kbyte)
receive a call-back promise
file is valid if promise exists and is
not too old (minutes)

Writing to a file:
write-back : write to the cache only
file copied to server when closed
(sync)
server will invalidate all existing
promises

28 / 31

SMB/CIFS

Service Message Block (SMB) was originally developed by IBM but then
modified by Microsoft, now also under the name Common Internet File
System (CIFS).
not only file sharing but also name servers, printer sharing etc.
Samba is an open source reimplementation of SMB by Andrew Tridgell

29 / 31

SMB/CIFS client side caching

SMB uses client locks to solve cache consistency
a client can open a file an lock it; all read and write operations in client
cache
a read only lock will allow multiple clients to cache and read a file
Locks can be revoked by the server forcing the client to flush any changes
in a unreliable or high latency network, locking can be dangerous and
counter productive

30 / 31

Summary

separate directory service from file service
maintain a view of only one file, one-copy semantics
caching is key to performance but could make the one-copy view hard to
maintain

31 / 31

