Erlang - functional programming in a Concurrent Oriented
Programming
Functional programming

concurrent world

@ processes have state _ _
. : @ evaluation of expressions
@ communicate using

Johan Montelius message passing @ recursion
KTH @ access and location ® fiata structures are
transparent immutable
HT15 @ asynchronous
— 2/1
History Today

I

Developed at Ericsson in late eighties, early nineties. —

ERICSSON]

\
B

Targeting robust applications in the telecom world.

Survived despite “everything must be Java”

LT[4 A
Growing interest from outside Ericsson. g!c'xtmhcymk \'J
C\” Wooga DEMONWARE n

Why Erlang?

@ concurrency built-in @ the functional subset
@ multicore performance @ concurrency

@ simple to implement fault tolerance @ distribution

@ scales well in distributed systems @ failure detection

5/1 6/1
Data structures Variables

@ Literals

e atoms: foo, bar, ... lexically scoped

°

e numbers: 123, 1.23 .. @ implicit scoping - the procedure definition
°
°

® bool: true, false untyped - assigned a value when introduced
@ Compound structures
e tuples: {foo, 12, {bar, zot}}

o lists: [], [1,2,foo,bar]

syntax: X, Foo, BarZot, _anything

Patern matching

Assignment of values to variables is done by pattern matching:
<Pattern> = <Expression>

A pattern can be a single variable: Pattern matching is used to extract elements from a
e Foo = 5 datastructure.
e Bar = {foo, zot, 42}

or a compound pattern
o {A B} ={4,5}
o {A {B, C}} = {41, {foo, bar}}
o {A, {B, A}} = {41, {foo, 41}}

{person, Name, Age} = find_person(ld, Employes),

9/1 10/1

Pattern matching no circular structures

You can not construct circular data structures in Erlang.
Pattern matching can fail:

Pros - makes the implementation easier.
{person, Name, Age} = {dog, pluto}

Cons - | like circular structures.

11/1 12/1

definitions if statement

fac(N) —>
if
area(X, Y) -—> X * Y. N=0->1;
N > 0 -> Nxfac(N-1)
end.

13/1 14/1
case statement case statement

member (X,L) ->

sum(L) -> case L of
case L of N ->
L -> no;
0; Xl 1 ->
[HIT] -> yes;
H + sum(T) [_IT] —>
end. member (X, T)

end.

higher order higher order

map (Fun, List) ->
case List of
F = fun(X) -> X + 1 end. 1 ->
[1;
[HIT] —>
[Fun(H) | map(Fun, T)]

F(5)

end.

17 /1 18/1
modules modules

-module(1lst).
-export ([reverse/1]) . -module (test) .

-export ([palindrome/1]) .
reverse(L) ->

reverse(L, [1). palindrome(X) ->
case lst:reverse(X) of
reverse(L, A) —-> X —>
case L of yes;
- >
A; no
[HIT] —> end.

reverse (T, [HIA])
end.

Concurrency

Sspawn a process

Concurrency is explicitly controlled by creation (spawning) of
processes

-module (account)

. : . start(Balance) ->
A process is when created, given a function to evaluate.

spawn(fun() -> server(Balance) end).
no one cares about the result

server (Balance) ->
Sending and receiving messages is the only way to
communicate with a process.

no shared state (.. .well, almost)

receiving a message

21/1 22/1
sending messages

server(Balance) ->
receive
{deposit, X} ->

server (Balance+X) ;

Account = account:start(40),
{withdraw, X} —>

Account ! {deposit, 100},
Account ! {withdraw, 50},
server (Balance-X) ;)

quit ->

ok
end.

rpc-like communication rpc-like communication

friday(Account) ->

server (Balance) -> Account ! {check, self()},
receive receive
: {saldo, Balance} —>

{check, Client} -> if

Client ! {saldo, Balance}, Balance > 100 ->

server (Balance) ; party(Account) ;

true ->
end. work (Account)
end
end.

implicit deferral registration

A process will have an ordered sequence of received messages. A node register associate names to process identifiers.

The first message that matches one of several program defined

Pros and cons: Knowing the registered name of a process you can look-up the

@ one can select which messages to handle first process identifier.

e risk of forgetting messages that are left in a growing
queue The register is a shared data structure!

registration starting a node

Erlang nodes (an Erlang virtual machine) can be connected in
a group .
moon> erl -sname gold —-setcookie xxxx

Each node has a unique name.

_ _ (gold@moon)>
Processes in one node can send messages to and receive

messages from processes in other nodes using the same
language constructs

29/1 30/1
failure detection monitor

Ref = erlang:monitor(process, Account),
Account ! A{check, self()},

@ a process can monitor another process

@ if the process dies a messages is placed in the message receive

queue {saldo, Balance} ->
@ the message will indicate if the termination was normal or

abnormal or if the communication was lost

{’DOWN’, Ref, process, Account, Reason}->

end

automatic termination linking

@ A process can link to another process, if the process dies
with an exception the linked process will die with the p

_ = spawn_link(fun()-> server(Balance) end),
same exception.

do_something(P),
@ Processes that depend on each other are often linked

together, if one dies they all die.

33/1 34/1

e functional programming
@ processes

@ message passing

@ distribution

@ monitor/linking

35/1

