
Erlang - functional programming in a
concurrent world

Johan Montelius

KTH

HT15

1 / 1

Erlang

Concurrent Oriented
Programming

processes have state
communicate using
message passing
access and location
transparent
asynchronous

Functional programming
evaluation of expressions
recursion
data structures are
immutable

2 / 1

History

Developed at Ericsson in late eighties, early nineties.

Targeting robust applications in the telecom world.

Survived despite “everything must be Java”

Growing interest from outside Ericsson.

3 / 1

Today

4 / 1

Why Erlang?

concurrency built-in
multicore performance
simple to implement fault tolerance
scales well in distributed systems

5 / 1

Erlang

the functional subset
concurrency
distribution
failure detection

6 / 1

Data structures

Literals
atoms: foo, bar, ...
numbers: 123, 1.23 ..
bool: true, false

Compound structures
tuples: {foo, 12, {bar, zot}}
lists: [], [1,2,foo,bar]

7 / 1

Variables

lexically scoped
implicit scoping - the procedure definition
untyped - assigned a value when introduced
syntax: X, Foo, BarZot, _anything

8 / 1

Assignment of values to variables is done by pattern matching:

<Pattern> = <Expression>

A pattern can be a single variable:
Foo = 5
Bar = {foo, zot, 42}

or a compound pattern
{A, B} = {4, 5}
{A, {B, C}} = {41, {foo, bar}}
{A, {B, A}} = {41, {foo, 41}}

9 / 1

Patern matching

Pattern matching is used to extract elements from a
datastructure.

{person, Name, Age} = find_person(Id, Employes),

10 / 1

Pattern matching

Pattern matching can fail:

{person, Name, Age} = {dog, pluto}

11 / 1

no circular structures

You can not construct circular data structures in Erlang.

Pros - makes the implementation easier.

Cons - I like circular structures.

12 / 1

definitions

area(X, Y) -> X * Y.

13 / 1

if statement

fac(N) ->
if

N == 0 -> 1;
N > 0 -> N*fac(N-1)

end.

14 / 1

case statement

sum(L) ->
case L of

[] ->
0;

[H|T] ->
H + sum(T)

end.

15 / 1

case statement

member(X,L) ->
case L of

[] ->
no;

[X|_] ->
yes;

[_|T] ->
member(X, T)

end.

16 / 1

higher order

F = fun(X) -> X + 1 end.

F(5)

17 / 1

higher order

map(Fun, List) ->
case List of

[] ->
[];

[H|T] ->
[Fun(H) | map(Fun, T)]

end.

18 / 1

modules

-module(lst).
-export([reverse/1]).

reverse(L) ->
reverse(L,[]).

reverse(L, A) ->
case L of

[] ->
A;

[H|T] ->
reverse(T,[H|A])

end.

19 / 1

modules

-module(test).
-export([palindrome/1]).

palindrome(X) ->
case lst:reverse(X) of

X ->
yes;

_ ->
no

end.

20 / 1

Concurrency

Concurrency is explicitly controlled by creation (spawning) of
processes.

A process is when created, given a function to evaluate.

no one cares about the result

Sending and receiving messages is the only way to
communicate with a process.

no shared state (. . . well, almost)

21 / 1

spawn a process

-module(account)

start(Balance) ->
spawn(fun() -> server(Balance) end).

server(Balance) ->
:
:
:

22 / 1

receiving a message

server(Balance) ->
receive

{deposit, X} ->
server(Balance+X);

{withdraw, X} ->
server(Balance-X);

quit ->
ok

end.

23 / 1

sending messages

:
Account = account:start(40),
Account ! {deposit, 100},
Account ! {withdraw, 50},

:

24 / 1

rpc-like communication

server(Balance) ->
receive

:
{check, Client} ->

Client ! {saldo, Balance},
server(Balance);

:
end.

25 / 1

rpc-like communication

friday(Account) ->
Account ! {check, self()},
receive

{saldo, Balance} ->
if

Balance > 100 ->
party(Account);

true ->
work(Account)

end
end.

26 / 1

implicit deferral

A process will have an ordered sequence of received messages.

The first message that matches one of several program defined
patterns will be delivered.

Pros and cons:
one can select which messages to handle first
risk of forgetting messages that are left in a growing
queue

27 / 1

registration

A node register associate names to process identifiers.

register(alarm_process, Pid)

Knowing the registered name of a process you can look-up the
process identifier.

The register is a shared data structure!

28 / 1

registration

Erlang nodes (an Erlang virtual machine) can be connected in
a group .

Each node has a unique name.

Processes in one node can send messages to and receive
messages from processes in other nodes using the same
language constructs

29 / 1

starting a node

moon> erl -sname gold -setcookie xxxx
:
:

(gold@moon)>

30 / 1

failure detection

a process can monitor another process
if the process dies a messages is placed in the message
queue
the message will indicate if the termination was normal or
abnormal or if the communication was lost

31 / 1

monitor

Ref = erlang:monitor(process, Account),
Account ! {check, self()},

receive
{saldo, Balance} ->

:

{’DOWN’, Ref, process, Account, Reason}->
:

end

32 / 1

automatic termination

A process can link to another process, if the process dies
with an exception the linked process will die with the
same exception.
Processes that depend on each other are often linked
together, if one dies they all die.

33 / 1

linking

P = spawn_link(fun()-> server(Balance) end),
do_something(P),

34 / 1

Summary

functional programming
processes
message passing
distribution
monitor/linking

35 / 1

