Distributed transactions

@ Several independent transaction servers should be coordinated in one

Johan Montelius transaction.
KTH @ How do we coordinate operations to guarantee serial equivalence?
HT15

1/22

the architecture :
transaction servers

transaction servers

N
N
N

Pt server A
server A L7

(e T
iRt SELCECEEPTEEEE A _.--"Operation(tid) ___.-

- e ,” ’_—"—
R ST closeTransaction(tid).” I _.--operation(tid)

. -

th _.openTransaction __.-opération(tid) e T server C
N JIPTT server C Ea

client

one-phase commit two-phase commit

@ Client sends closeTransaction to coordinator. @ phase one: ask participants to vote for commit or abort
e Coordinator tells participants to commit the transaction. e if voting for commit one has to be able to commit even after a node crash
o Problem: e if anyone aborts all must abort
0 ? @ phase two: inform all participants of the result
5/22 6/22
Consensus Two-phase commit
coordinator participant
client ask for commit ~~-.__ _prepare
Two-phase commit is a consensus protocol but: RN
> | validate
o all servers must vote promise ___ - -- preépare
@ if any server wants to abort then we abort . PP
collect all replies| ¢~
if all promise | . .
! P ! ‘*~--_c_qrpm|t
report to client "7 | close transaction

Two-phase commit what if ..

) participating server
closeTransaction —

prepare — (yalidate @ a participating server crashes before making a promise

prepare @ a participating server crashes after having promised

successful failed @ the coordinator crashes before asking for a promise
abort @ the coordinator crashes but you have made a promise

all promise one abort commit two-phase commit can be suspended waiting for a crashed coordinator
9/22 10 /22
if we know our peers Three-phase commit

préparé — | validate

Assume that the participants know each other. _]
o If in the promised state and

_ successfu failed coordinator crashes, and no

If the coordinator crashes: abort non-crashed participant is in the

@ and no participant was told to commit, then it is safe to abort decided state then abort, otherwise

@ if one participant was told to commit, then we should all commit commit.

ready e If in the decided state and
: . . coordinator crashes then commit
What if the coordinator and one participant has crashed and none of the decided
commit

surviving participants have received a commit message?

Relies on perfect failure detectors - and that we know who is in the group.

concurrency control the danger of locking

Assume we implement strict two-phase locking and need to take the locks for

@ lockin
ne foo, bar and zot.

@ optimistic

@ timestam .
P What does it mean and what should we do?

13 /22 14 /22

avoid or handle a distributed state

p0 pl ¢ p2 p3
c O——6——0 >
You can either avoid dead-locks or detect them. N N
A . ’
\"‘, "o
L4 .
We are in a dead-lock if T is waiting for S that is waiting for... that is waiting for q0 ql R 442 R a3
o0—O6 ‘ O N N
T. \ K 7 \ ?
l' ""
Examine the state and look for circular dependencies. r0 ':' rl /" r2
' . o o R
\J \ L4

deadlock detection phantom deadlock

-

T lock S request T ‘release
A O Oz’ O—0s
What if: L\ o \
@ server A reports: S is waiting for T il
@ server B reports: T is waiting for U Ulock T request U yélease
. . B o) O N
@ server C reports: U is waiting for S \w \w T ?
A\S
Deadlock detected, let’s do something S lock U-request S release
C o fa o N
O O (> ?

~
~

17 /22 18 /22

detection optimistic concurrency control

Transactions should be validated in a total order.
How do we detect deadlocks?

What if transaction T is validated at A and transaction S at B?

timestamp order Summary

Distributed transactions Distributed deadlock
@ a global total order of transactions @ hard to prevent
@ if one server needs to abort, then @ simpler to detect

all should abort Concurrency control

Two-phase commit @ locks

A global timestamp that all transaction servers agree to. _ o
@ coordinator asks participants to

prepare

@ optimistic

@ timestamp
@ participants promise to commit (or

aborts)

@ coordinator directs participants to
commit

