
Distributed transactions

Johan Montelius

KTH

HT15

1 / 22

Problem

Several independent transaction servers should be coordinated in one
transaction.
How do we coordinate operations to guarantee serial equivalence?

2 / 22

the architecture
transaction servers

server A

server B

server C

client

coordinator

openTransactiontid operation(tid)

join(tid)

3 / 22

transaction servers

server A

server B

server C

client

coordinator
operation(tid)

join(tid)

operation(tid)closeTransaction(tid)

4 / 22



one-phase commit

Client sends closeTransaction to coordinator.
Coordinator tells participants to commit the transaction.
Problem:

?

5 / 22

two-phase commit

phase one: ask participants to vote for commit or abort
if voting for commit one has to be able to commit even after a node crash
if anyone aborts all must abort

phase two: inform all participants of the result

6 / 22

Consensus

Two-phase commit is a consensus protocol but:

all servers must vote
if any server wants to abort then we abort

7 / 22

Two-phase commit
coordinator participant

client ask for commit prepare

validate

preparepromise

collect all replies

if all promise commit

close transactionreport to client

8 / 22



Two-phase commit

startcloseTransaction

collect

commit abort

prepare

all promise one abort

participating server

validateprepare

promise abort

commit

successful failed

commit

abort

9 / 22

what if ..

a participating server crashes before making a promise
a participating server crashes after having promised
the coordinator crashes before asking for a promise
the coordinator crashes but you have made a promise

two-phase commit can be suspended waiting for a crashed coordinator

10 / 22

if we know our peers

Assume that the participants know each other.

If the coordinator crashes:
and no participant was told to commit, then it is safe to abort
if one participant was told to commit, then we should all commit

What if the coordinator and one participant has crashed and none of the
surviving participants have received a commit message?

11 / 22

Three-phase commit

validateprepare

promise abort

decided commit

successful failed

ready

abort

commit

If in the promised state and
coordinator crashes, and no
non-crashed participant is in the
decided state then abort, otherwise
commit.
If in the decided state and
coordinator crashes then commit

Relies on perfect failure detectors - and that we know who is in the group.
12 / 22



concurrency control

locking
optimistic
timestamp

13 / 22

the danger of locking

Assume we implement strict two-phase locking and need to take the locks for
foo, bar and zot.

What does it mean and what should we do?

14 / 22

avoid or handle

You can either avoid dead-locks or detect them.

We are in a dead-lock if T is waiting for S that is waiting for... that is waiting for
T.

Examine the state and look for circular dependencies.

15 / 22

a distributed state

p0

q0

r0

q1

p1

r1

q2

p2

q3

r2

p3

16 / 22



deadlock detection

What if:
server A reports: S is waiting for T
server B reports: T is waiting for U
server C reports: U is waiting for S

Deadlock detected, let’s do something

17 / 22

phantom deadlock

A

B

C

U lock

T lock

S lock

T request U release

S request

U request S release

T release

18 / 22

detection

How do we detect deadlocks?

19 / 22

optimistic concurrency control

Transactions should be validated in a total order.

What if transaction T is validated at A and transaction S at B?

20 / 22



timestamp order

A global timestamp that all transaction servers agree to.

21 / 22

Summary

Distributed transactions
a global total order of transactions
if one server needs to abort, then
all should abort

Two-phase commit
coordinator asks participants to
prepare
participants promise to commit (or
aborts)
coordinator directs participants to
commit

Distributed deadlock
hard to prevent
simpler to detect

Concurrency control
locks
optimistic
timestamp

22 / 22


