Distributed Hash Tables
Distributed Hash Tables o Large scale data bases
o hundreds of servers

@ High churn rate

Johan Montelius o servers will come and go

KTH @ Benefits
o fault tolerant
HT15 e high performance

o self administrating

1/26 2/26

A key-value store Unique identifiers

We need unique identifiers to identify objects.

@ Identify : how to uniquely identify an object How to select identifiers:

@ Store: how to distribute objects among servers @ select a name
@ Route: how to find an object @ a cryptographic hash of the name
@ a cryptographic hash of the object

why hash?

name distribution cryptographic hash functions

A cryptographic hash function will give us an even distribution of the keys.

5/26 6/26

hashing keys add a server

at three-o’'clock-in-the-morning do:

random distribution

double linked circle

€ --

o P70 «_

@ predecessor
@ successor

@ how do we insert a new
node

@ concurrently

circular domain

green:29

|

yellow:250

stabilization

Let's play a game!

blue:45

red:120

@ responsibility: from your
predecessor to your number

@ when inserted: take over
responsibility

@ talk to the node in front of
you

10/26

s: - Who is your predecessor?

q: - It’'s p at 70.

s: - Why don't you point to me!
p: - Who is your predecessor?
q: - It's s at 97.

p: - Hmmm, that's a better
SuCCessor.

@ p: - Who is your predecessor?
@ s: - | don't have one.

@ p: - Why don't you point to mel!

Stabilization Crashing nodes

€ - <
-2 P70 &
III:\ \\x\ \\\
S o _ oo f)182\‘ @ monitor neighbors
Stabilization is run periodically: allow nodes to be inserted concurrently. AN AN .
' o @ safety pointer
\ N \
. . Y oy ! @ detect crash
Inserted node will take over responsibility for part of a segment. \ o .
N e-s07 @ update forward pointer
PR . S @ update safety
’ ¥ ’ .-
. q:120 @ stabilize
M - ”/ ,71
--- .

14 /26

Russian roulette replication

Where should we store a replica of our data?

€=~ €--
- P70 «_ -, p:70
~ \\ , ~
\\ \\ ’/ \\
‘\ \ B \\
AY N 1 AY
NN s07 ' ¥
AY . 1
. vl 1 1
How many safety pointers do we need? oA : '
VoL \ »
1 ! ! ! 1
1 ! ! ' 1
1 ! ! \\ 1
1 ! ! \]
h 1 ll \ 1
I/ /I h ‘\\ II
'S /I I’ \J ’
b 7
. 4
q:120 «-~ q:120
PR B
{--" ’/’ {--- -
15 /26 -7 -7

-—- - 16 / 26

Routing overlay leaf set

Assume that each node holds a leaf set of its closest (£/) neighbors.

@ The problem of finding an object in our distributed table:
o nodes can join and crash We can jump / nodes in each routing step but we still have complexity of O(n).
o trade-off between routing overhead and update overhead

Leaf set is updated in O(/).

In the worst case we can always forward a request to our successor.
The leaf set could be as small as only the immediate neighbors but is often

chosen to be a handful.

17 /26 18 /26
Improvement Pastry
337 20 1020 read 222
”/‘—/\ ~~\\\\\ 40 “ ’//,
310 .~ N B0 T , , ,
J -- RN, A routing table that with rows, each row represents one level of routing.
v S @ we're looking for the
K //’ ! , 70 responsible node of an
280 | U ' o5 object @ 32 rows
267 g \‘, /,/"/ i\ i @ each router hop brings us © 16 entries per row
' /,'/// \ ! closer to the responsible @ any node found in 32 hops
250 . SR \ ,’I 103 node @ maximal number of nodes 1632 or 2128 (more than enough)
‘\\v R /! 112 @ the /eaf set gives us the e search is O(lg(n)) where n is number of nodes
238 .\ 120 final destination
AN .~ 130
224 - .
Tt --7 145
210 10K .-~ 158 19/26 20 /96

the price of fast routing network aware routing
How do we keep the routing tables updated?
337390 1099 add 230
Tl 40
310 .- N S b0 T
YN0 @ when inserting new node
@ attach to the network-wise

337390 1099 read 222
//4" I ~~\\\ 40 ¢ - ,’/I
310 /,, //IT\‘——""_::_:\:\‘ 50 ______ ’
T ’.'\\ el 0o @ be lazy / ,‘, N
/ Ly S 70 . ' ' 2 \
280/ s IR @ detect failed nodes when 280 ; L | \ 85
! gl ! 85 used 267 | P I'L/ e ' ,: closest node
, | : ° rc.>ute in alternative oY ,/Q{, _______ - \\ ,:' 103 @ adopt the routing entries
direction 250 N 112 on the way down
238 \\ ,/I 120
2594\\ _-2 130
o -7 145
22/26

267
VS \ /103
E S, /112 @ ask neighbors of alternative
238 \\ 7’ 120
N e node
224 \\\ ’// 130 210
91g T eenn- AL 195 170158
195 170
overlay networks DHT usage

Unstructured Large scale key-value store.
o fault tolerant system in high churn rate environment

Structured
o takes time to add or delete nodes
@ takes time to add objects
@ easy to find objects
24 /26

@ easy to add or delete nodes
@ high availability low maintenance

@ easy to add objects
@ takes time to find objects

The Pirate Bay

' Riak

@ replaces the tracker by a DHT o large scale key-value store

o
® []
@ clients connects as part in the DHT '.ﬁ' rI q k @ inspired by Amazon Dynamo

@ DHT keeps track of peers that @ implemented in Erlang
share content

The Pirate Wap

25 /26 26 /26

Summary DHT

@ why hashing?
@ distribute storage in ring
@ replication

@ routing

