Distributed Hash Tables
Distributed Hash Tables o Large scale data bases
o hundreds of servers

@ High churn rate

Johan Montelius o servers will come and go

KTH @ Benefits
o fault tolerant
HT15 e high performance

o self administrating
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A key-value store Unique identifiers

We need unique identifiers to identify objects.

@ Identify : how to uniquely identify an object How to select identifiers:

@ Store: how to distribute objects among servers @ select a name
@ Route: how to find an object @ a cryptographic hash of the name
@ a cryptographic hash of the object

why hash?



name distribution cryptographic hash functions

A cryptographic hash function will give us an even distribution of the keys.
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hashing keys add a server

at three-o’'clock-in-the-morning do:
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@ how do we insert a new
node

@ concurrently
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stabilization

Let's play a game!

blue:45

red:120

@ responsibility: from your
predecessor to your number

@ when inserted: take over
responsibility

@ talk to the node in front of
you
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s: - Who is your predecessor?

q: - It’'s p at 70.

s: - Why don't you point to me!
p: - Who is your predecessor?
q: - It's s at 97.

p: - Hmmm, that's a better
SuCCessor.

@ p: - Who is your predecessor?
@ s: - | don't have one.

@ p: - Why don't you point to mel!



Stabilization Crashing nodes
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Russian roulette replication

Where should we store a replica of our data?
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Routing overlay leaf set

Assume that each node holds a leaf set of its closest (£/ ) neighbors.

@ The problem of finding an object in our distributed table:
o nodes can join and crash We can jump / nodes in each routing step but we still have complexity of O(n).
o trade-off between routing overhead and update overhead

Leaf set is updated in O(/).

In the worst case we can always forward a request to our successor.
The leaf set could be as small as only the immediate neighbors but is often

chosen to be a handful.

17 /26 18 /26
Improvement Pastry
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the price of fast routing network aware routing
How do we keep the routing tables updated?
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overlay networks DHT usage

Unstructured Large scale key-value store.
o fault tolerant system in high churn rate environment

Structured
o takes time to add or delete nodes
@ takes time to add objects
@ easy to find objects
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@ easy to add or delete nodes
@ high availability low maintenance

@ easy to add objects
@ takes time to find objects



The Pirate Bay

' Riak

@ replaces the tracker by a DHT o large scale key-value store

o
® [ ]
@ clients connects as part in the DHT '.ﬁ' rI q k @ inspired by Amazon Dynamo

@ DHT keeps track of peers that @ implemented in Erlang
share content

The Pirate Wap

25 /26 26 /26

Summary DHT

@ why hashing?
@ distribute storage in ring
@ replication

@ routing



