
Coordination

Johan Montelius

KTH

2015

1 / 29

Coordination

Why is coordination important?

Why is it a problem to implement?

2 / 29

Coordination

Coordination in a distributed system:
no fixed coordinator
no shared memory
failure of nodes and networks

The hardest problem is often knowing who is alive.

3 / 29

Failure detectors

How do we detect that a process has crashed and how reliable
can the result be?

unreliable: result in unsuspected or suspected failure
reliable: result in unsuspected or failed

Reliable detectors are only possible in synchronous systems.

4 / 29



Examples of coordiantion

mutual exclusion - who is to enter a critical section
leader election - who is to be the new leader
group communication - same messages in the same order

5 / 29

Mutual exclusion

Safety: at most one process may be in critical section at
a time
Liveness: starvation free, deadlock free
Ordering: enter in request happened-before order

6 / 29

Evaluation of algorithms

Number of messages needed.
Client delay: time to enter critical section
Synchronization delay: time between exit and enter

7 / 29

A central server
Why not have one server that takes care of everything?

request a token from the
server
wait for a token that
grants access
enter critical section
exit critical section and
return the token

requestgrantedreturn

Requirements: saftey, liveness, ordering?

Evaluation: number of messages, client delay, synchronization
delay

8 / 29



A ring based approach

Pass a token around.

p3

p2
p1p0

pn

p4
token

pass a token around
before entering the critical
section - remove the token
when leaving the critical
section - release the token

Requirements: safety, liveness, ordering?

Evaluation: number of messages, client delay, synchronization
delay

9 / 29

A distributed approach
Why not complicate things?

To request entry:
ask all other nodes for
permission
wait for all replies (save all
requests from other
nodes)
enter the critical section
leave the critical section
(give permission to saved
request)

otherwise:
give permission to anyone

What could possibly go wrong?

How do we solve it?
10 / 29

Ricart and Agrawala

A request contains a Lamport time stamp and a process
identifier.

Request can be ordered based on the time stamp and, if time
stamps are equal, the process identifier.

When you’re waiting for permissions and receive a request
from another node:

if the request is smaller, then give permission
otherwise, save request

What order do we guarantee?

11 / 29

Maekawa’s voting algorithm
Why ask all nodes for permission, why not settle for a quorum?

To request entry:
ask all nodes your quorum
for permission
wait for all to vote for
you:

queue requests from
other nodes

enter the critical section
leave the critical section:

return all votes
vote for the first
request if any in the
queue

otherwise:
if you have not voted:

vote for the first node
to send a request

if you have voted:
wait for your vote to
return, queue requests
from other nodes
when your vote is
returned, vote for the
first request if any in
the queue

What could go wrong?

12 / 29



Forming quorums

How do we form quorums?

allow any majority of
nodes
divide nodes into groups,
any two groups must
share a node
how small can the groups
be?

13 / 29

Can we handle failures

All algorithms presented are more or less tolerant to failures.

Unreliable networks can be made reliable by retransmission
(we must be careful to avoid duplication of messages)

Crashing nodes, even if we have can detect them reliably, is a
problem.

14 / 29

Election
Election, the problem of finding a leader in a group of nodes.

We assume that all nodes have unique identifiers.

Each node can decide which node to trust to be the leader.

Requirements:
safety: if two nodes have decided they have decided to
trust the same leader
liveness: all nodes will eventually decide

Algorithms are evaluated on: number of messages and
turnaround time.

15 / 29

A ring based approach

10

7
12

5
3 call:3

call:10

call:10

call:12

call:12

call:12

call:12

call:12

leader:12

leader:12

leader:12

leader:12

leader:12 a node starts an
election
the call is updated
the leader is
identified
and proclaimed

Requirements: safety,
liveness?

Evaluation: messages,
turnaround?

16 / 29



The bully algorithm

Electing a new leader when the current leader has died.

assumes we have reliable failure detectors
all nodes know the nodes with higher priority

Assume we give priority to the nodes with lower process
identifiers.

17 / 29

The bully algorithm

3 6 8 13 18

Who is the leader?It’s not you! Who is the leader?It’s not you!I’m the leader!

Requirements: safety, liveness? Evaluation: messages,
turnaround?

18 / 29

Group communication
Multicast a message to specified group of nodes.

application layer

group layer

network layer

cast

send receive

deliver

Reliability
integrity: a message is only
deliverd once
validity: a messages is eventually
delivered
agreement: if a node delivers a
message then all nodes will

Ordering of delivery:
FIFO: in the order of the sender
causal: in a happend-before
order
total: the same order for all
nodes

19 / 29

Basic multicast

Assuming we have a relible network layer this is simple.

A casted message is sent to all nodes in the group.

A received message is deliverd.

What if nodes fail?

20 / 29



Worst possible scenario

p1

p2
p3

p4
p5

p1

We have violated the
agreement requirement.

How do we fix it?

21 / 29

Reliable multicast

p1

p2
p3

p4
p5

p1

When receiving a message,
forward it to all nodes.

Whatch out for duplicates.

Alot of messages!

Reliable multicast often implemented by detecting failed nodes
and then fix the problem.

22 / 29

Uniform agreement

p1

p2
p3

p4
p5

p1

p2

Assume we first deliver a
received message before we
forward it.

Crashed nodes could have
delivered a message.

Uniform agreement: if any
node, correct or uncorrect,
delivers a message then all
correct node will deliver the
message.

Non-uniform agreement: if a
correct node delivers a message
then all correct node will
deliver the message.

23 / 29

Ordered multicast

FIFO: in the order of the sender
causal: in a happend-before order
total: the same order for all nodes

24 / 29



Sequencer

The simple way to implement ordered multicast.

multicast the message to
all nodes
place in a hold-back queue
multicast a sequence
number to all nodes
deliver in total order

p1

p2
p3

p4
seq

msg k

msg k

ms
g k m

sg
k

seq
k-ise

q
k-
iseq k-i

seq k-i

25 / 29

The ISIS algorithm

Similar to Ricart and Agrawala

multicast the message to
all nodes
place in hold-back queue
propose a sequence
number
select the highest
multicast the sequence
number to all nodes
deliver in total order

p1

p2
p3

p4
p5

msg k
msg k

ms
g k m

sg
k

prop i1
prop i2

pro
p i

4

pr
op

i 5

seq k-i
seq k-i

seq
k-i seq

k-i

Why does this work?

26 / 29

Causual ordering

Same as ISIS but, include a vector clock in the message.

27 / 29

Atomic Multicast

Atomic multicast: a reliable total order muclticast.

Solves both leader election and mutual exclusion.

28 / 29



Summary

Coordination:

mutual exclusion
leader election
group communincation

Biggest problem is dealing with failiing nodes.

29 / 29


