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a tree
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the node

public class BinaryTree {
public Node root;
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the node

public class BinaryTree {

i N
public Node root; FEETENO LEEO |l

Integer key;
Integer value;
Node 1left;
Node right;
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add a new key-value pair
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BinaryTree add(Integer key, Integer value)

public void add(Integer key, Integer value) {
if (root == null)
root = new Node(key, value);
else
root.add (key, value);
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Node add(Integer key, Integer value)

private void add(Integer key, Integer value) {

if (this.key == key) {
this.value = value;
return;
+
if (this.key > key)
if (this.left != null)
this.left.add(key, value);
else

this.left = new Node(key,value);
else
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lookup - find the value of a key
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lookup - find the value of a key
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lookup - find the value of a key
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lookup(Integer key)

public class BinaryTree {

public int lookup(Integer key) {

Node cur = this.proot;
while (cur != null) {
if (cur.key == key)

return cur.value;
if (cur.key < key)

cur = cur.right;
else
cur = cur.left;

}
return null;
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asymptotic complexity

» What is the run time complexity of lookup()?
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asymptotic complexity

» What is the run time complexity of lookup()?
» Depending on what?
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asymptotic complexity

» What is the run time complexity of lookup()?
» Depending on what?

Not all trees are balanced :-(
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delete 2, 7 or 13
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delete 2, 7 or 13

Deleting a leaf is simple.
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BinaryTree delete(Integer key)

public void delete(Integer key) {

if (root == null)
return,;

root = root.delete (key);
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BinaryTree delete(Integer key)

public void delete(Integer key) {

if (root == null)
return,;

root = root.delete (key);

Node delete(key) should return a new root where the key-value
node is deleted.
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Node delete(Integer key)

private Node delete(Integer k) {
if (this.key == k) {
// what do we do?

+

if (this.key < k && this.right != null)
Node deleted = this.right.delete(k);
this.right = deleted;
return this;

+

if (this.key > k && this.left != null)

+

return this;

{

{
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Node delete(Integer key)

if (this.key == k) {
if (this.left == null)
return this.right;
if (this.right == null)
return this.left;
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Node delete(Integer key)

if (this.key == k) {
if (this.left == null)
return this.right;
if (this.right == null)
return this.left;

This takes care of all the simple cases.
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delete 6
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delete 6
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Node delete(Integer key)

if (this.key == k) {

if (this.left ==
return this.right;

if (this.right ==
return this.left;

Node promoted = this.right.promote();

promoted.left this.left;

return promoted;
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Node delete(Integer key)

if (this.key == k) {
if (this.left == null)
return this.right;
if (this.right == null)
return this.left;
Node promoted = this.right.promote();
promoted.left = this.left;
return promoted;

What should promote() do?.

15/18



delete 12 by promoting 13




delete 12 by promoting 13
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delete 12 by promoting 13
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delete 12 by promoting 13
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delete 12 by promoting 13
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delete 12 by promoting 13

The method promote() should return the root of an ordered tree,
with the left branch empty.
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delete 12 by promoting 13
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Node promote()

private Node promote () {

if (this.left == null)
return this;

Node cur = this;

while ( cur.left.left !'= null) {
cur = cur.left;

+

Node ret = cur.left;

cur.left = cur.left.right;

ret.right = this;
return ret;
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nota bene
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nota bene

The add() and delete() operatins that we have will not keep the
tree well balanced.
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