Trees

Johan Montelius

KTH

HT22

1/18

a tree

root:

2/18

a tree

2/18

a tree

2/18

2/18

2/18

2/18

the node

public class BinaryTree {
public Node root;

3/18

the node

public class BinaryTree {

i N
public Node root; FEETENO LEEO |l

Integer key;
Integer value;
Node 1left;
Node right;

3/18

add a new key-value pair

4/18

add a new key-value pair

cur:

4/18

add a new key-value pair

4/18

add a new key-value pair

cur:

4/18

add a new key-value pair

cur:

4/18

BinaryTree add(Integer key, Integer value)

public void add(Integer key, Integer value) {
if (root == null)
root = new Node(key, value);
else
root.add (key, value);

5/18

Node add(Integer key, Integer value)

private void add(Integer key, Integer value) {

if (this.key == key) {
this.value = value;
return;
+
if (this.key > key)
if (this.left != null)
this.left.add(key, value);
else

this.left = new Node(key,value);
else

6/18

lookup - find the value of a key

/@\

7/18

lookup - find the value of a key

cur:
/@\

7/18

lookup - find the value of a key

/E\

7/18

lookup - find the value of a key

cur:
\»/m\

7/18

lookup - find the value of a key

cur:

7/18

lookup(Integer key)

public class BinaryTree {

public int lookup(Integer key) {

Node cur = this.proot;
while (cur != null) {
if (cur.key == key)

return cur.value;
if (cur.key < key)

cur = cur.right;
else
cur = cur.left;

}
return null;

3

" 8/18

asymptotic complexity

» What is the run time complexity of lookup()?

9/18

asymptotic complexity

» What is the run time complexity of lookup()?
» Depending on what?

9/18

asymptotic complexity

» What is the run time complexity of lookup()?
» Depending on what?

Not all trees are balanced :-(

9/18

delete 2, 7 or 13

10/18

delete 2, 7 or 13

Deleting a leaf is simple.

10/18

BinaryTree delete(Integer key)

public void delete(Integer key) {

if (root == null)
return,;

root = root.delete (key);

11/18

BinaryTree delete(Integer key)

public void delete(Integer key) {

if (root == null)
return,;

root = root.delete (key);

Node delete(key) should return a new root where the key-value
node is deleted.

11/18

Node delete(Integer key)

private Node delete(Integer k) {
if (this.key == k) {
// what do we do?

+

if (this.key < k && this.right != null)
Node deleted = this.right.delete(k);
this.right = deleted;
return this;

+

if (this.key > k && this.left != null)

+

return this;

{

{

12/18

Node delete(Integer key)

if (this.key == k) {
if (this.left == null)
return this.right;
if (this.right == null)
return this.left;

13/18

Node delete(Integer key)

if (this.key == k) {
if (this.left == null)
return this.right;
if (this.right == null)
return this.left;

This takes care of all the simple cases.

13/18

delete 6

14/18

delete 6

14/18

delete 6

14/18

delete 6

14/18

delete 6

12
6] S\

15

14/18

Node delete(Integer key)

if (this.key == k) {

if (this.left ==
return this.right;

if (this.right ==
return this.left;

Node promoted = this.right.promote();

promoted.left this.left;

return promoted;

15/18

Node delete(Integer key)

if (this.key == k) {
if (this.left == null)
return this.right;
if (this.right == null)
return this.left;
Node promoted = this.right.promote();
promoted.left = this.left;
return promoted;

What should promote() do?.

15/18

delete 12 by promoting 13

delete 12 by promoting 13

16/18

delete 12 by promoting 13

N
(@)}
L

[H

5

16/18

delete 12 by promoting 13

16/18

delete 12 by promoting 13

16/18

delete 12 by promoting 13

16/18

delete 12 by promoting 13

The method promote() should return the root of an ordered tree,
with the left branch empty.

16/18

delete 12 by promoting 13

16/18

Node promote()

private Node promote () {

if (this.left == null)
return this;

Node cur = this;

while (cur.left.left !'= null) {
cur = cur.left;

+

Node ret = cur.left;

cur.left = cur.left.right;

ret.right = this;
return ret;

17/18

nota bene

18/18

nota bene

The add() and delete() operatins that we have will not keep the
tree well balanced.

18/18

