
Queues

Johan Montelius
KTH

HT22

1 / 22

a stack

Operations: push() and pop(),
First value pushed is the last item popped - last in first out

Perfect when guiding an execution of a program.

2 / 22

a stack

Operations: push() and pop(),
First value pushed is the last item popped - last in first out

Perfect when guiding an execution of a program.

2 / 22

when a stack fails

Please push yourself on the stack
and it will soon be your turn.

3 / 22

when a stack fails

Please push yourself on the stack
and it will soon be your turn.

3 / 22

when a stack fails

Please push yourself on the stack
and it will soon be your turn.

3 / 22

the queue

First in first out.

enqueue(): Add item to the queue.
dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

4 / 22

the queue

First in first out.

enqueue(): Add item to the queue.
dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

4 / 22

the queue

First in first out.

enqueue(): Add item to the queue.

dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

4 / 22

the queue

First in first out.

enqueue(): Add item to the queue.
dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

4 / 22

a linked list implementation

4 3 2 1

queue

5 / 22

a linked list implementation
public class Queue ()<T> {

Node queue;

private class Node {
T item;
Node next;

private Node(T itm , Node nxt) {
this.item = itm;
this.next = nxt;

}
}

:
6 / 22

a linked list implementation

:
public enqueue (T itm) {

this.queue = Node(itm , queue);
}

7 / 22

a linked list implementation
public dequeue () {

if (this.queue == null)
return null;

Node prv = null;
Node nxt = this.queue;
while (nxt.next != null) {

prv = nxt;
nxt = nxt.next;

}
if (prv == null)

this.queue = null;
else

prv.next = null;
return nxt.item;

8 / 22

a linked list implementation

There must be a simpler way.

9 / 22

a linked list implementation

There must be a simpler way.

9 / 22

a linked list implementation

4 3 2 1

front
ultimo

1 2 3 4

ultimo
front

10 / 22

a linked list implementation

4 3 2 1

front
ultimo

1 2 3 4

ultimo
front

10 / 22

a linked list implementation

public class Queue ()<T> {

Node front;
Node ultimo;
:

11 / 22

let’s try an array

public class QueueArray <T> {

T[] queue;

int first = 0;
int last = 0;

int size = 10;

public QueueArray () {
this.queue = (T[]) new Object[this.size];

}
:

12 / 22

the empty array

public boolean empty () {
return (first == last);

}

13 / 22

when first <= last

4 5 6 7- - - - - -

first last

size = 10

14 / 22

when last < first

0 1 2 7 8 9- - - -

firstlast

size = 10

15 / 22

modulo the size

0
1

2

-

-
-

-

7

8

9

first
last

16 / 22

dynamic size

What should we do if the queue is full?

Should we shrink the size of the array?

17 / 22

dynamic size

What should we do if the queue is full?
Should we shrink the size of the array?

17 / 22

an alternative implementation

An implementation often used in functional programming
languages.

18 / 22

an alternative implementation

An implementation often used in functional programming
languages.

18 / 22

an alternative implementation

1 2 3 4

7 6 5
back
front

19 / 22

a linked list, almost as before
public class Queue ()<T> {

Node back;
Node front;

private class Node {
T item;
Node next;

private node(T itm , Node nxt) {
this.item = itm;
this.next = nxt;

}
}

:
20 / 22

a linked list, almost as before

public void enqueue (T itm) {
back = Node(itm , back);

}

public T dequeue () {
T itm = front.item;
front = front.next;
return itm;

}
:

Perfect, just one small detail.

21 / 22

a linked list, almost as before

public void enqueue (T itm) {
back = Node(itm , back);

}

public T dequeue () {
T itm = front.item;
front = front.next;
return itm;

}
:

Perfect, just one small detail.
21 / 22

when to use queues

Concurrent programs: handle requests in the order that they
arrive.

Breadth-first traversal of a tree, task are generated but need
not be solved right away.

22 / 22

when to use queues

Concurrent programs: handle requests in the order that they
arrive.
Breadth-first traversal of a tree, task are generated but need
not be solved right away.

22 / 22

