
Ordo - big-O

Johan Montelius
KTH

HT23

1 / 15

big-O

An estimate of the change in execution time...
when the data set grows large.

2 / 15

big-O

An estimate of the change in execution time...
when the data set grows large.

2 / 15

big-O

An estimate of the change in execution time...
when the data set grows large.

2 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

an example

public static boolean search(int[] arr , int key) {
for(int i = 0; i < arr.length; i++) {

if (arr[i] == key)
return true;

}
return false;

}

c1: set up arguments
c2: i = 0
c3: i < arr.length

c4: arr[i] == key
c5: i++
c6: return

3 / 15

the execution time

t(n) = c1 + c2 + (c3 + c4 + c5) × n + c3 + c6

c7 = c3 + c4 + c5

c8 = c1 + c2 + c3 + c6

t(n) = c7 × n + c8

4 / 15

the execution time

t(n) = c1 + c2 + (c3 + c4 + c5) × n + c3 + c6

c7 = c3 + c4 + c5

c8 = c1 + c2 + c3 + c6

t(n) = c7 × n + c8

4 / 15

the execution time

t(n) = c1 + c2 + (c3 + c4 + c5) × n + c3 + c6

c7 = c3 + c4 + c5

c8 = c1 + c2 + c3 + c6

t(n) = c7 × n + c8

4 / 15

the execution time

t(n) = c1 + c2 + (c3 + c4 + c5) × n + c3 + c6

c7 = c3 + c4 + c5

c8 = c1 + c2 + c3 + c6

t(n) = c7 × n + c8

4 / 15

big-O

t(n) = c7 × n + c8

t(n) ∈ O(n)
since
... there is a k such that k × n is always greater than t(n) from
some (large) value of n

5 / 15

big-O

t(n) = c7 × n + c8

t(n) ∈ O(n)
since
... there is a k such that k × n is always greater than t(n) from
some (large) value of n

5 / 15

big-O

t(n) = c7 × n + c8

t(n) ∈ O(n)
since
... there is a k such that k × n is always greater than t(n) from
some (large) value of n

5 / 15

big-O

t(n) = c7 × n + c8

t(n) ∈ O(n)
since
... there is a k such that k × n is always greater than t(n) from
some (large) value of n

5 / 15

nota bene

0 5 10 15 20 25 30 35 400

20

40

60

80

100

t(n)

k × n

n

tim
e

c7 = 2, c8 = 20 k = 2.2

6 / 15

nota bene

0 20 40 60 80 100 120 140 160 180 2000

100

200

300

400

t(n)

k × n

n

tim
e

7 / 15

What about this?

t(n) = 0.1 × n2 + 5.6 × n + 123

0 20 40 60 80 100 120 140 160 180 2000

200

400

600

123
5.6 × x 0.1 × x 2

n

tim
e

8 / 15

What about this?

t(n) = 0.1 × n2 + 5.6 × n + 123

0 20 40 60 80 100 120 140 160 180 2000

200

400

600

123
5.6 × x 0.1 × x 2

n

tim
e

8 / 15

What about this?

t(n) = 0.1 × n2 + 5.6 × n + 123

0 20 40 60 80 100 120 140 160 180 2000

200

400

600

123
5.6 × x 0.1 × x 2

n

tim
e

8 / 15

kuggfråga

t(n) ∈ O(n2)
What is the execution time for n = 1000?
What will happen if we double the size of a large data set?

9 / 15

kuggfråga

t(n) ∈ O(n2)
What is the execution time for n = 1000?
What will happen if we double the size of a large data set?

9 / 15

kuggfråga

t(n) ∈ O(n2)
What is the execution time for n = 1000?
What will happen if we double the size of a large data set?

9 / 15

kuggfråga

t(n) ∈ O(n2)
What is the execution time for n = 1000?
What will happen if we double the size of a large data set?

9 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

kuggfråga

t(n) = 0.1 × n2 + 5.6 × n + 123

t(10) = 189ns

t(20) = 275ns

t(40) = 507ns

t(80) = 1211ns

t(1000) = 105µs

t(2000) = 411µs

t(4000) = 1620µns

t(8000) = 6440µs

10 / 15

log, lg, ln ..

loga(x) = logb(x)
logb(a)

log10(n) = log2(n)
log2(10)

log10(n) = k × log2(n)

k × log2(n) = O(log2(n))

11 / 15

log, lg, ln ..

loga(x) = logb(x)
logb(a)

log10(n) = log2(n)
log2(10)

log10(n) = k × log2(n)

k × log2(n) = O(log2(n))

11 / 15

log, lg, ln ..

loga(x) = logb(x)
logb(a)

log10(n) = log2(n)
log2(10)

log10(n) = k × log2(n)

k × log2(n) = O(log2(n))

11 / 15

log, lg, ln ..

loga(x) = logb(x)
logb(a)

log10(n) = log2(n)
log2(10)

log10(n) = k × log2(n)

k × log2(n) = O(log2(n))

11 / 15

which log scale

10 20 40 100 160 320 640 1,0000

2

4

6

8

10

log2(n)

log4(n)

log10(n)

n

tim
e

12 / 15

best, worst or average

Linear search in an array of size n.
If you’re lucky, you will find it in the first position - O(1)
If you’re not lucky, you will have to search to the end - O(n)
In average you will have to search through half the array - O(n)

We often only care about the average case - but need to be aware
of the worst case.

13 / 15

best, worst or average

Linear search in an array of size n.
If you’re lucky, you will find it in the first position - O(1)
If you’re not lucky, you will have to search to the end - O(n)
In average you will have to search through half the array - O(n)

We often only care about the average case - but need to be aware
of the worst case.

13 / 15

best, worst or average

Linear search in an array of size n.
If you’re lucky, you will find it in the first position - O(1)
If you’re not lucky, you will have to search to the end - O(n)
In average you will have to search through half the array - O(n)

We often only care about the average case - but need to be aware
of the worst case.

13 / 15

best, worst or average

push() operation in a dynamic stack
If the stack is big enogh - O(1)
If you have to increase the stack - O(n)
In average ?

14 / 15

best, worst or average

push() operation in a dynamic stack
If the stack is big enogh - O(1)
If you have to increase the stack - O(n)
In average ?

14 / 15

best, worst or average

push() operation in a dynamic stack
If the stack is big enogh - O(1)
If you have to increase the stack - O(n)
In average ?

14 / 15

best, worst or average

push() operation in a dynamic stack
If the stack is big enogh - O(1)
If you have to increase the stack - O(n)
In average ?

14 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

15 / 15

