Ordo - big-O

Johan Montelius
KTH
HT23

big-0

An estimate of the change in execution time... when the data set grows large.

big-0

An estimate of the change in execution time... when the data set grows large.

big-O

An estimate of the change in execution time... when the data set grows large.

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: arr $[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: i = 0
- c3: i < arr.length
- c4: arr $[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: arr $[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: arr $[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: arr $[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: $\operatorname{arr}[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: $\operatorname{arr}[i]==$ key
- c5: i++
- c6: return

an example

```
public static boolean search(int[] arr, int key) {
    for(int i = 0; i < arr.length; i++) {
        if (arr[i] == key )
        return true;
    }
    return false;
}
```

- c1: set up arguments
- c2: $\mathrm{i}=0$
- c3: i < arr.length
- c4: $\operatorname{arr}[i]==$ key
- c5: i++
- c6: return

the execution time

$$
\begin{gathered}
t(n)=c_{1}+c_{2}+\left(c_{3}+c_{4}+c_{5}\right) \times n+c_{3}+c_{6} \\
c_{7}=c_{3}+c_{4}+c_{5} \\
c_{8}=c_{1}+c_{2}+c_{3}+c_{6} \\
t(n)=c_{7} \times n+c_{8}
\end{gathered}
$$

the execution time

$$
\begin{gathered}
t(n)=c_{1}+c_{2}+\left(c_{3}+c_{4}+c_{5}\right) \times n+c_{3}+c_{6} \\
c_{7}=c_{3}+c_{4}+c_{5} \\
c_{8}=c_{1}+c_{2}+c_{3}+c_{6} \\
t(n)=c_{7} \times n+c_{8}
\end{gathered}
$$

the execution time

$$
\begin{gathered}
t(n)=c_{1}+c_{2}+\left(c_{3}+c_{4}+c_{5}\right) \times n+c_{3}+c_{6} \\
c_{7}=c_{3}+c_{4}+c_{5} \\
c_{8}=c_{1}+c_{2}+c_{3}+c_{6} \\
t(n)=c_{7} \times n+c_{8}
\end{gathered}
$$

the execution time

$$
\begin{gathered}
t(n)=c_{1}+c_{2}+\left(c_{3}+c_{4}+c_{5}\right) \times n+c_{3}+c_{6} \\
c_{7}=c_{3}+c_{4}+c_{5} \\
c_{8}=c_{1}+c_{2}+c_{3}+c_{6} \\
t(n)=c_{7} \times n+c_{8}
\end{gathered}
$$

big-0

$$
\begin{gathered}
t(n)=c_{7} \times n+c_{8} \\
t(n) \in O(n)
\end{gathered}
$$

since
... there is a k such that $k \times n$ is always greater than $t(n)$ from some (large) value of n

big-O

$$
\begin{gathered}
t(n)=c_{7} \times n+c_{8} \\
t(n) \in O(n)
\end{gathered}
$$

since
... there is a k such that $k \times n$ is always greater than $t(n)$ from some (large) value of n

big-O

$$
\begin{gathered}
t(n)=c_{7} \times n+c_{8} \\
t(n) \in O(n)
\end{gathered}
$$

since
\ldots there is a k such that $k \times n$ is always greater than $t(n)$ from some (large) value of n

big-O

$$
\begin{gathered}
t(n)=c_{7} \times n+c_{8} \\
t(n) \in O(n)
\end{gathered}
$$

since
... there is a k such that $k \times n$ is always greater than $t(n)$ from some (large) value of n

nota bene

$c_{7}=2, c_{8}=20 k=2.2$

nota bene

What about this?

$$
t(n)=0.1 \times n^{2}+5.6 \times n+123
$$

What about this?

$$
t(n)=0.1 \times n^{2}+5.6 \times n+123
$$

What about this?

$$
t(n)=0.1 \times n^{2}+5.6 \times n+123
$$

kuggfråga

$$
t(n) \in O\left(n^{2}\right)
$$

What is the execution time for $n=1000$?
What will happen if we double the size of a large data set?

kuggfråga

$$
t(n) \in O\left(n^{2}\right)
$$

What is the execution time for $n=1000$?
What will happen if we double the size of a large data set?
kuggfråga

$$
t(n) \in O\left(n^{2}\right)
$$

What is the execution time for $n=1000$?
What will happen if we double the size of a large data set?

kuggfråga

$$
t(n) \in O\left(n^{2}\right)
$$

What is the execution time for $n=1000$?
What will happen if we double the size of a large data set?

kuggfråga

$$
\begin{array}{lrl}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10)=189 n s & t(1000) & =105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{aligned}
& t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
& t(10)=189 n s \\
& t(20)=275 n s \\
& t(40)=507 n s \\
& t(80)=1211 n s \\
& t(1000)=105 \mu s \\
& t(2000)=411 \mu s \\
& t(4000)=1620 \mu n s \\
& t(8000)=6440 \mu s
\end{aligned}
$$

kuggfråga

$$
t(n)=0.1 \times n^{2}+5.6 \times n+123
$$

$$
\begin{array}{ll}
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
t(n)=0.1 \times n^{2}+5.6 \times n+123
$$

$$
\begin{array}{ll}
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{array}{lr}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{array}{lrl}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10) & =189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{array}{lrl}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{array}{lr}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{array}{lr}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

kuggfråga

$$
\begin{array}{lr}
t(n)=0.1 \times n^{2}+5.6 \times n+123 \\
t(10)=189 n s & t(1000)=105 \mu s \\
t(20)=275 n s & t(2000)=411 \mu s \\
t(40)=507 n s & t(4000)=1620 \mu n s \\
t(80)=1211 n s & t(8000)=6440 \mu s
\end{array}
$$

$\log , \lg , \ln .$.

$$
\begin{aligned}
\log _{a}(x) & =\frac{\log _{b}(x)}{\log _{b}(a)} \\
\log _{10}(n) & =\frac{\log _{2}(n)}{\log _{2}(10)} \\
\log _{10}(n) & =k \times \log _{2}(n) \\
k \times \log _{2}(n) & =O\left(\log _{2}(n)\right)
\end{aligned}
$$

$\log , \lg , \ln .$.

$$
\begin{aligned}
\log _{a}(x) & =\frac{\log _{b}(x)}{\log _{b}(a)} \\
\log _{10}(n) & =\frac{\log _{2}(n)}{\log _{2}(10)} \\
\log _{10}(n) & =k \times \log _{2}(n) \\
k \times \log _{2}(n) & =O\left(\log _{2}(n)\right)
\end{aligned}
$$

$\log , \lg , \ln .$.

$$
\begin{gathered}
\log _{a}(x)=\frac{\log _{b}(x)}{\log _{b}(a)} \\
\log _{10}(n)=\frac{\log _{2}(n)}{\log _{2}(10)} \\
\log _{10}(n)=k \times \log _{2}(n)
\end{gathered}
$$

$k \times \log _{2}(n)=O\left(\log _{2}(n)\right)$
$\log , \lg , \ln .$.

$$
\begin{aligned}
\log _{a}(x) & =\frac{\log _{b}(x)}{\log _{b}(a)} \\
\log _{10}(n) & =\frac{\log _{2}(n)}{\log _{2}(10)} \\
\log _{10}(n) & =k \times \log _{2}(n) \\
k \times \log _{2}(n) & =O\left(\log _{2}(n)\right)
\end{aligned}
$$

which log scale

best, worst or average

Linear search in an array of size n .

- If you're lucky, you will find it in the first position - $O(1)$
- If you're not lucky, you will have to search to the end - $O(n)$
- In average you will have to search through half the array - $O(n)$ We often only care about the average case - but need to be aware of the worst case.

best, worst or average

Linear search in an array of size n.

- If you're lucky, you will find it in the first position - $O(1)$
- If you're not lucky, you will have to search to the end - $O(n)$
- In average you will have to search through half the array - $O(n)$ We often only care about the average case - but need to be aware of the worst case.

best, worst or average

Linear search in an array of size n.

- If you're lucky, you will find it in the first position - $O(1)$
- If you're not lucky, you will have to search to the end - $O(n)$
- In average you will have to search through half the array - $O(n)$ We often only care about the average case - but need to be aware of the worst case.

best, worst or average

push() operation in a dynamic stack

- If the stack is big enogh - $O(1)$
- If you have to increase the stack - $O(n)$
- In average ?

best, worst or average

push() operation in a dynamic stack

- If the stack is big enogh - $O(1)$
- If you have to increase the stack - $O(n)$
- In average ?

best, worst or average

push() operation in a dynamic stack

- If the stack is big enogh - $O(1)$
- If you have to increase the stack - $O(n)$
- In average ?

best, worst or average

push() operation in a dynamic stack

- If the stack is big enogh - $O(1)$
- If you have to increase the stack - $O(n)$
- In average ?

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best，worst or average

push（）operation in a dynamic stack

Amortized cost of push（）operation is ．．．．

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best，worst or average

push（）operation in a dynamic stack

Amortized cost of push（）operation is ．．．．

best，worst or average

push（）operation in a dynamic stack

Amortized cost of push（）operation is ．．．．

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best，worst or average

push（）operation in a dynamic stack

Amortized cost of push（）operation is ．．．．

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best，worst or average

push（）operation in a dynamic stack

Amortized cost of push（）operation is ．．．．

best，worst or average

push（）operation in a dynamic stack

Amortized cost of push（）operation is ．．．．

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

best, worst or average

push() operation in a dynamic stack

Amortized cost of push() operation is

