
Linked data structures

Johan Montelius
KTH

HT23

1 / 25

a record/object/struct

A data structure with a fixed set of (named) properties.
Properties could be of different types.
class Person {

public String name;
public Adress adress;
public int age;

:
:

}

2 / 25

a record/object/struct

A data structure with a fixed set of (named) properties.
Properties could be of different types.
class Person {

public String name;
public Adress adress;
public int age;

:
:

}

2 / 25

a record/object/struct

A data structure with a fixed set of (named) properties.
Properties could be of different types.
class Person {

public String name;
public Adress adress;
public int age;

:
:

}

2 / 25

a record/object/struct

Objects can be created and their properties used.
Person anders = new Person(...);

:
String greeting = "Hej " + anders.name;

:

Nothing new, you all know this.

3 / 25

a record/object/struct

Objects can be created and their properties used.
Person anders = new Person(...);

:
String greeting = "Hej " + anders.name;

:

Nothing new, you all know this.

3 / 25

let’s play some cards

class Card {
public Suite suite
public int value;

public Card(Suite s, int v) {
suite = s;
value = v;

}
}

public enum Suite {
HEART ,
SPADE ,
DIAMOND ,
CLUB

}

4 / 25

a deck of cards
class Deck {

Card [] cards;
first = 0;

public Deck () {
cards = Cards [4];
first = 0;

}

public void add(Card crd) {

:
}

}

We’ve seen this before. 5 / 25

a deck of cards
class Deck {

Card [] cards;
first = 0;

public Deck () {
cards = Cards [4];
first = 0;

}

public void add(Card crd) {

:
}

}

We’ve seen this before. 5 / 25

a deck of cards
.first 3.cards

6 / 25

how about this

class Deck {
public Cell first;

private class Cell {
Card card;
Cell rest;

}

public Deck () {
first = null;

}
:

7 / 25

how about this

.first

.card

.rest .card

.rest .card

.rest -

8 / 25

pros and cons

Access the n’th card.
The list of cards has an O(n) access operation.
The array of cards has an O(1) access operation.

9 / 25

pros and cons

Access the n’th card.
The list of cards has an O(n) access operation.
The array of cards has an O(1) access operation.

9 / 25

pros and cons

Access the n’th card.
The list of cards has an O(n) access operation.
The array of cards has an O(1) access operation.

9 / 25

adding a card to an array of cards
.first 3

.first 4

.cards

10 / 25

adding a card to an array of cards
.first 3

.first 4

.cards

10 / 25

adding a card to an array of cards

.first 3

.first 4.cards

10 / 25

adding a card to a list of cards

a.first

.card
.rest

.card
.rest

.card
.rest

.card
.rest

11 / 25

adding a card to a list of cards

a.first

.card
.rest

.card
.rest

.card
.rest

.card
.rest

11 / 25

adding a card to a list of cards

a.first

.card
.rest

.card
.rest

.card
.rest

.card
.rest

11 / 25

adding a card to a list of cards

a.first

.card
.rest

.card
.rest

.card
.rest

.card
.rest

11 / 25

adding a card to a list of cards

a.first

.card
.rest

.card
.rest

.card
.rest

.card
.rest

11 / 25

pros and cons

Adding a card has a time complexity of ...
a list of cards: O(1)
a dynamic array: amortized cost of O(1)

12 / 25

pros and cons

Adding a card has a time complexity of ...

a list of cards: O(1)
a dynamic array: amortized cost of O(1)

12 / 25

pros and cons

Adding a card has a time complexity of ...
a list of cards: O(1)

a dynamic array: amortized cost of O(1)

12 / 25

pros and cons

Adding a card has a time complexity of ...
a list of cards: O(1)
a dynamic array: amortized cost of O(1)

12 / 25

append one deck to another

Assume we have two decks of cards, a and b, how do we append b
to a i.e. the deck a will after the operation hold all cards and b
should be empty.

13 / 25

append one deck to another

Assume we have two decks of cards, a and b, how do we append b
to a i.e. the deck a will after the operation hold all cards and b
should be empty.

13 / 25

append an array of cards
a.append(b);

a.deck:

b.deck:

b.deck: null

14 / 25

append an array of cards
a.append(b);

a.deck:

b.deck:

b.deck: null

14 / 25

append an array of cards
a.append(b);

a.deck:

b.deck:

b.deck: null

14 / 25

append an array of cards
a.append(b);

a.deck:

b.deck:

b.deck: null

14 / 25

append an array of cards
a.append(b);

a.deck:

b.deck:

b.deck: null

14 / 25

append an array of cards
a.append(b);

a.deck:

b.deck:

b.deck: null

14 / 25

append a list of cards

15 / 25

insert a card in an array

a.deck:

16 / 25

insert a card in an array

a.deck:

16 / 25

insert a card in an array

a.deck:

16 / 25

insert a card in an array

a.deck:

16 / 25

insert a card in an array

a.deck:

16 / 25

insert a card in a list

a.deck:

.card
.rest

.card
.rest

.card
.rest

.card
.rest

17 / 25

insert a card in a list

a.deck:

.card
.rest

.card
.rest

.card
.rest

.card
.rest

17 / 25

insert a card in a list

a.deck:

.card
.rest

.card
.rest

.card
.rest

.card
.rest

17 / 25

insert a card in a list

a.deck:

.card
.rest

.card
.rest

.card
.rest

.card
.rest

17 / 25

insert a card in a list

a.deck:

.card
.rest

.card
.rest

.card
.rest

.card
.rest

17 / 25

insert a card in a list

a.deck:

.card
.rest

.card
.rest

.card
.rest

.card
.rest

17 / 25

pros and cons

Inserting a card.
The list of cards has an O(n) insert operation....
..., only O(n) read operations and O(1) write operations.
The array of cards has an O(n) insert operations ...
..., O(n) read and write operations.

18 / 25

pros and cons

Inserting a card.

The list of cards has an O(n) insert operation....
..., only O(n) read operations and O(1) write operations.
The array of cards has an O(n) insert operations ...
..., O(n) read and write operations.

18 / 25

pros and cons

Inserting a card.
The list of cards has an O(n) insert operation....

..., only O(n) read operations and O(1) write operations.
The array of cards has an O(n) insert operations ...
..., O(n) read and write operations.

18 / 25

pros and cons

Inserting a card.
The list of cards has an O(n) insert operation....
..., only O(n) read operations and O(1) write operations.
The array of cards has an O(n) insert operations ...

..., O(n) read and write operations.

18 / 25

pros and cons

Inserting a card.
The list of cards has an O(n) insert operation....
..., only O(n) read operations and O(1) write operations.
The array of cards has an O(n) insert operations ...
..., O(n) read and write operations.

18 / 25

LinkedList
class LinkedLints {

Cell first;

private class Cell {
int head;
Cell tail;

:
}

public LinkedList () {
first = null;

}
:

}

The Cell data structure is also referedd to as a cons cell.

19 / 25

LinkedList
class LinkedLints {

Cell first;

private class Cell {
int head;
Cell tail;

:
}

public LinkedList () {
first = null;

}
:

}

The Cell data structure is also referedd to as a cons cell. 19 / 25

LinkedList - search

public boolean search(int key) {
Cell nxt = first;
while (nxt != null) {

if (nxt.head == key)
return true;

nxt = nxt.tail;
}
return false;

}

20 / 25

LinkeList - what?
public void what(int key) {

Cell nxt = first;
Cell prv = null;
while (nxt != null) {

if (nxt.head == key) {
if (prv != null)

prev.tail = nxt.tail;
else

first = nxt.tail;
return;

}
prev = nxt;
nxt = nxt.tail;

}
return;

} 21 / 25

LinkedList - append

public void append(LinkedList b) {
Cell nxt = first;
while (nxt.tail != null) {

nxt = nxt.tail;
}
nxt.tail = b.first;
b.first = null;

}

There is an error in this code - find it.

22 / 25

LinkedList - append

public void append(LinkedList b) {
Cell nxt = first;
while (nxt.tail != null) {

nxt = nxt.tail;
}
nxt.tail = b.first;
b.first = null;

}

There is an error in this code - find it.

22 / 25

Stack

class Stack {
Cell stack;

public void Stack () {
stack = null;

}
:
:

}

23 / 25

Stack - push n pop

public void push(int item) {
stack = new Cell(item , stack);

}

public int pop () {
if (stack == null) {

throw new Exception ("pop from empty stack");
}
int ret = stack.head;
stack = stack.tail;
return ret;

}

24 / 25

Stack - push n pop

public void push(int item) {
stack = new Cell(item , stack);

}

public int pop () {
if (stack == null) {

throw new Exception ("pop from empty stack");
}
int ret = stack.head;
stack = stack.tail;
return ret;

}

24 / 25

linked lists

O(n) to find the right position
O(1) to perform operation once position is found
often simple to work with
a dynamic stack

25 / 25

linked lists

O(n) to find the right position

O(1) to perform operation once position is found
often simple to work with
a dynamic stack

25 / 25

linked lists

O(n) to find the right position
O(1) to perform operation once position is found

often simple to work with
a dynamic stack

25 / 25

linked lists

O(n) to find the right position
O(1) to perform operation once position is found
often simple to work with
a dynamic stack

25 / 25

