
Priority queues

Johan Montelius
KTH

HT23

1 / 28

a queue

First in first out.

enqueue(): Add item to the queue.
dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

2 / 28

a queue

First in first out.

enqueue(): Add item to the queue.
dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

2 / 28

a queue

First in first out.

enqueue(): Add item to the queue.

dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

2 / 28

a queue

First in first out.

enqueue(): Add item to the queue.
dequeue() : Remove item that has been the longest in the
queue.
empty() : Is the queue empty?

2 / 28

a priority queue

Items ordered by priority.

enqueue(): Add item with a given priority to the queue.
dequeue() : Remove item with the highest priority.
empty() : Is the queue empty?

Let’s say that low numbers have high priority.

3 / 28

a priority queue

Items ordered by priority.

enqueue(): Add item with a given priority to the queue.
dequeue() : Remove item with the highest priority.
empty() : Is the queue empty?

Let’s say that low numbers have high priority.

3 / 28

a priority queue

Items ordered by priority.

enqueue(): Add item with a given priority to the queue.

dequeue() : Remove item with the highest priority.
empty() : Is the queue empty?

Let’s say that low numbers have high priority.

3 / 28

a priority queue

Items ordered by priority.

enqueue(): Add item with a given priority to the queue.
dequeue() : Remove item with the highest priority.
empty() : Is the queue empty?

Let’s say that low numbers have high priority.

3 / 28

a priority queue

Items ordered by priority.

enqueue(): Add item with a given priority to the queue.
dequeue() : Remove item with the highest priority.
empty() : Is the queue empty?

Let’s say that low numbers have high priority.

3 / 28

a linked list implementation

Let’s keep the list sorted.

2 12 18 23

queue

How do we implement add and remove?

4 / 28

a linked list implementation

Let’s keep the list sorted.

2 12 18 23

queue

How do we implement add and remove?

4 / 28

a linked list implementation

Let’s keep the list sorted.

2 12 18 23

queue

How do we implement add and remove?

4 / 28

a linked list implementation

Let’s keep the list sorted.

2 12 18 23

queue

How do we implement add and remove?

4 / 28

a linked list implementation

Let’s not bother keeping the list sorted.

18 2 23 12

queue

How do we implement add and remove?

5 / 28

a linked list implementation

Let’s not bother keeping the list sorted.

18 2 23 12

queue

How do we implement add and remove?

5 / 28

a linked list implementation

Let’s not bother keeping the list sorted.

18 2 23 12

queue

How do we implement add and remove?

5 / 28

a linked list implementation

Let’s not bother keeping the list sorted.

18 2 23 12

queue

How do we implement add and remove?

5 / 28

why no a tree

root:

12

6 15

72

6 / 28

why no a tree

root:

12

6 15

72

6 / 28

why no a tree

root:

12

6

15

72

6 / 28

why no a tree

root:

12

6 15

72

6 / 28

why no a tree

root:

12

6 15

7

2

6 / 28

why no a tree

root:

12

6 15

72

6 / 28

a sorted tree

A sorted tree gives us O(lg(n)) add opperation and O(lg(n))
remove operation.
Excellent for searching but
we know which element to remove next.
Arrange the tree such that the higest priority is always the root
node.

7 / 28

a sorted tree

A sorted tree gives us O(lg(n)) add opperation and O(lg(n))
remove operation.

Excellent for searching but
we know which element to remove next.
Arrange the tree such that the higest priority is always the root
node.

7 / 28

a sorted tree

A sorted tree gives us O(lg(n)) add opperation and O(lg(n))
remove operation.
Excellent for searching but

we know which element to remove next.
Arrange the tree such that the higest priority is always the root
node.

7 / 28

a sorted tree

A sorted tree gives us O(lg(n)) add opperation and O(lg(n))
remove operation.
Excellent for searching but
we know which element to remove next.

Arrange the tree such that the higest priority is always the root
node.

7 / 28

a sorted tree

A sorted tree gives us O(lg(n)) add opperation and O(lg(n))
remove operation.
Excellent for searching but
we know which element to remove next.
Arrange the tree such that the higest priority is always the root
node.

7 / 28

the heap

A heap :

The element with highest priority is in the root.
The left branch is a heap, and so is the right branch.
There is no relationship between the left and right branch.
We need add() and remove() operations that maintain this
order.

8 / 28

the heap

A heap :

The element with highest priority is in the root.

The left branch is a heap, and so is the right branch.
There is no relationship between the left and right branch.
We need add() and remove() operations that maintain this
order.

8 / 28

the heap

A heap :

The element with highest priority is in the root.
The left branch is a heap, and so is the right branch.

There is no relationship between the left and right branch.
We need add() and remove() operations that maintain this
order.

8 / 28

the heap

A heap :

The element with highest priority is in the root.
The left branch is a heap, and so is the right branch.
There is no relationship between the left and right branch.

We need add() and remove() operations that maintain this
order.

8 / 28

the heap

A heap :

The element with highest priority is in the root.
The left branch is a heap, and so is the right branch.
There is no relationship between the left and right branch.
We need add() and remove() operations that maintain this
order.

8 / 28

the heap

root:

4

6 8

710

9 / 28

the heap

root:

4

6 8

710

9 / 28

the heap

root:

4

6

8

710

9 / 28

the heap

root:

4

6 8

710

9 / 28

the heap

root:

4

6 8

7

10

9 / 28

the heap

root:

4

6 8

710

9 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20 20

2020

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20 20

2020

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20 20

2020

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20 20

2020

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20

20

2020

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20

20

2020

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20 20

20

20

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 20

prio: 20

20 20

20

20

10 / 28

add an element to a heap

root:

4

6 8

710

prio: 2

2 prio: 4

prio: 8
4

8

11 / 28

add an element to a heap

root:

4

6 8

710

prio: 2

2 prio: 4

prio: 8
4

8

11 / 28

add an element to a heap

root:

4

6 8

710

prio: 2

2 prio: 4

prio: 8
4

8

11 / 28

add an element to a heap

root:

4

6 8

710

prio: 2

2

prio: 4

prio: 8
4

8

11 / 28

add an element to a heap

root:

4

6 8

710

prio: 2

2 prio: 4

prio: 8
4

8

11 / 28

add an element to a heap

root:

4

6

8

710

prio: 2

2

prio: 4

prio: 8
4

8

11 / 28

add an element to a heap

root:

4

6

8

710

prio: 2

2

prio: 4

prio: 8

4

8

11 / 28

an alternative

root:

4

6 8

710

2

12 / 28

an alternative

root:

4

6 8

710

2

12 / 28

an alternative

root:

4

6 8

710

2

12 / 28

an alternative

root:

4

6 8

710

2

12 / 28

an alternative

root:

4

6 8

710

2

12 / 28

an alternative

root:

4

6 8

710

2

12 / 28

an alternative

root:

4

6 8

710

2

12 / 28

remove the next item

root:

4

6 8

710

-6

-7

-

13 / 28

remove the next item

root:

4

6 8

710

-6

-7

-

13 / 28

remove the next item

root:

4

6 8

710

-

6

-7

-

13 / 28

remove the next item

root:

4

6

8

710

-

6

-

7

-

13 / 28

remove the next item

root:

4

6

8

7

10

-

6

-

7

-

13 / 28

remove the next item

root:

4

6

8

7

10

-

6

-

7

-

13 / 28

a push operation

A frequent operation is to remove and then immediately add the
same item with a lower priority.

look at the item with highest priority
change the priority and update the tree.

14 / 28

a push operation

A frequent operation is to remove and then immediately add the
same item with a lower priority.

look at the item with highest priority
change the priority and update the tree.

14 / 28

a push operation

A frequent operation is to remove and then immediately add the
same item with a lower priority.

look at the item with highest priority

change the priority and update the tree.

14 / 28

a push operation

A frequent operation is to remove and then immediately add the
same item with a lower priority.

look at the item with highest priority
change the priority and update the tree.

14 / 28

not ideal

The solution works but:

tree will become unbalanced,
needs to keep track of size
add to smallest branch
adjust the branches when removing items

it’s a fun exercise

15 / 28

not ideal

The solution works but:

tree will become unbalanced,

needs to keep track of size
add to smallest branch
adjust the branches when removing items

it’s a fun exercise

15 / 28

not ideal

The solution works but:

tree will become unbalanced,
needs to keep track of size

add to smallest branch
adjust the branches when removing items

it’s a fun exercise

15 / 28

not ideal

The solution works but:

tree will become unbalanced,
needs to keep track of size
add to smallest branch

adjust the branches when removing items

it’s a fun exercise

15 / 28

not ideal

The solution works but:

tree will become unbalanced,
needs to keep track of size
add to smallest branch
adjust the branches when removing items

it’s a fun exercise

15 / 28

not ideal

The solution works but:

tree will become unbalanced,
needs to keep track of size
add to smallest branch
adjust the branches when removing items

it’s a fun exercise

15 / 28

a linked implementation
class Heap <T> {

Node root;

private class Node {

T item;
int prio;
int size;
Node Left , right;

:
}

:
}

16 / 28

enqueu an item given priority

public void enqueue (T itm; int pr) {
if (root == null)

root = new Node(itm , pr);
else

root.enqueu ();
}

17 / 28

enqueu an item given priority
private void enqueue (T itm , int p) {

size = size +1;
if (p < prio) {

// swap item and priority
}
if(right != null)

if(left != null)
// add to smallest branch

else
left = ...

else
right = ...

}

18 / 28

dequeu the next item

public T dequeue () {
if (root == null)

return null;
else {

T itm = root.item;
root = root.remove ();
return itm:

}
}

19 / 28

remove the node and promote the node with higest
priority

public Node remove () {
if (right == null && left == null)

return null;
if (right == null)

return left;
if (left == null)

return right;
// the tricky part

:
:

return this;
}

20 / 28

it works but

can we do better?

21 / 28

it works but

can we do better?

21 / 28

a complete tree

The tree is complete i.e. all levels are filled apart from the last
level that is filled from the left.
The tree is still complete after an add or remove operation.

22 / 28

a complete tree

The tree is complete i.e. all levels are filled apart from the last
level that is filled from the left.

The tree is still complete after an add or remove operation.

22 / 28

a complete tree

The tree is complete i.e. all levels are filled apart from the last
level that is filled from the left.
The tree is still complete after an add or remove operation.

22 / 28

the complete tree - add

root:

4

6 8

710

magic2

2

8

4

2

23 / 28

the complete tree - add

root:

4

6 8

710 magic

2

2

8

4

2

23 / 28

the complete tree - add

root:

4

6 8

710 magic

2

2

8

4

2

23 / 28

the complete tree - add

root:

4

6 8

710

magic

2

2

8

4

2

23 / 28

the complete tree - add

root:

4

6

8

710

magic2

2

8

4

2

23 / 28

the complete tree - add

root:

4

6

8

710

magic2

2

8

4

2

23 / 28

the complete tree - add

root:

4

6

8

710

magic2

2

8

4

2

23 / 28

the complete tree - remove

root:

4

6 8

710
magic

-

-

76

7

24 / 28

the complete tree - remove

root:

4

6 8

710
magic

-

-

76

7

24 / 28

the complete tree - remove

root:

4

6 8

710
magic

-

-

76

7

24 / 28

the complete tree - remove

root:

4

6 8

7

10
magic

-

-

7

6

7

24 / 28

the complete tree - remove

root:

4

6 8

7

10

magic

-

-

7

6

7

24 / 28

the complete tree - remove

root:

4

6

8

7

10

magic

-

-

7

6

7

24 / 28

this is hard

There will be a lot of bookkeeping to make this work.

25 / 28

this is hard

There will be a lot of bookkeeping to make this work.

25 / 28

an array implementation

4 6 8 10 7 - - - - -

26 / 28

an array implementation

4 6 8 10 7 - - - - -

26 / 28

an array implementation

4 6 8 10 7 - - - - -

26 / 28

add operation

6 10 784 - - - --

magic

2822 4

The new item bubbles upwards.

27 / 28

add operation

6 10 784 - - - --

magic

2822 4

The new item bubbles upwards.

27 / 28

add operation

6 10 784 - - - -

-

magic

2

822 4

The new item bubbles upwards.

27 / 28

add operation

6 10 784 - - - -

-

magic

2

822 4

The new item bubbles upwards.

27 / 28

add operation

6 10 7

8

4 - - - -

-

magic

2

82

2 4

The new item bubbles upwards.

27 / 28

add operation

6 10 7

8

4 - - - -

-

magic

2

82

2 4

The new item bubbles upwards.

27 / 28

add operation

6 10 7

84

- - - -

-

magic

2

8

2

2 4

The new item bubbles upwards.

27 / 28

add operation

6 10 7

84

- - - -

-

magic

2

8

2

2 4

The new item bubbles upwards.

27 / 28

remove operation

6 10 7 - - - -2 4 8

-

magic

-84 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2

4 8-

magic

-84 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2

4 8-

magic

-84 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2

4

8-

magic

-8

4 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2

4

8-

magic

-8

4 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2 4 8-

magic

-

8

4 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2 4 8-

magic

-

8

4 8

The promoted item sinks.

28 / 28

remove operation

6 10 7 - - - -

2 4 8-

magic

-

8

4 8

The promoted item sinks.

28 / 28

