
Hash tables

Johan Montelius
KTH

HT23

1 / 26

Let’s build a key-value store.

A linked list : ok, but O(n) lookup operation.
A sorted tree : much better, O(lg(n)) operations (add and
lookup).
A sorted array : binary search gives us O(lg(n)) lookup, but ...

2 / 26

Let’s build a key-value store.

A linked list : ok, but O(n) lookup operation.

A sorted tree : much better, O(lg(n)) operations (add and
lookup).
A sorted array : binary search gives us O(lg(n)) lookup, but ...

2 / 26

Let’s build a key-value store.

A linked list : ok, but O(n) lookup operation.
A sorted tree : much better, O(lg(n)) operations (add and
lookup).

A sorted array : binary search gives us O(lg(n)) lookup, but ...

2 / 26

Let’s build a key-value store.

A linked list : ok, but O(n) lookup operation.
A sorted tree : much better, O(lg(n)) operations (add and
lookup).
A sorted array : binary search gives us O(lg(n)) lookup, but ...

2 / 26

zip code data base

A file containing: zip code, name and population.

111 15,STOCKHOLM ,3
111 20,STOCKHOLM ,50
111 21,STOCKHOLM ,344
111 22,STOCKHOLM ,149
:
:

3 / 26

zip code data base

A file containing: zip code, name and population.

111 15,STOCKHOLM ,3
111 20,STOCKHOLM ,50
111 21,STOCKHOLM ,344
111 22,STOCKHOLM ,149
:
:

3 / 26

An array of nodes

pubic class Zip {
Node [] data;

private class Node {
String code;
String name;
Integer pop;
:

}
:

4 / 26

zip codes are ordered

public Zip(String file) {

data = new Node [10000];
:

data[i++] = new Node(row [0], row [1], Integer . valueOf (row [2]));
:

}

5 / 26

binary search
public String binary(String zip) {

int mn = 0;
int mx = max;

while (true) {
int index = (mn + mx)/2;

int cmp zip. compareTo (data[index]. code);

if (cmp == 0) {
return data[index]. name;

}
:

}
return null;

} 6 / 26

use zip code as index

public Zip(String file) {

data = new Node [100000];
:

Integer key = Integer . valueOf (row [0]. replaceAll ("\\s",""));

data[key] = new Node(key , row [1], Integer . valueOf (row [2]));
:

}

7 / 26

perfect

O(1) lookup
what’s the problem?

8 / 26

perfect

O(1) lookup

what’s the problem?

8 / 26

perfect

O(1) lookup
what’s the problem?

8 / 26

using key as index

key

9 / 26

the hash function

key

h(key)

10 / 26

hash function

A hash function h takes an key as input and generates an
index: 0..k
Keys are evenly distributed over the range of indices.
The range 0..k is resonable (?) small.
Few (?) keys map to the same index.

11 / 26

hash function

A hash function h takes an key as input and generates an
index: 0..k

Keys are evenly distributed over the range of indices.
The range 0..k is resonable (?) small.
Few (?) keys map to the same index.

11 / 26

hash function

A hash function h takes an key as input and generates an
index: 0..k
Keys are evenly distributed over the range of indices.
The range 0..k is resonable (?) small.

Few (?) keys map to the same index.

11 / 26

hash function

A hash function h takes an key as input and generates an
index: 0..k
Keys are evenly distributed over the range of indices.
The range 0..k is resonable (?) small.
Few (?) keys map to the same index.

11 / 26

example of hash function

public static int hash(Integer key , int M) {
return key % M;

}

12 / 26

how about a string

int R = 31;

public static Integer hash(String key , int M) {

char [] chars = key. toCharArray ();

int value = 0;
for (int i = 0; i < chars.length; i++) {

value = (R * value + chars[i]) % M;
}
return value;

}

13 / 26

how about a string

int R = 31;

public static Integer hash(String key , int M) {

char [] chars = key. toCharArray ();

int value = 0;
for (int i = 0; i < chars.length; i++) {

value = (R * value + chars[i]) % M;
}
return value;

}

13 / 26

collisions

What should we do if we have collisions?

14 / 26

collisions

What should we do if we have collisions?

14 / 26

buckets

key h(key)

15 / 26

buckets

key h(key)

15 / 26

buckets

key h(key)

15 / 26

buckets

Simple to implement, robust behaviour.
Size of the table, m, can be half of n or less.
Bucket as: linked list, array, ordered tree

16 / 26

buckets

Simple to implement, robust behaviour.

Size of the table, m, can be half of n or less.
Bucket as: linked list, array, ordered tree

16 / 26

buckets

Simple to implement, robust behaviour.
Size of the table, m, can be half of n or less.

Bucket as: linked list, array, ordered tree

16 / 26

buckets

Simple to implement, robust behaviour.
Size of the table, m, can be half of n or less.
Bucket as: linked list, array, ordered tree

16 / 26

buckets

Simple to implement, robust behaviour.
Size of the table, m, can be half of n or less.
Bucket as: linked list, array, ordered tree

16 / 26

open adressing

What if the hash function give us an index but we have options of
where to place an item.

We need to search for the item.

17 / 26

open adressing

What if the hash function give us an index but we have options of
where to place an item.

We need to search for the item.

17 / 26

open adressing

What if the hash function give us an index but we have options of
where to place an item.

We need to search for the item.

17 / 26

linear probing

key h(key)

18 / 26

linear probing

key h(key)

18 / 26

linear probing

key h(key)

18 / 26

linear probing

key h(key)

18 / 26

clustering

key h(key)

19 / 26

linear probing

Simple to implement.
Growing clusters a problem.
Size of the table, m, should be at least 2 × n.

20 / 26

linear probing

Simple to implement.

Growing clusters a problem.
Size of the table, m, should be at least 2 × n.

20 / 26

linear probing

Simple to implement.
Growing clusters a problem.

Size of the table, m, should be at least 2 × n.

20 / 26

linear probing

Simple to implement.
Growing clusters a problem.
Size of the table, m, should be at least 2 × n.

20 / 26

linear probing

Simple to implement.
Growing clusters a problem.
Size of the table, m, should be at least 2 × n.

20 / 26

double hashing

key h(key)

f(key) f(key)

21 / 26

double hashing

key h(key) f(key)

f(key)

21 / 26

double hashing

key h(key) f(key)

f(key)

21 / 26

double hashing

key h(key) f(key) f(key)

21 / 26

double hashing

key h(key) f(key) f(key)

21 / 26

double hashing

Slightly more complicated.
The second hash function should give us an offset 1..d where d
is relative prime to m (choose m − 1).
Growing clusters less of a problem.
Size of the table, m, could approach n in more advanced
schemes.

22 / 26

double hashing

Slightly more complicated.

The second hash function should give us an offset 1..d where d
is relative prime to m (choose m − 1).
Growing clusters less of a problem.
Size of the table, m, could approach n in more advanced
schemes.

22 / 26

double hashing

Slightly more complicated.
The second hash function should give us an offset 1..d where d
is relative prime to m (choose m − 1).

Growing clusters less of a problem.
Size of the table, m, could approach n in more advanced
schemes.

22 / 26

double hashing

Slightly more complicated.
The second hash function should give us an offset 1..d where d
is relative prime to m (choose m − 1).
Growing clusters less of a problem.

Size of the table, m, could approach n in more advanced
schemes.

22 / 26

double hashing

Slightly more complicated.
The second hash function should give us an offset 1..d where d
is relative prime to m (choose m − 1).
Growing clusters less of a problem.
Size of the table, m, could approach n in more advanced
schemes.

22 / 26

double hashing

Slightly more complicated.
The second hash function should give us an offset 1..d where d
is relative prime to m (choose m − 1).
Growing clusters less of a problem.
Size of the table, m, could approach n in more advanced
schemes.

22 / 26

what about remove

buckets: not a problem
open adressing: problem

23 / 26

what about remove

buckets: not a problem

open adressing: problem

23 / 26

what about remove

buckets: not a problem
open adressing: problem

23 / 26

R.I.P

Replace removed key/values with a tombstone.

24 / 26

R.I.P

Replace removed key/values with a tombstone.

24 / 26

increase the size

In a dynamic array we simply copied everything to a larger array ...
problem?

25 / 26

increase the size

In a dynamic array we simply copied everything to a larger array ...
problem?

25 / 26

cryptographic hash function

The hash functions that we have used are quite simple.
Cryptographic hash functions have more requirements:

extremly unlikely that two key have the same hash value
no efficient way of finding the key given a hash value

Computing a chryptographic hash is more expensive.

26 / 26

cryptographic hash function

The hash functions that we have used are quite simple.
Cryptographic hash functions have more requirements:

extremly unlikely that two key have the same hash value
no efficient way of finding the key given a hash value

Computing a chryptographic hash is more expensive.

26 / 26

cryptographic hash function

The hash functions that we have used are quite simple.
Cryptographic hash functions have more requirements:

extremly unlikely that two key have the same hash value

no efficient way of finding the key given a hash value

Computing a chryptographic hash is more expensive.

26 / 26

cryptographic hash function

The hash functions that we have used are quite simple.
Cryptographic hash functions have more requirements:

extremly unlikely that two key have the same hash value
no efficient way of finding the key given a hash value

Computing a chryptographic hash is more expensive.

26 / 26

cryptographic hash function

The hash functions that we have used are quite simple.
Cryptographic hash functions have more requirements:

extremly unlikely that two key have the same hash value
no efficient way of finding the key given a hash value

Computing a chryptographic hash is more expensive.

26 / 26

cryptographic hash function

The hash functions that we have used are quite simple.
Cryptographic hash functions have more requirements:

extremly unlikely that two key have the same hash value
no efficient way of finding the key given a hash value

Computing a chryptographic hash is more expensive.

26 / 26

